Mode of Occurrence and Distribution of Critical Metal Lithium and Other Trace Elements during Coal Preparation from Jiashun High-Sulfur Coal in Guizhou Province, China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Analytical Procedures
4. Results and Discussion
4.1. Coal Chemistry
4.2. Geochemistry
4.2.1. Major Element Oxides
4.2.2. Trace Elements
4.3. Mineralogy
4.4. Distribution of Li and Other Trace Elements during Coal Separation
4.4.1. Distribution of Li and Other Trace Elements during Flotation
4.4.2. Distribution Characteristics of Li and Other Elements in Gravity Separation Products
4.4.3. Distribution of REY in Coal Separation
- Distribution of REY in coal preparation products
- 2.
- Geochemical characteristics of REY
4.5. Removal Rate of Trace Elements
4.6. Economic Potential Evaluation and Enrichment Genesis of Li
4.6.1. Economic Potential Evaluation of Li in Jiashun Coal and Its Preparation Products
4.6.2. Origin of Li in the Jiashun Mine
5. Conclusions
- (1)
- The Late Permian coal from the Jiashun Mine in southwestern China is characterized by high sulfur content (5.84%) and a high concentration of Li (94.5 μg/g). The minerals in Jiashun coals mainly consist of pyrite, quartz, and clay minerals, with kaolinite being the predominant clay mineral. In addition, common carbonate mineral calcite and REY-bearing mineral monazite are also present.
- (2)
- Ni, Cu, Zn, Cd, In, Ba, W, Tl, Pb, and Bi are primarily distributed in the tailings, which may mainly occur in the minerals. Sc, V, Cr, Sr, Zr, Nb, Mo, Hf, and U are distributed in the cleaned coals, likely combining with the organic portions. Li, Be, Co, Ga, Rb, Cs, Ta, Th, and REY are distributed in the middlings, with these elements being uniformly distributed in minerals and organic components or in fine-grained minerals wrapped by organic matter.
- (3)
- The removal rate of trace elements occurred in minerals obtained through gravity separation is significantly higher than the rate obtained using flotation. The trace elements mainly occurred in fine-grained minerals wrapped by organic matter or combined to organic portions exhibit better removal efficiency through flotation. Elements occurring in both minerals and organic matter have a low removal rate (<25%) with both preparation methods.
- (4)
- Li is more enriched in flotation tailings (102 μg/g) and middlings (98 μg/g) obtained through gravity separation. The values reached the marginal grade (80 μg/g). The reason for the enrichment of Li in Jiashun coal may be the input of felsic-intermediate terrigenous materials from the top of the Kangdian Upland and late hydrothermal fluids.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, S.; Zhao, L.; Wei, Q.; Song, X.; Wang, W.; Liu, J.; Duan, P. Key metal resources in coal measures of China: Enrichment type and distribution. Int. J. Sci. Bull. 2020, 65, 3715–3729. (In Chinese) [Google Scholar] [CrossRef]
- Duan, P.; Wang, W.; Liu, X.; Qian, F.; Sang, S.; Xu, S. Distribution of As, Hg and other trace elements in different size and density fractions of the Reshuihe high-sulfur coal, Yunnan Province, China. Int. J. Coal Geol. 2017, 173, 129–141. [Google Scholar] [CrossRef]
- Duan, P.; Wang, W.; Sang, S.; Qian, F.; Shao, P.; Zhao, X. Partitioning of hazardous elements during preparation of high-uranium coal from Rongyang, Guizhou, China. J. Geochem. Explor. 2018, 185, 81–92. [Google Scholar] [CrossRef]
- Duan, P.; Wang, W.; Liu, X.; Sang, S.; Ma, M.; Zhang, W. Differentiation of rare earth elements and yttrium in different size and density fractions of the Reshuihe coal, Yunnan Province, China. Int. J. Coal Geol. 2019, 207, 1–11. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Tian, L. Health impacts of domestic coal use in China. Int. J. Geol Rev. 2018, 5–6, 579–589. [Google Scholar] [CrossRef]
- Zhang, G.; Feng, Q.; Zhao, H.; Zhang, N.; Wu, M.; Wang, X.; Wen, M.; Deng, Y.; Yang, Z. Distribution of Se in Floating Coals with Densiometric Fractions in China. Int. J. Miner. 2023, 13, 396. [Google Scholar] [CrossRef]
- Hong, X.; Yang, K.; Liang, H.; Wang, X. Enrichment of Sulfate, Acidity and Mercury in Native outcrop coal, Southwest China. Int. J. Environ. Sci. Pollut. Res. 2023, 30, 63368–63381. [Google Scholar] [CrossRef]
- Duan, P.; Wang, W. Distribution Characteristics of Harmful Elements in High Sulfur Coal Cleaning Process in Southwest China; China University of Mining and Technology Press: Xuzhou, China, 2019. (In Chinese) [Google Scholar]
- Ni, C.; Zhou, S.; Bu, X.; Bilal, M.; Hassan, F.U.; Chen, Y.; Xu, G.; Xie, G. Characterization and Removal Potential of Fluorine in Lignite from a Mine in Shaanxi Province, China: A Case Study. Int. J. Miner. 2022, 12, 280. [Google Scholar] [CrossRef]
- Zhang, Q.; Wen, H.; Cheng, W.; Li, X.; Xie, J. Research progress on occurrence state and separation recovery of associated elements in medium-high sulfur coal. Int. J. China Univ. Min. Technol. 2022, 51, 491–502+519. (In Chinese) [Google Scholar] [CrossRef]
- Duan, P.; Wang, W.; Sang, S.; Tang, Y.; Ma, M.; Zhang, W.; Liang, B. Geochemistry of Toxic Elements and Their Removal via the Preparation of High-Uranium Coal in Southwestern China. Int. J. Miner. 2018, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Zhou, C.; Zhang, N.; Liu, C.; Tang, M.; Cao, S. Arsenic in Coal: Modes of Occurrence and Reduction via Coal Preparation—A Case Study. Int. J. Coal Prep. Util. 2020, 40, 766–779. [Google Scholar] [CrossRef]
- Wang, W.; Qin, Y. Partitioning of Hazardous Elements and Minerals during Coal Cleaning; China University of Mining and Technology Press: Xuzhou, China, 2011. (In Chinese) [Google Scholar]
- Duan, P.; Wang, W.; Ma, M. Distribution characteristics of trace elements in Wulantuga germanium-rich coal in different density coals. Int. J. Coal Geol. Explor. 2022, 50, 125–133. (In Chinese) [Google Scholar]
- Dai, S.; Chou, C.; Yue, M.; Luo, K.; Ren, D. Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield, Guizhou, China: Influence from siliceous and iron-rich calcic hydrothermal fluids. Int J Coal Geol. 2005, 61, 241–258. [Google Scholar] [CrossRef]
- Tao, Z.; Yang, R.; Cheng, W.; Luo, R. Enrichment characteristics of associated elements in Late Permian coal and coal ash in Puan-Qinglong mining area, Guizhou. Int. J. Coal Geol. Explor. 2017, 45, 44–51. (In Chinese) [Google Scholar] [CrossRef]
- Guizhou Provincial Bureau of Geology and Mineral Resources. Geological Special Report of the Ministry of Geology and Mineral Resources of the P. R. China: Regional Geological Records of Guizhou Province; Geological Publishing House: Beijing, China, 1987. (In Chinese) [Google Scholar]
- Dai, C.; Wang, X.; Chen, J. Guizhou Academy of Geologic Survey. Regional Geology of China: Guizhou; Geological Publishing House: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Jiang, Y.; Qian, H.; Zhou, G. Mineralogy and geochemistry of different morphological pyrite in Late Permian coals, South China. Int. J. Arab. J. Geosci. 2016, 9, 590. [Google Scholar] [CrossRef]
- GB/T478-2008; Coal Float-Sink Test Method. Standardization Administration of China: Beijing, China, 2008. (In Chinese)
- GB/T 4757-2013; (National Standard of P.R. China). Laboratory Unit Flotation Test Method for Pulverized Coal(mud). Standardization Administration of China: Beijing, China, 2008. (In Chinese)
- D3173-11; Test Method for Moisture in the Analysis Sample of Coal and Coke. Annual Book of ASTM Standards; ASTM: West Conshohocken, PA, USA, 2011.
- D3174-11; Test Method for Ash in the Analysis Sample of Coal and Coke. Annual Book of ASTM Standards; ASTM: West Conshohocken, PA, USA, 2011.
- D3175-11; Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. Annual Book of ASTM Standards; ASTM: West Conshohocken, PA, USA, 2011.
- GB/T 214-2007; (National Standard of P.R. China). Classification for Determination of Total Sulfur in Coal. Standardization Administration of China: Beijing, China, 2007. (In Chinese)
- D2492-02; Test Methods for Forms Sulfur in the Analysis Sample of Coal and Coke. Annual Book of ASTM Standards; ASTM: West Conshohocken, PA, USA, 2002.
- Dai, S.; Wang, X.; Zhou, Y.; Hower, J.C.; Li, D.; Chen, W.; Zhu, X.; Zou, J. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Int. J. Chem. Geol. 2011, 282, 29–44. [Google Scholar] [CrossRef]
- GB/T 15224.1-2018; (National Standard of P.R. China). Classification for Quality of Coal. Part 1: Ash. Standardization Administration of China: Beijing, China, 2018. (In Chinese)
- D388-19; Standard Classification of Coals by Rank. Annual Book of ASTM Standards; ASTM: West Conshohocken, PA, USA, 2019.
- GB/T 15224.2-2021; (National Standard of P.R. China). Classification for Quality of Coal. Part 2: Sulfur Content. Standardization Administration of China: Beijing, China, 2021. (In Chinese)
- Chou, C.-L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Lin, J.; Sun, M.; Li, H.; Zuo, G.; Guo, W. Geochemical characteristics and indicative significance of rare earth elements in Late Permian coal in western Henan. Int. J. Coal Sci. Technol. 2023, 51, 184–192. (In Chinese) [Google Scholar] [CrossRef]
- Hou, Y.; Liu, D.; Zhao, F.; Zhang, S.; Zhang, Q.; Emmanuel, N.N.; Zhong, L. Mineralogical and geochemical characteristics of coal from the Southeastern Qinshui Basin: Implications for the enrichment and economic value of Li and REY. Int. J. Coal Geol. 2022, 264, 104136. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Int. J. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Wang, W.; Sang, S.; Bian, Z.; Duan, P.; Qian, F.; Lei, S.; Qin, Y. Fine-grained pyrite in some Chinese coals. Int. J. Energy Explor. Exploit. 2016, 34, 543–560. [Google Scholar] [CrossRef] [Green Version]
- Ruppert, L.F.; Hower, J.C.; Eble, C.F. Arsenic-bearing pyrite and marcasite in the Fire Clay coal bed, Middle Pennsylvanian Breathitt Formation, eastern Kentucky. Int. J. Coal Geol. 2005, 63, 27–35. [Google Scholar] [CrossRef]
- Yuan, X.; Kuang, Y. Influence of Clay mineral on surface properties of coal slime. Int. J. Coal Sci. Technol. 2013, 41, 126–128. (In Chinese) [Google Scholar] [CrossRef]
- Han, D.; Ren, D.; Wang, Y.; Jin, K.; Mao, H.; Qin, Y. Chinese Coal Petrology; China University of Mining and Technology Press: Xuzhou, China, 1996. (In Chinese) [Google Scholar]
- Hao, Q.; Fang, Q.; Chen, Y.; Pi, Z.; Chen, S. The occurrence of fluorine in Zhangji coal and its migration behavior in the washing process. Int. J. Coal Conver. 2022, 45, 19–26. (In Chinese) [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P.; Kaufman, A.J.; Danielson, A. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Int. J. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Dai, S.; Chekryzhov, I.Y.; Seredin, V.V.; Nechaev, V.P.; Graham, I.T.; Hower, J.C.; Ward, C.R.; Ren, D.; Wang, X. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Int. J. Gondwana Res. 2016, 29, 60–82. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclenman, S.M. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell Scientific Pub: Hoboken, NJ, USA, 1985. [Google Scholar]
- Li, M.; Huang, W.; Zhang, Z.; Zhang, W.; Tang, H.; Cao, X.; Sun, W. Research progress on occurrence characteristics and beneficiation enrichment of rare earth elements in coal and its by-products. Int. J. Nonfer. Metals 2021, 06, 61–81. (In Chinese) [Google Scholar]
- Dai, S.; Hower, J.C.; Finkelman, R.B.; Graham, L.T.; French, D.; Ward, C.R.; Eskenazy, G.; Wei, Q.; Zhao, L. Organic associations of non-mineral elements in coal: A review. Int. J. Coal Geol. 2022, 218, 1. [Google Scholar] [CrossRef]
- Wang, W.; Qin, Y.; Song, D.; Sang, S.; Jiang, B.; Zhu, Y.; Fu, X. Study on element geochemistry and cleaning potential of No.11 coal seam in Antaibao mining area. Int. J. China Sci. (D Earth Sci.) 2005, 10, 59–68. (In Chinese) [Google Scholar] [CrossRef]
- Shi, J.; Huang, W.; Lv, C.; Cui, X. Geochemical characteristics and geological significance of Upper Paleozoic mudstone in Linxing area, Ordos Basin. Int. J. Acta Petrol. Sin. 2018, 39, 876–889. (In Chinese) [Google Scholar] [CrossRef]
- Cui, X.; Huang, W.; Ao, W.; Zhou, H.; Liang, F. Geochemical study of rare earth elements in Permian coal of Xiayukou mine in Weibei coalfield. Int. J. Earth Sci. Front. 2016, 23, 90–96. (In Chinese) [Google Scholar] [CrossRef]
- Wang, W.; Yong, Q.; Shuxun, S.; Yanming, Z.; Chaoyong, W.; Dominik, J.W. Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district, Shanxi, China. Int. J. Coal Geol. 2008, 76, 309–317. [Google Scholar] [CrossRef]
- Chen, J.; Algeo, T.J.; Zhao, L.; Chen, Z.; Cao, L.; Zhang, L.; Li, Y. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China. Int. J. Earth-Sci. Rev. 2015, 149, 181–202. [Google Scholar] [CrossRef]
- Dai, S.; Ian, T.G.; Colin, R.W. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Jiu, B.; Huang, W.; Mu, N. Mineralogy and elemental geochemistry of Permo-Carboniferous Li-enriched coal in the southern Ordos Basin, China: Implications for modes of occurrence, controlling factors and sources of Li in coal. Int. J. Ore Geol. Rev. 2022, 141, 104686. [Google Scholar] [CrossRef]
- Zou, J.; Cheng, L.; Guo, Y.; Wang, Z.; Tian, H.; Li, T. Mineralogical and Geochemical Characteristics of Lithium and Rare Earth Elements in High-Sulfur Coal from the Donggou Mine, Chongqing, Southwestern China. Int. J. Miner. 2020, 10, 627. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Pan, Z.; Pan, W.; Yin, X.; Chai, P.; Pan, S.; Yang, Q. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui Basin, northern China, with emphasis on lithium enrichment. Int. J. Coal Geol. 2019, 214, 103254. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Curtis, A.P.; Peipei, W. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, L.; Wang, X.; Victor, P.N.; David, F.; Spiro, B.F.; Ian, T.G.; James, C.H.; Dai, S. Mineralogy and geochemistry of the Late Triassic coal from the Caotang mine, northeastern Sichuan Basin, China, with emphasis on the enrichment of the critical element lithium. Int. J. Ore Geol. Rev. 2021, 139, 104582. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, J.; Zhao, C. Minimum mining grade of associated Li deposits in coal seams. Int. J. Energy Explor. Exploit. 2012, 30, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.; Luo, C.; Du, S.; Yu, W.; Gu, H.; Ling, K.; Cui, Y.; Li, Y.; Yang, J. Discovery and significance of carbonate clay-type lithium resources. Int. J. Sci. Inst. News 2020, 65, 53–59. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; Dai, S. Lithium deposits in coal measures: Occurrence, distribution, mineralization and resource potential. Int. J. China Coal Soci. 2022, 47, 1750–1760. (In Chinese) [Google Scholar] [CrossRef]
- Qi, D.; Wu, S.; Li, S.; Zhao, G.; Xing, J.; Kang, S.; Wang, Q.; Gao, W. Enrichment characteristics, occurrence and origin of valuable trace elements in lignite from Linchang coal mine, Guangxi, China. Int. J. Geosci. Environ. Prot. 2021, 9, 133–150. [Google Scholar] [CrossRef]
- Senior, C.; Granite, E.; Linak, W.; Seames, W. Chemistry of trace inorganic elements in coal combustion systems: A century of discovery. Int. J. Energy Fuels 2020, 34, 15141–15168. [Google Scholar] [CrossRef]
- Zou, J.; Chen, H.; Zhao, L.; Wang, X.; Li, H.; Li, T.; Wang, H. Enrichment of critical elements (Li-Ga-Nb-Ta-REE-Y) in the coals and host rocks from the Daping Mine, Yudongnan Coalfield, SW China. Int. J. Ore Geol. Rev. 2023, 152, 105245. [Google Scholar] [CrossRef]
- Dai, S.; Xie, P.; Jia, S.; Ward, C.R.; Hower, J.C.; Yan, X.; French, D. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Int. J. Ore Geol. Rev. 2017, 80, 1–17. [Google Scholar] [CrossRef]
- Li, B.; Zhuang, X.; Querol, X.; Moreno, N.; Córdoba, P.; Shangguan, Y.; Yang, L.; Li, J.; Zhang, F. Geological controls on the distribution of REY-Zr (Hf)-Nb (Ta) enrichment horizons in late Permian coals from the Qiandongbei Coalfield, Guizhou Province, SW China. Int. J. Coal Geol. 2020, 231, 103604. [Google Scholar] [CrossRef]
- Zou, J.; Wang, H.; Chen, H.; Li, H.; Li, T. Mineralogical and Geochemical Compositions of Ammonian Illite-Enriched High-Rank Coals of the Xingying Mine, Northeastern Chongqing, China. Int. J. ACS Omega 2022, 7, 18969–18984. [Google Scholar] [CrossRef]
Proximate Analysis (%) | Forms of Sulfur (%) | |||||
---|---|---|---|---|---|---|
Mad | Ad | Vdaf | St,d | Sp,d | Ss,d | So,d |
3.36 | 13.57 | 17.17 | 5.84 | 0.71 | 2.56 | 2.57 |
Element Oxides (%) | SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | SiO2/Al2O3 |
---|---|---|---|---|---|---|---|---|---|---|---|
JS | 4.375 | 0.211 | 2.899 | 4.399 | 0.003 | 0.038 | 0.109 | 0.22 | 0.096 | 0.017 | 1.51 |
China * | 8.47 | 0.33 | 5.98 | 4.85 | 0.015 | 0.22 | 1.23 | 0.16 | 0.19 | 0.092 | 1.42 |
Elements (μg/g) | Li | Be | Sc | V | Cr | Co | Ni | Cu | Zn | Ga |
---|---|---|---|---|---|---|---|---|---|---|
JS | 94.5 | 0.85 | 5.2 | 24.3 | 17.1 | 6.11 | 4.99 | 9.61 | 9.94 | 4.26 |
World * | 14.0 | 2.0 | 3.7 | 28 | 17 | 6.0 | 17 | 16 | 28 | 6.0 |
CC | 6.75 | 0.43 | 1.41 | 0.87 | 1.01 | 1.02 | 0.29 | 0.60 | 0.36 | 0.71 |
Rb | Sr | Zr | Nb | Mo | Cd | In | Cs | Ba | Hf | |
JS | 9.94 | 60.9 | 71.1 | 7.25 | 5.45 | 0.22 | 0.042 | 0.54 | 27.4 | 2.19 |
World * | 18 | 100 | 36 | 4.0 | 2.1 | 0.2 | 0.04 | 1.1 | 150 | 1.2 |
CC | 0.55 | 0.61 | 1.98 | 1.81 | 2.60 | 1.10 | 1.05 | 0.49 | 0.18 | 1.83 |
Ta | W | Tl | Pb | Bi | Th | U | ||||
JS | 0.53 | 2.13 | 0.4 | 5.52 | 0.2 | 7.96 | 3.49 | |||
World * | 0.3 | 1.2 | 0.58 | 6.6 | 1.1 | 3.2 | 1.9 | |||
CC | 1.77 | 1.78 | 0.69 | 0.84 | 0.18 | 2.49 | 1.84 |
Separation Products (%, μg/g) | Method | Ad | St,d | Sp,d | Ss,d | So,d | Li | Be | Sc | V | Cr | Co |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cleaned coal | Flotation | 8.38 | 2.81 | 0.28 | 0.17 | 2.36 | 70.8 | 0.75 | 3.88 | 22.4 | 18.1 | 0.81 |
Tailings | 21.23 | 13.76 | 6.50 | 0.58 | 6.69 | 102 | 0.83 | 3.56 | 23.1 | 17.8 | 1.13 | |
Cleaned coal | Gravity Separation | 8.79 | 1.82 | 0.06 | 0.35 | 1.41 | 58.35 | 0.79 | 3.48 | 26.39 | 18.77 | 3.15 |
Middlings | 16.96 | 3.75 | 0.27 | 2.55 | 0.93 | 98.03 | 0.86 | 3.42 | 22.32 | 17.99 | 17.78 | |
Tailings | 38.52 | 15.99 | 3.82 | 11.72 | 0.45 | 69.45 | 0.44 | 1.60 | 12.53 | 7.20 | 16.86 | |
Feed coal | / | 13.57 | 5.84 | 0.71 | 2.56 | 2.57 | 94.5 | 0.85 | 5.20 | 24.3 | 17.1 | 6.11 |
Ni | Cu | Zn | Ga | Rb | Sr | Zr | Nb | Mo | Cd | In | ||
Cleaned coal | Flotation | 4.82 | 4.70 | 8.59 | 3.56 | 1.78 | 74.5 | 72.1 | 8.28 | 4.62 | 0.08 | 0.025 |
Tailings | 3.65 | 7.64 | 11.6 | 4.71 | 3.19 | 73.5 | 73.1 | 9.17 | 5.25 | 0.15 | 0.024 | |
Cleaned coal | Gravity Separation | 3.66 | 6.11 | 10.46 | 3.73 | 1.64 | 83.66 | 78.89 | 9.18 | 4.89 | 0.12 | 0.03 |
Middlings | 5.32 | 18.75 | 15.22 | 4.50 | 3.46 | 78.91 | 73.04 | 8.41 | 3.45 | 0.15 | 0.05 | |
Tailings | 7.43 | 24.75 | 15.91 | 2.90 | 2.94 | 60.69 | 33.43 | 4.75 | / | 0.71 | 0.08 | |
Feed coal | / | 4.99 | 9.61 | 9.94 | 4.26 | 9.94 | 60.9 | 71.1 | 7.25 | 5.45 | 0.22 | 0.042 |
Cs | Ba | Hf | Ta | W | Tl | Pb | Bi | Th | U | |||
Cleaned coal | Flotation | 0.20 | 14.8 | 2.25 | 0.51 | 1.13 | 0.36 | 3.63 | 0.11 | 3.62 | 2.75 | |
Tailings | 0.27 | 36.5 | 2.14 | 0.55 | 4.36 | 0.50 | 4.90 | 0.23 | 3.95 | 2.30 | ||
Cleaned coal | Gravity Separation | 0.19 | 10.80 | 2.22 | 0.50 | 1.32 | 0.24 | 2.17 | 0.14 | 3.40 | 3.09 | |
Middlings | 0.35 | 27.85 | 2.09 | 0.52 | 7.27 | 0.62 | 8.42 | 0.33 | 4.08 | 2.99 | ||
Tailings | 0.19 | 29.17 | 0.98 | 0.27 | 8.00 | 1.66 | 9.84 | 0.37 | 2.05 | 1.28 | ||
Feed coal | / | 0.54 | 27.4 | 2.19 | 0.53 | 2.13 | 0.40 | 5.52 | 0.20 | 7.96 | 3.49 |
Separation Products (μg/g) | Method | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Y | Ho | Er | Tm | Yb | Lu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cleaned coal | Flotation | 17.3 | 35.3 | 3.97 | 15.2 | 2.81 | 0.42 | 2.51 | 0.45 | 2.60 | 12.9 | 0.52 | 1.53 | 0.276 | 1.51 | 0.235 |
Tailings | 19.1 | 41.1 | 4.73 | 18.2 | 3.57 | 0.59 | 3.31 | 0.58 | 3.18 | 15.9 | 0.59 | 1.68 | 0.284 | 1.63 | 0.238 | |
Cleaned coal | Gravity Separation | 16.29 | 32.01 | 3.64 | 13.93 | 2.55 | 0.39 | 2.42 | 0.41 | 2.48 | 12.87 | 0.49 | 1.42 | 0.26 | 1.43 | 0.22 |
Middlings | 18.26 | 39.22 | 4.60 | 17.88 | 3.34 | 0.53 | 2.97 | 0.50 | 2.81 | 15.39 | 0.57 | 1.63 | 0.28 | 1.59 | 0.24 | |
Tailings | 10.77 | 24.13 | 2.78 | 10.97 | 2.58 | 0.47 | 2.57 | 0.43 | 2.13 | 11.06 | 0.36 | 0.93 | 0.16 | 0.82 | 0.12 | |
Feed coal | / | 16.86 | 33.22 | 3.86 | 14.14 | 2.85 | 0.43 | 2.51 | 0.45 | 2.83 | 14.72 | 0.56 | 1.57 | 0.27 | 1.65 | 0.23 |
Separation Products | Method | ΣREY (μg/g) | Type | CeN/CeN* | EuN/EuN* | LaN/YbN |
---|---|---|---|---|---|---|
Cleaned coal | Flotation | 97.6 | H | 0.97 | 0.74 | 0.84 |
Tailings | 114.7 | M-H | 0.99 | 0.81 | 0.86 | |
Cleaned coal | Gravity Separation | 90.80 | H | 0.95 | 0.75 | 0.83 |
Middlings | 109.80 | M-H | 0.98 | 0.80 | 0.84 | |
Tailings | 70.28 | M-H | 1.00 | 0.88 | 0.96 | |
Feed coal | / | 96.1 | H | 0.94 | 0.74 | 0.75 |
Coal Preparation Products (%) | Ad | St,d | Sp,d | Ss,d | So,d | Li | Be | Sc | V | Cr | Co | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gravity separation | 34.21 | 68.76 | 91.39 | 86.37 | 44.91 | 38.27 | 6.75 | 33.14 | −8.56 | −9.57 | 48.38 | 26.65 |
Flotation | 37.27 | 51.87 | 61.24 | 93.18 | 8.13 | 25.07 | 12.20 | 25.38 | 7.75 | −5.46 | 86.82 | 3.39 |
Cu | Zn | Ga | Rb | Sr | Zr | Nb | Mo | Cd | In | Cs | Ba | |
Gravity separation | 36.39 | −5.26 | 12.48 | 83.55 | −37.33 | −10.92 | −26.53 | 10.18 | 48.03 | 20.01 | 65.65 | 60.53 |
Flotation | 51.14 | 13.55 | 16.60 | 82.07 | −22.29 | −1.33 | −14.11 | 15.29 | 64.14 | 40.52 | 62.43 | 46.07 |
Hf | Ta | W | Tl | Pb | Bi | Th | U | |||||
Gravity separation | −1.01 | 5.70 | 38.28 | 41.20 | 60.71 | 31.95 | 57.31 | 11.28 | ||||
Flotation | −2.50 | 3.40 | 47.18 | 10.46 | 34.10 | 46.91 | 54.51 | 21.11 |
Method | / | Flotation | Gravity Separation | / | / | |||
---|---|---|---|---|---|---|---|---|
Coal preparation products | Feed coal | Cleaned coal | Tailings | Cleaned coal | Middlings | Tailings | World | China |
Li (μg/g) | 94.53 | 70.83 | 102.42 | 58.35 | 98.03 | 69.45 | 14.0 | 31.8 |
Ad (%) | 13.36 | 8.38 | 21.23 | 8.79 | 16.96 | 38.52 | ||
Li2O (%) | 0.07 | 0.085 | 0.05 | 0.07 | 0.06 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Duan, P.; Wang, W.; Kholodov, A. Mode of Occurrence and Distribution of Critical Metal Lithium and Other Trace Elements during Coal Preparation from Jiashun High-Sulfur Coal in Guizhou Province, China. Minerals 2023, 13, 969. https://doi.org/10.3390/min13070969
Zhu Y, Duan P, Wang W, Kholodov A. Mode of Occurrence and Distribution of Critical Metal Lithium and Other Trace Elements during Coal Preparation from Jiashun High-Sulfur Coal in Guizhou Province, China. Minerals. 2023; 13(7):969. https://doi.org/10.3390/min13070969
Chicago/Turabian StyleZhu, Yuxuan, Piaopiao Duan, Wenfeng Wang, and Aleksei Kholodov. 2023. "Mode of Occurrence and Distribution of Critical Metal Lithium and Other Trace Elements during Coal Preparation from Jiashun High-Sulfur Coal in Guizhou Province, China" Minerals 13, no. 7: 969. https://doi.org/10.3390/min13070969
APA StyleZhu, Y., Duan, P., Wang, W., & Kholodov, A. (2023). Mode of Occurrence and Distribution of Critical Metal Lithium and Other Trace Elements during Coal Preparation from Jiashun High-Sulfur Coal in Guizhou Province, China. Minerals, 13(7), 969. https://doi.org/10.3390/min13070969