Color Origin of Greyish-Purple Tremolite Jade from Sanchahe in Qinghai Province, NW China
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Analytical Methods
3.1. FT-IR and EPMA
3.2. Micro-XRF and LA-ICP-MS
3.3. UV–Vis–NIR
3.4. EPR
4. Results
4.1. Mineralogical Characteristics
4.2. Elemental Characteristics
4.2.1. Micro-XRF and LA-ICP-MS
4.2.2. EPR
4.3. UV–Vis–NIR Spectrum Characteristics
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, Z.; Zhang, Y.; Li, L.; Li, X.; Qin, S. Discussion on Two Metallogenic Mechanisms of Hetian Jade in Hetian Area, Xinjiang. J. Jilin Univ. Earth Sci. Ed. 2015, 45, 1–2. [Google Scholar]
- Dong, B. Geological Situation and Jade Characteristics of Golmud Jade in Qinghai Province. Nonmet. Geol. 1996, 5, 23–28. (In Chinese) [Google Scholar]
- Chai, F.; Parati, A. Comparative Study of the Gemological Characteristics of Nephrite of Hetian Jade and Qinghai Jade. J. Xinjiang Inst. Technol. 2000, 1, 77–80. [Google Scholar]
- Feng, X.; Zhang, B. Composition and Structural Characteristics of Nephrite from Qinghai. J. Gems Gemmol. 2004, 4, 7–9. [Google Scholar]
- Liu, H.; Yang, M.; Yang, T.; Li, J. Study on Colour and Gemmological Characteristics of Viridis Nephrite from Qinghai Province. J. Gems Gemmol. 2013, 15, 7–14. [Google Scholar]
- Zhou, Z.; Liao, Z.; Ma, T.; Yuan, Y. Study on Ore-Forming Type and Genetic Mechanism of Sanchakou Nephrite Depositin Qinghai Province. J. Tongji Univ. Nat. Sci. 2005, 9, 1191–1194. [Google Scholar]
- Wang, J.; Gan, Y.; Li, J.; Wei, J. Analysis on Nephrite Conditions and Discovery Prospects in Dazaohuo Area in Qinghai Province. Plateau Earthq. Res. 2007, 19, 47–51. [Google Scholar]
- Zhou, Z.; Liao, Z.; Chen, Y.; Li, Y.; Ma, T. Petrological and Mineralogical Characteristics of Qinghai Nephrite. Rock Miner. Anal. 2008, 1, 17–20. [Google Scholar]
- Yu, H.; Ruan, Q.; Sun, Y.; Li, D. Micro-Morphology and Mineral Composition of Different Color Qinghai Nephrites. Rock Miner. Anal. 2018, 37, 626–636. [Google Scholar]
- Yu, H.; Ruan, Q.; Liao, B.; Li, D. Geochemical Characteristics and Ar-Ar Dating of Different Deposits in Qinghai Province. Acta Petrol. Miner. 2018, 37, 655–668. [Google Scholar]
- Yu, H.; Ruan, Q.; Sha, X.; Yang, Y. Study on Color—Causing Elements in Qinghai Nephrite by Elemental Analysis and Electron Paramagnetic Resonance Spectroscopy. Rock Miner. Anal. 2019, 38, 288–296. [Google Scholar]
- Song, H.; Tan, H.; Zu, E. Spectral Characteristics of Qinghai Nephrite with Different Colors. Bull. Chin. Ceram. Soc. 2020, 39, 242–246. [Google Scholar]
- Hao, N.; Tao, L.; Wang, N.; Zhang, K. Analysis of Spectral Characteristics and Color Causes of Tremolite Jade Inyeniugou, Qinghai Province. J. Hebei Geo Univ. 2021, 44, 11–15. [Google Scholar]
- Zhang, C.; Yu, X.; Yang, F.; Santosh, M.; Huo, D. Petrology and Geochronology of the Yushigou Nephrite Jade from the North Qilian Orogen, Nw China: Implications for Subduction-Related Processes. Lithos 2021, 380–381, 105894. [Google Scholar] [CrossRef]
- Li, Y.; Lai, Y. Study on Metallogenic Mechanism of the Tremolite Jade Deposit in Jiubagou, Qinghai Province. Beijing Da Xue Xue Bao 2021, 57, 1087–1100. [Google Scholar]
- Luo, Z.; Shen, A.; Yang, M. Study on Color Quantitative Expression, Replication and Color Origin of Gray-Purple Nephrite from Qinghai, China Based on Spectroscopy Methods. Spectrosc. Spectr. Anal. 2017, 37, 822–828. [Google Scholar]
- Zhang, B. Systematic Gemology; Geology Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Yu, H. Coloring and Metallogenic Mechanisms of Different Colors in Qinghai Nephrite. Ph.D. Thesis, Nanjing University, Nanjing, China, 2016. [Google Scholar]
- Hao, N.A. Gemological Study of Tremolite Jade in Yeniugou, Qinghai. Master’s Thesis, Hebei GEO University, Shijiazhuang, China, 2021. [Google Scholar]
- Jackson, S.E.; Longerich, H.P.; Dunning, G.R.; Freyer, B.J. The Application of Laser-Ablation Microprobe; Inductively Coupled Plasma-Mass Spectrometry (Lam-Icp-Ms) to in Situ Trace-Element Determinations in Minerals. Can. Miner. 1992, 30, 1049–1064. [Google Scholar]
- Norman, M.D.; Pearson, N.J.; Sharma, A.; Griffin, W.L. Quantitative Analysis of Trace Elements in Geological Materials by Laser Ablation Icp-Ms: Instrumental Operating Conditions and Calibration Values of Nist Glasses. Geostand. Geoanal. Res. 1996, 20, 247–261. [Google Scholar] [CrossRef]
- Günther, D.; Frischknecht, R.; Heinrich, C.A.; Kahlert, H.J. Capabilities of an Argon Fluoride 193 Nm Excimer Laser for Laser Ablation Inductively Coupled Plasma Mass Spectometry Microanalysis of Geological Materials. J. Anal. At. Spectrom. 1997, 12, 939–944. [Google Scholar] [CrossRef]
- Hinchey, J.G.; Wilton, D.H.C.; Tubrett, M.N.; Jackson, S.E.; Guenther, D.; Sylvester, P.J. A Lam-Icp-Ms Study of the Distribution of Gold in Arsenopyrite from the Lodestar Prospect, Newfoundland, Canada. Can. Miner. 2003, 41, 353–364. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hellstrom, J.; Hergt, J.M.; Greig, A.; Maas, R. Isotopic and Elemental Imaging of Geological Materials by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry. Geostand. Geoanal. Res. 2007, 31, 331–343. [Google Scholar] [CrossRef]
- Ulrich, T.; Kamber, B.S.; Jugo, P.J.; Tinkham, D.K. Imaging Element-Distribution Patterns in Minerals by Laser Ablation- Inductively Coupled Plasma-Mass Spectrometry (La-Icp-Ms). Can. Miner. 2009, 47, 1001–1012. [Google Scholar] [CrossRef]
- Rittner, M.; Muller, W. 2D Mapping of La-Icpms Trace Element Distributions Using R. Comput. Geosci. 2012, 42, 152–161. [Google Scholar] [CrossRef]
- Paul, B.; Paton, C.; Norris, A.; Woodhead, J.; Hellstrom, J.; Hergt, J.; Greig, A. Cellspace: A Module for Creating Spatially Registered Laser Ablation Images within the Iolite Freeware Environment. J. Anal. At. Spectrom. 2012, 27, 7–76. [Google Scholar] [CrossRef]
- Paul, B.; Woodhead, J.D.; Paton, C.; Hergt, J.M.; Hellstrom, J.; Norris, C.A. Towards a Method for Quantitative La-Icp-Ms Imaging of Multi-Phase Assemblages; Mineral Identification and Analysis Correction Procedures. Geostand. Geoanal. Res. 2014, 38, 253–263. [Google Scholar] [CrossRef]
- Ubide, T.; McKenna, C.A.; Chew, D.M.; Kamber, B.S. High-Resolution La-Icp-Ms Trace Element Mapping of Igneous Minerals; In Search of Magma Histories. Chem. Geol. 2015, 409, 157–168. [Google Scholar] [CrossRef]
- A, C.; Wang, Y.; Ren, J.; Bao, G. Disintegration of the Wanbaogou Group and Discovery of Early Cambrian Strata in the East Kunlun Area. Geol. China 2003, 2, 199–206. [Google Scholar]
- Zhou, Z.; Liao, Z.; Ma, T.; Yuan, Y. Study on the Genetic Mechanism and Material Source of Sanchakou Nephrite Deposit in East Kunlun. Contrib. Geol. Miner. Resour. Res. 2006, 3, 195–198. [Google Scholar]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Andrut, M.; Gottschalk, M.; Melzer, S.; Najorka, J. Lattice Vibrational Modes in Synthetic Tremolite-Sr-Tremolite and Tremolite-Richterite Solid Solutions. Phys. Chem. Miner. 2000, 27, 301–309. [Google Scholar] [CrossRef]
- Jovanovski, G.; Makreski, P.; Kaitner, B.; Boev, B. Silicate Minerals from Macedonia. Complementary Use of Vibrational Spectroscopy and X-Ray Powder Diffraction for Identification and Detection Purposes. Croat. Chem. Acta 2009, 82, 363. [Google Scholar] [CrossRef]
- Lei, C. The Genesis of the Xiaozaohuo Nephrite Deposit in Eastern Kunlun Orogenic Belt. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2016. [Google Scholar]
- Schmetzer, K.; Bank, H. Explanations of the Absorption Spectra of Natural and Synthetic Fe- And Ti-Containing Corundums. Neues Jahrb. Für Miner. Abh. 1980, 139, 216–225. [Google Scholar]
- Shurvell, H.F.; Rintoul, L.; Fredericks, P.M. Infrared and Raman Spectra of Jade and Jade Minerals. Internet J. Vib. Spectrosc. 2001, 5, 4. [Google Scholar]
- Dai, L.; Jiang, Y.; Yang, M. Study on the Spectral Ldentification Characteristics of “Heiqing” and “Heibi”. Spectrosc. Spectr. Anal. 2021, 41, 292–298. [Google Scholar]
- Makreski, P.; Jovanovski, G.; Gajović, A. Minerals from Macedonia: XVII. Vibrational Spectra of some Common Appearing Amphiboles. Vib. Spectrosc. 2006, 40, 98–109. [Google Scholar] [CrossRef]
- Farmer, V.C. The Layer Silicates. Monogr. Miner. Soc. 1974, 4, 331–363. [Google Scholar]
- Burns, R.G.; Roger, G.J.S. Infrared Study of the Hydroxyl Bands in Clinoamphiboles. Science 1966, 153, 890–892. [Google Scholar] [CrossRef]
- Strens, R.G.J. The Infrared Spectra of Minerals. Miner. Soc. Monogr. 1974, 4, 305–330. [Google Scholar]
- Patterson, J.H.; O’Connor, D.J. Chemical Studies of Amphibole Asbestos. I. Structural Changes of Heat-Treated Crocidolite, Amosite, and Tremolite from Infrared Absorption Studies. Aust. J. Chem. 1966, 19, 1155–1164. [Google Scholar] [CrossRef]
- Ishida, K.; Hawthorne, F.C.; Ando, Y. Fine Structure of Infrared Oh-Stretching Bands in Natural and Heat-Treated Amphiboles of the Tremolite-Ferro-Actinolite Series. Am. Miner. 2002, 87, 891–898. [Google Scholar] [CrossRef]
- Wong, J.Y.; Berggren, M.J.; Schawlow, A.L. Far-Infrared Spectrum of Al2O3:V4+. J. Chem. Phys. 1968, 49, 835–842. [Google Scholar] [CrossRef]
- Douglas, J.G. Exploring Issues of Geological Source for Jade Worked by Ancient Chinese Cultures with the Aid of X-Ray Fluorescence. In Scientific Research in the Field of Asian Art; Archetype Publications: London, UK, 2003; pp. 192–199. [Google Scholar]
- Meinert, L.; Dipple, G.; Nicolescu, S. World Skarn Deposits; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 299–336. [Google Scholar]
- Jia, R.; Jiang, T.; Zhu, Y.; Liu, J. Gemmological Characteristic of “Qinghua” Nephrite from Hetian, Xinjiang. J. Gems Gemmol. 2019, 21, 54–58. [Google Scholar]
- Roth, P. The Early History of Tremolite. Axis 2006, 2, 1–10. [Google Scholar]
- Stoll, S.; Schweiger, A. Easyspin, a Comprehensive Software Package for Spectral Simulation and Analysis in Epr. J. Magn. Reson. (1997) 2006, 178, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Lu, B. The Gemological Mineralogy and Spectroscopy of Nephrite Cat’s Eye and Serpentine Cat’s Eye from Shimian, Sichuan Province, Southwest of China. Ph.D. Thesis, Shanghai University, Shanghai, China, 2005. [Google Scholar]
- Abduriyim, A.; Kitawaki, H.; Furuya, M.; Schwarz, D. “Paraíba”-Type Copper-Bearing Tourmaline from Brazil, Nigeria, and Mozambique: Chemical Fingerprinting by La-Icp-Ms. Gems Gemol. 2006, 42, 4–21. [Google Scholar] [CrossRef]
- Laurs, B.M.; Zwaan, J.C.; Breeding, C.M.; Simmons, W.B.; Beaton, D.; Rijsdijk, K.F.; Befi, R.; Falster, A.U. Copper-Bearing (Paraiba-Type) Tourmaline from Mozambique. Gems Gemol. 2008, 44, 4–30. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, D.; Hong, X.; Nurmikko, A.; Bhargava, R.N. Optical Properties of Manganese-Doped Nanocrystals of Zns. Phys. Rev. Lett. 1994, 72, 416–419. [Google Scholar]
- Evans, B.D.; Stapelbroek, M. Optical Properties of the F+ Center in Crystalline Al2O3. Phys. Rev. B 1978, 18, 7089–7098. [Google Scholar] [CrossRef]
- McClure, D.S. Optical Spectra of Transition-Metal Ions in Corundum. J. Chem. Phys. 1962, 36, 2757–2779. [Google Scholar] [CrossRef]
- Keig, G.A. Influence of the Valence State of Added Impurity Ions on the Observed Color in Doped Aluminum Oxide Single Crystals. J. Cryst. Growth 1968, 2, 356–360. [Google Scholar] [CrossRef]
- Luo, G.; Chen, W. Basic Crystallography and Mineralogy; Nanjing University Press: Nanjing, China, 1993; pp. 210–267. [Google Scholar]
- Sharma, K.B.N.; Moorthy, L.R.; Reddy, B.J.; Vedanand, S. Epr and Electronic Absorption Spectra of Copper Bearing Turquoise Mineral. Phys. Lett. A 1988, 132, 293–297. [Google Scholar] [CrossRef]
- Sherman, D.; Waite, T. Electronic Spectra of Fe3+ Oxides and Oxide Hydroxides in the Near Ir to Near Uv. Am. Miner. Am. Miner. 1985, 70, 1262–1269. [Google Scholar]
Spots | MgO | Al2O3 | K2O | CaO | Cr2O3 | FeO | Na2O | SiO2 | NiO | MnO | P2O5 | CuO | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YQ-1-1 | 25.17 | 0.12 | 0.03 | 13.22 | 0.00 | 0.11 | 0.06 | 59.65 | 0.00 | 0.02 | 0.00 | 0.01 | 98.37 |
YQ-1-2 | 25.21 | 0.13 | 0.05 | 12.78 | 0.02 | 0.06 | 0.06 | 59.56 | 0.02 | 0.01 | 0.00 | 0.01 | 97.89 |
YQ-1-3 | 25.13 | 0.09 | 0.04 | 13.25 | 0.01 | 0.08 | 0.05 | 59.43 | 0.04 | 0.02 | 0.01 | 0.01 | 98.15 |
YQ-1-4 | 25.13 | 0.10 | 0.04 | 13.16 | 0.00 | 0.13 | 0.07 | 59.21 | 0.01 | 0.03 | 0.01 | 0.01 | 97.89 |
YQ-1-5 | 25.19 | 0.13 | 0.03 | 12.95 | 0.00 | 0.09 | 0.07 | 59.24 | 0.00 | 0.04 | 0.00 | 0.03 | 97.77 |
Average | 25.16 | 0.11 | 0.03 | 13.10 | 0.00 | 0.11 | 0.05 | 59.34 | 0.01 | 0.02 | 0.00 | 0.02 | 97.96 |
Sigma | 0.11 | 0.02 | 0.01 | 0.16 | 0.01 | 0.05 | 0.01 | 0.19 | 0.01 | 0.01 | 0.00 | 0.02 | 0.28 |
Sample | Si | Ca | Mg | Fe | Zn | K | S | Mn | Cu | Cr | V | Sr | Ce | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YQ-1-XL1 | 51.32 | 26.95 | 20.85 | 0.26 | 0.24 | 0.07 | 0.06 | 0.04 | 0.02 | 0.00 | 0.00 | 0.01 | 0.19 | 100 |
YQ-1-XL2 | 51.31 | 26.96 | 20.77 | 0.28 | 0.24 | 0.07 | 0.05 | 0.04 | 0.03 | 0.05 | 0.00 | 0.01 | 0.20 | 100 |
YQ-1-XL3 | 51.34 | 27.09 | 20.65 | 0.31 | 0.22 | 0.08 | 0.02 | 0.06 | 0.03 | 0.02 | 0.00 | 0.01 | 0.18 | 100 |
YQ-1-XL4 | 51.32 | 27.14 | 20.70 | 0.31 | 0.22 | 0.07 | 0.06 | 0.05 | 0.03 | 0.02 | 0.07 | 0.01 | 0.00 | 100 |
YQ-1-XL5 | 50.82 | 27.23 | 20.71 | 1.03 | 0.01 | 0.07 | 0.04 | 0.05 | 0.02 | 0.03 | 0.00 | 0.00 | 0.00 | 100 |
YQ-1-XD1 | 51.18 | 27.11 | 20.66 | 0.86 | 0.00 | 0.05 | 0.03 | 0.05 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | 100 |
YQ-1-XD2 | 50.99 | 27.24 | 20.78 | 0.82 | 0.00 | 0.06 | 0.03 | 0.06 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 100 |
YQ-1-XD3 | 51.81 | 27.09 | 20.17 | 0.37 | 0.20 | 0.04 | 0.05 | 0.06 | 0.03 | 0.04 | 0.00 | 0.00 | 0.15 | 100 |
YQ-1-XD4 | 52.20 | 26.47 | 20.42 | 0.32 | 0.21 | 0.05 | 0.03 | 0.07 | 0.04 | 0.00 | 0.00 | 0.00 | 0.20 | 100 |
YQ-1-XD5 | 52.28 | 26.60 | 20.17 | 0.31 | 0.21 | 0.04 | 0.07 | 0.08 | 0.04 | 0.00 | 0.00 | 0.00 | 0.20 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, N.; Wang, C.; Xu, S. Color Origin of Greyish-Purple Tremolite Jade from Sanchahe in Qinghai Province, NW China. Minerals 2023, 13, 1049. https://doi.org/10.3390/min13081049
Gong N, Wang C, Xu S. Color Origin of Greyish-Purple Tremolite Jade from Sanchahe in Qinghai Province, NW China. Minerals. 2023; 13(8):1049. https://doi.org/10.3390/min13081049
Chicago/Turabian StyleGong, Nina, Chaowen Wang, and Shuai Xu. 2023. "Color Origin of Greyish-Purple Tremolite Jade from Sanchahe in Qinghai Province, NW China" Minerals 13, no. 8: 1049. https://doi.org/10.3390/min13081049
APA StyleGong, N., Wang, C., & Xu, S. (2023). Color Origin of Greyish-Purple Tremolite Jade from Sanchahe in Qinghai Province, NW China. Minerals, 13(8), 1049. https://doi.org/10.3390/min13081049