Distribution of Potentially Toxic Elements in the City of Zintan and Its Surroundings (Northwestern Libya) by Surface Soil Sampling
Abstract
:1. Introduction
2. General Characteristics of the Explored Area with Main Geological Settings
2.1. General Characteristics
2.2. Main Geological Settings
3. Methodology
3.1. Remote Detection
3.2. Field Activities—Mapping and Sampling
3.3. Chemical Analyses
3.4. Modal Analysis of Characteristic Desert-Soil Samples
3.5. Generation of GIS Database
3.6. Multivariate Statistical Analysis
4. Results
4.1. Modal Analysis of Select Samples
4.2. Spatial Distribution of Investigated Elements
- (1)
- Summary of Maximum Allowable Concentrations of Chemical Constituents In Uncontaminated Soil Used as Fill Material At Regulated Fill Operations (35 Ill. Adm. Code 1100. Subpart F) [47];
- (2)
- Standards for the contents of PTE metals in soils of some states [48];
- (3)
- Regulation on the program of systematic soil monitoring, indicators for soil-degradation-risk assessment, and methodology for the development of remediation programs [49];
- (4)
- Abundance of elements in the Earth’s crust [50];
- (5)
- Terrestrial abundance of elements [51].
4.3. Multivariate Statistical Analysis
5. Discussion
5.1. Characteristics of the Distributions of Identified Elements
5.2. Characteristics of the Distributions of Identified Clusters
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, X.; Liu, M.; Zhong, J.; Guo, J.; Wu, W. How Human Activities Affect Heavy Metal Contamination of Soil and Sediment in a Long-Term Reclaimed Area of the Liaohe River Delta, North China. Sustainability 2018, 10, 338. [Google Scholar] [CrossRef] [Green Version]
- Imperato, M.; Adamo, P.; Naimo, D.; Arienzo, M.; Stanzione, D.; Violante, P. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 2003, 124, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Li, J.G.; Pu, L.J.; Liao, Q.L.; Zhu, M.; Dai, X.Q.; Xu, Y.; Zhang, L.F.; Hua, M.; Jin, Y. How anthropogenic activities affect soil heavy metal concentration on a broad scale: A geochemistry survey in Yangtze River Delta, Eastern China. Environ. Earth Sci. 2015, 73, 1823–1835. [Google Scholar] [CrossRef]
- Banat, K.M.; Howari, F.M.; Al-Hamad, A.A. Heavy metals in urban soils of central Jordan: Should we worry about their environmental risks? Environ. Res. 2005, 97, 258–273. [Google Scholar] [CrossRef]
- Yaylalı-Abanuz, G. Heavy metal contamination of surface soil around Gebze industrial area, Turkey. Microchem. J. 2011, 99, 82–92. [Google Scholar] [CrossRef]
- Gehendra, K. Impacts of Urbanization on Environmental Resources: Land Use Planning Perspective, Master of City and Regional Planning; The University of Texas at Arlington: Arlington, TX, USA, 2010; pp. 1–58. Available online: https://rc.library.uta.edu/uta-ir/bitstream/handle/10106/5477/Kharel_uta_2502M_10978.pdf;sequence=1 (accessed on 25 April 2023).
- Mohit, S.R. Impact of urbanization on Environmental. Int. J. Emerg. Technol. 2017, 8, 127–129. [Google Scholar]
- Sheykhi, M.T. Mutual Effects of Environment and Urbanization: A Sociological Assessment. Ann. Environ. Sci. Toxicol. 2020, 4, 24–26. [Google Scholar] [CrossRef]
- Ruiz Rincon, V.; Martinez-Alier, J.; Mingorria, S. Environmental Conflicts Related to Urban Expansion Involving Agrarian Communities in Central Mexico. Sustainability 2019, 11, 6545. [Google Scholar] [CrossRef] [Green Version]
- Arndt, N.T.; Fontbote, L.; Hedenquist, J.W.; Kesler, S.E.; Thompson, J.F.H.; Wood, D. Future global mineral resources. Geochem. Perspect. 2017, 6, 1–171. [Google Scholar] [CrossRef] [Green Version]
- Tompson, J.; Eagle, L.; Bonham, O. Resources for future generations—Understanding earth and people. Eur. Geol. J. 2017, 44, 11–15. [Google Scholar]
- Silva, H.F.; Silva, N.F.; Oliveira, C.M.; Matos, M.J. Risk Assessment of Soil Contamination with Heavy Metals from Municipal Sewage Sludge. Appl. Sci. 2021, 11, 548. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Trammell, T.L.E. Chapter 10—Climate change and urban forest soils. Dev. Soil Sci. 2019, 36, 189–211. [Google Scholar]
- Gao, Z.; Dong, H.; Wang, S.; Zhang, Y.; Zhang, H.; Jiang, B.; Liu, Y. Geochemical Characteristics and Ecological Risk Assessment of Heavy Metals in Surface Soil of Gaomi City. Int. J. Environ. Res. Public Health 2021, 18, 8329. [Google Scholar] [CrossRef]
- Yadav, I.C.; Devi, N.L.; Singh, V.K.; Li, J.; Zhang, G. Spatial distribution, source analysis and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal. Chemosphere 2019, 218, 1100–1113. [Google Scholar] [CrossRef]
- Silva, H.F.; Silva, N.F.; Oliveira, C.M.; Matos, M.J. Heavy Metals Contamination of Urban Soils—A Decade Study in the City of Lisbon, Portugal. Soil Syst. 2021, 5, 27. [Google Scholar] [CrossRef]
- Mehmood, S.; Wang, X.; Ahmet, W.; Imtiaz, M.; Ditta, A.; Rizwan, M.; Irshad, S.; Basir, S.; Saeed, Q.; Mustafa, A.; et al. Removal Mechanisms of slag against potentially toxic elements in soil and plants for sustainable agricultural development: A critical review. Sustainability 2021, 13, 5255. [Google Scholar] [CrossRef]
- Chibuike, G.U.; Obiora, S.C. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef]
- Borozan, A.B.; Misca, C.D.; Morar, A.; Obistioiu, D.; Raba, D.N.; Pirvulescu, L.; Caba, I.L.; Alexa, E.; Poiana, M.; Bordean, D.; et al. Soil pollution with heavy metals and bioremediation methods. AgroLife Sci. J. 2021, 10, 54–66. [Google Scholar] [CrossRef]
- Alinia-Ahandani, E.; Alizadeh-Terepoei, Z.; Sheydaei, M.; Peysepar-Balalami, F. Assessment of Soil on Some Heavy Metals and its Pollution in Roodsar-Iran. Bimedical J. Sci. Tech. Res. 2020, 28, 21977–21979. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, W.T.; Zhou, X.; Liu, L.; Gu, J.F.; Wang, W.L.; Zou, J.L.; Tian, T.; Peng, P.Q.; Liao, B.H. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int. J. Environ. Res. Public Health 2016, 13, 289. [Google Scholar] [CrossRef] [Green Version]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Bystricka, J.; Kavalcova, P.; Musilova, J.; Karovicova, J.; Kuchtova, V. The effect of variety on heavy metals intake by onion grown in contaminated soil. In Proceedings of the 14th International Conference on Environmental Science and Technology Greece, Rhodes, Greece, 3–5 September 2015. [Google Scholar]
- Hatem, M.; Parvez, I.H.; Eid, I.B. Estimated dietary intakes of toxic elements from four staple foods in Najran city, Saudi Arabia. Int. J. Environ. Res. Public Health 2017, 14, 1575. [Google Scholar]
- Saint-Laurent, D.; Hähni, M.; St-Laurent, J.; Baril, B. Comparative Assessment of Soil Contamination by Lead and Heavy Metals in Riparian and Agricultural Areas (Southern Québec, Canada). Int. J. Environ. Res. Public Health 2010, 7, 3100–3114. [Google Scholar] [CrossRef]
- Santos-Francés, F.; Martínez-Graña, A.; Ávila Zarza, C.; García Sánchez, A.; Alonso Rojo, P. Spatial distribution of heavy metals and the environmental quality of soil in the Northern Plateau of Spain by geostatistical methods. Int. J. Environ. Res. Public Health 2017, 14, 568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortey-Sam, N.; Nakayama, S.M.M.; Akoto, O.; Ikenaka, Y.; Baidoo, E.; Mizukawa, H.; Ishizuka, M. Ecological risk of heavy metals and a metalloid in agricultural soils in Tarkwa, Ghana. Int. J. Environ. Res. Public Health 2015, 12, 11448–11465. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Zhuang, D.; Jiang, D.; Fu, J.; Wang, Q. Integrated health risk assessment of heavy metals in Suxian County, South China. Int. J. Environ. Res. Public Health 2015, 12, 7100–7117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurqani, H.A.; Mikhailova, E.A.; Post, C.J.; Schlautman, M.A.; Elhawej, A.R. A Review of Libyan Soil Databases for Use within an Ecosystem Services Framework. Land 2019, 8, 82. [Google Scholar] [CrossRef] [Green Version]
- Chandini, R.K.; Kumar, R.; Om, P. The impact of Chemical Fertilizers on our Environment and Ecosystem. In Research Trends in Environmental Sciences, 2nd ed.; AkiNik Publications: Delhi, India, 2020. [Google Scholar]
- Rahimi, A.; Moghaddam, S.S.; Ghiyasi, M.; Heydarzadeh, S.; Ghazizadeh, K.; Popović-Djordjević, J. The Influence of Chemical, Organic and Biological Fertilizers on Aerobiological and Antioxidant Properties of Syrian Cephalaria (Sephalaria syriaca L.). Agriculture 2019, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Viets, F.G.; Lunin, J. The environmental impact of fertilizers. CRC Crit. Rev. Environ. Control 1975, 5, 423–453. [Google Scholar] [CrossRef]
- Ning, C.C.; Gao, P.D.; Wang, B.Q.; Lin, W.P.; Jiang, N.H.; Cai, K.Z. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agric. 2017, 16, 1819–1831. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://weekly.ahram.org.eg/News/6476.aspx (accessed on 23 July 2023).
- Asketell, J.M.; Ghellali, S.M. A palaeogeologic map of the pre-Tertiary surface in the region of the Jifarah Plain: Its implication to the structural history of Northern Libya. In The Geology of Libya. Volume IV–VII: Third Symposium on the Geology of Libya, Held at Tripoli, 27–30 September 1987; Salime, M.J., Ed.; Elsivier: Amsterdam, The Netherlands, 1991; Volume 6, pp. 2381–2406. [Google Scholar]
- Antonović, A. Geological Map of Libya 1:250000, Sheet Mizdah, NH 33-1, Socialist People`s Libyan Arab Jamahitiyah; Industrial Research Centre Tripoli: Tajoura, Libia, 1977. [Google Scholar]
- Briffa, J.; Sinarga, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Imapct of heavy metals on the environment and human health: Novel therapeutic insights to counter of toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Available online: https://en.db-city.com/Libyan-Arab-Jamahiriya--Jabal-al-Gharbi--Zintan (accessed on 3 August 2023).
- Available online: https://libyaobserver.ly/culture/city-zintan (accessed on 3 August 2023).
- Güler, C.; Thyne, G.D.; Mccray, J.E. Evaluation of Graphical and Multivariate Statistical Methods for Classification of Water Chemistry Data. Hydrogeol. J. 2002, 10, 455–474. [Google Scholar] [CrossRef]
- Cloutier, V.; Lefebvre, R.; Therrien, R.; Savard, M.M. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydrol. 2008, 353, 294–313. [Google Scholar] [CrossRef]
- Helena, B.A.; Vega, M.; Barrado, E.; Pardo, R. A Case of Hydrochemical Characterization of an Alluvial Aquifer Influenced by Human Activities. Water Air Soil Pollut. 1999, 112, 365–387. [Google Scholar] [CrossRef]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of a European Mediterranean area by multivariate analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- LST Heavy Liquid Background and Properties. Available online: https://heavyliquids.com (accessed on 3 August 2023).
- Mirković, M. Izveštaj o Sedimentološkim Ispitivanjima Stena, Kvantitativna i Kvalitativna Analiza Sadržaja Minerala Teške i Lake Frakcije; Geološki Zavod Srbije: Beograd, Srbija, 2018; pp. 1–5. [Google Scholar]
- Available online: http://www.epa.state.il.us/land/ccdd/new-max-allowable-concentrations-table.pdf (accessed on 20 November 2022).
- Vodyanitskii, Y.N. Standards for the contents of heavy metals in soil of some states. Ann. Agrar. Sci. 2016, 14, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/eli/rep/sgrs/vlada/uredba/2010/88/2/reg (accessed on 20 November 2022).
- Available online: https://en.wikipedia.org/wiki/Abundance_of_the_chemical_elements (accessed on 20 November 2022).
- Available online: http://www.daviddarling.info/encyclopedia/E/elterr.html (accessed on 20 November 2022).
- Nunes, N.; Ragonezi, C.; Gouveia, C.; Pinheiro, C.; Miguel, Â. Review of Sewage Sludge as a Soil Amendment in Relation to Current International Guidelines: A Heavy Metal Perspective. Sustainability 2021, 13, 2317. [Google Scholar] [CrossRef]
- Li, Y.; Ye, F.; Wang, A.; Wang, D.; Yang, B.; Zheng, Q.; Sun, G.; Gao, X. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household. Int. J. Environ. Res. Public Health. 2016, 16, 133. [Google Scholar] [CrossRef]
- Blaschko, S.D.; Chi, T.; Miller, J.; Flechner, L.; Fakra, S.; Kapahi, P.; Kahn, A.; Stoller, M.L. Strontium substitution for calcium in lithogenesis. J. Urol. 2013, 189, 735–739. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.oilandgasonline.com/doc/cesium-formate-fluids-0001 (accessed on 21 November 2022).
- Hart, S.R. K, Rb, Cs contents and K/Rb, K/Cs ratios of fresh and altered submarine basalts. Earth Planet. Sci. Lett. 1969, 6, 295–303. [Google Scholar] [CrossRef]
- Griffin, W.L.; Murthy, V.R. Abundances of K, Rb, Sr and Ba in some ultramafic rocks and minerals. Earth Planet. Sci. Lett. 1968, 4, 497–501. [Google Scholar] [CrossRef]
- Available online: https://www.bighaat.com/products/multiplex-molybdenum (accessed on 21 November 2022).
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Igneous zircon: Trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 2002, 143, 602–622. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, M.; Yan, J.; Chen, X. Zircon U-Pb Ages and Geochemistry of the Granite in the Xintianling Tungsten Deposit, SE China: Implications for Geodynamic Settings of the Regional Tungsten Mineralization. Minerals 2022, 12, 952. [Google Scholar] [CrossRef]
Parameter | N | Range | Minimum | Maximum | Mean | Standard Deviation | Coefficient of Variation | Median | Geomean |
---|---|---|---|---|---|---|---|---|---|
Zr | 143 | 512.0 | 194.0 | 706.1 | 421.3 | 102.0 | 0.242 | 420.5 | 408.4 |
Sr | 143 | 274.3 | 57.12 | 331.5 | 125.3 | 65.48 | 0.522 | 93.79 | 111.9 |
Rb | 143 | 19.72 | 20.57 | 40.29 | 32.36 | 3.537 | 0.109 | 32.37 | 32.15 |
Pb | 143 | 18.06 | 4.00 | 22.06 | 7.09 | 2.406 | 0.265 | 7.12 | 6.48 |
Zn | 143 | 22.83 | 12.36 | 35.19 | 23.33 | 4.885 | 0.209 | 22.88 | 22.80 |
Ni | 143 | 59.55 | 15.00 | 74.55 | 32.80 | 9.621 | 0.206 | 35.39 | 28.04 |
Fe | 143 | 7397 | 4185 | 11,582 | 7537 | 1549 | 0.206 | 7582 | 7376 |
Mn | 143 | 213 | 25.00 | 238.6 | 127.7 | 34.09 | 0.249 | 131.6 | 115.6 |
Cr | 143 | 40.23 | 11.00 | 51.23 | 22.88 | 7.051 | 0.295 | 21.67 | 21.67 |
V | 143 | 65.84 | 12.50 | 78.34 | 31.68 | 9.132 | 0.204 | 36.49 | 26.39 |
Ti | 143 | 3673 | 1224 | 4897 | 2575 | 582.7 | 0.226 | 2567 | 2510 |
Ca | 143 | 227,218 | 12,009 | 239,228 | 59,443 | 43,402 | 0.730 | 38,142 | 47,211 |
K | 143 | 6962 | 11,104 | 18,067 | 14,379 | 1284 | 0.089 | 14,440 | 14,322 |
Ba | 143 | 354.5 | 22.50 | 377.0 | 262.4 | 38.43 | 0.145 | 266.8 | 256.7 |
Zr | Sr | Rb | Pb | Zn | Ni | Fe | Mn | Cr | V | Ti | Ca | K | Ba | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zr | 1.00 | 0.203 * | 0.210 * | 0.097 | 0.126 | 0.062 | 0.404 ** | 0.321 ** | 0.234 ** | 0.270 ** | 0.557 ** | 0.206 * | 0.168 * | 0.119 |
Sr | 0.203 * | 1.00 | 0.112 | 0.301 ** | 0.502 ** | 0.345 ** | 0.620 ** | 0.579 ** | 0.010 | 0.307 ** | 0.043 | 0.957 ** | 0.108 | 0.225 ** |
Rb | 0.210 * | 0.112 | 1.00 | 0.220 ** | 0.319 ** | 0.112 | 0.643 ** | 0.351 ** | 0.390 ** | 0.372 ** | 0.456 ** | 0.062 | 0.733 ** | 0.042 |
Pb | 0.097 | 0.301 ** | 0.220 ** | 1.00 | 0.160 | 0.222 ** | 0.364 ** | 0.313 ** | 0.091 | 0.182 * | 0.225 ** | 0.326 ** | 0.158 | 0.094 |
Zn | 0.126 | 0.502 ** | 0.319 ** | 0.160 | 1.00 | 0.245 ** | 0.512 ** | 0.421 ** | 0.192 * | 0.311 ** | 0.163 | 0.412 ** | 0.161 | 0.268 ** |
Ni | 0.062 | 0.345 ** | 0.112 | 0.222 ** | 0.245 ** | 1.00 | 0.296 ** | 0.340 ** | 0.045 | 0.278 ** | 0.132 | 0.316 ** | 0.054 | 0.315 ** |
Fe | 0.404 ** | 0.620 ** | 0.643 ** | 0.364 ** | 0.512 ** | 0.296 ** | 1.00 | 0.691 ** | 0.385 ** | 0.660 ** | 0.588 ** | 0.600 ** | 0.475 ** | 0.207 * |
Mn | 0.321 ** | 0.579 ** | 0.351 ** | 0.313 ** | 0.421 ** | 0.340 ** | 0.691 ** | 1.00 | 0.167 * | 0.486 ** | 0.370 ** | 0.537 ** | 0.216 ** | 0.250 ** |
Cr | 0.234 ** | 0.010 | 0.390 ** | 0.091 | 0.192 * | 0.045 | 0.385 ** | 0.167 * | 1.00 | 0.283 ** | 0.347 ** | 0.002 | 0.364 ** | 0.048 |
V | 0.270 ** | 0.307 ** | 0.372 ** | 0.182 * | 0.311 ** | 0.278 ** | 0.660 ** | 0.486 ** | 0.283 ** | 1.00 | 0.520 ** | 0.287 ** | 0.276 ** | 0.192 * |
Ti | 0.557 ** | 0.043 | 0.456 ** | 0.225 ** | 0.163 | 0.132 | 0.588 ** | 0.370 ** | 0.347 ** | 0.520 ** | 1.00 | 0.078 | 0.548 ** | 0.106 |
Ca | 0.206 * | 0.957 ** | 0.062 | 0.326 ** | 0.412 ** | 0.316 ** | 0.600 ** | 0.537 ** | 0.002 | 0.287 ** | 0.078 | 1.00 | 0.132 | 0.219 ** |
K | 0.168 * | 0.108 | 0.733 ** | 0.158 | 0.161 | 0.054 | 0.475 ** | 0.216 ** | 0.364 ** | 0.276 ** | 0.548 ** | 0.132 | 1.00 | 0.079 |
Ba | 0.119 | 0.225 ** | 0.042 | 0.094 | 0.268 ** | 0.315 ** | 0.207 * | 0.250 ** | 0.048 | 0.192 * | 0.106 | 0.219 ** | 0.079 | 1.00 |
r > 0.7 | ||||||||||||||
0.5 < r < 0.7 |
Cluster | 1 | 2 | 3 |
---|---|---|---|
No. of samples | 35 | 64 | 44 |
Zr | 418.8 | 469.0 | 334.0 |
Sr | 203.1 | 93.05 | 73.83 |
Rb | 31.86 | 34.28 | 31.39 |
Pb | 7.85 | 8.11 | 4 |
Zn | 25.73 | 23.70 | 20.44 |
Ni | 45.71 | 37.53 | 15 |
Fe | 8574 | 7919 | 6017 |
Mn | 148.4 | 135.5 | 97.17 |
Cr | 20.11 | 25.45 | 18.75 |
V | 41.69 | 40.87 | 12.5 |
Ti | 2420 | 2905 | 2081 |
Ca | 111,473 | 37,781 | 26,719 |
K | 13,637 | 15,092 | 13,994 |
Ba | 285.3 | 262.1 | 254.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vakanjac, B.; Naunovic, Z.; Ristić Vakanjac, V.; Đumić, T.; Bakrač, S.; Štrbački, J.; Gajić, V.; Alzarog, T.M. Distribution of Potentially Toxic Elements in the City of Zintan and Its Surroundings (Northwestern Libya) by Surface Soil Sampling. Minerals 2023, 13, 1048. https://doi.org/10.3390/min13081048
Vakanjac B, Naunovic Z, Ristić Vakanjac V, Đumić T, Bakrač S, Štrbački J, Gajić V, Alzarog TM. Distribution of Potentially Toxic Elements in the City of Zintan and Its Surroundings (Northwestern Libya) by Surface Soil Sampling. Minerals. 2023; 13(8):1048. https://doi.org/10.3390/min13081048
Chicago/Turabian StyleVakanjac, Boris, Zorana Naunovic, Vesna Ristić Vakanjac, Tanita Đumić, Saša Bakrač, Jana Štrbački, Vuk Gajić, and Taher Mohamed Alzarog. 2023. "Distribution of Potentially Toxic Elements in the City of Zintan and Its Surroundings (Northwestern Libya) by Surface Soil Sampling" Minerals 13, no. 8: 1048. https://doi.org/10.3390/min13081048
APA StyleVakanjac, B., Naunovic, Z., Ristić Vakanjac, V., Đumić, T., Bakrač, S., Štrbački, J., Gajić, V., & Alzarog, T. M. (2023). Distribution of Potentially Toxic Elements in the City of Zintan and Its Surroundings (Northwestern Libya) by Surface Soil Sampling. Minerals, 13(8), 1048. https://doi.org/10.3390/min13081048