Microstructural Insights into the Evolution of Ophiolitic Chromite from Luobusha
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting
2.2. Crystal Orientation and Texture Measurements
3. Results
3.1. Peridotite CPO Patterns and Fabric Strength
3.2. Orientation Analysis of Chromite
3.3. Grain Boundary Analysis
4. Discussion
4.1. Deformation Processes Constraints from Olivine Grains
4.2. Formation of Luobusha Chromitite
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arai, S.; Ahmed, A.H. Secular Change of Chromite Concentration Processes from the Archean to the Phanerozoic, in Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time; Elsevier: Amsterdam, The Netherlands, 2018; pp. 139–157. [Google Scholar]
- Arai, S.; Miura, M. Formation and modification of chromitites in the mantle. Lithos 2016, 264, 277–295. [Google Scholar] [CrossRef]
- Kusky, T.; Huang, Y.; Wang, L.; Robinson, P.T.; Wirth, R.; Polat, A.; Wei, H. Vestiges of early Earth’s deep subduction and CHONSP cycle recorded in Archean ophiolitic podiform chromitites. Earth-Sci. Rev. 2022, 227, 103968. [Google Scholar] [CrossRef]
- Yang, J.; Wu, W.; Lian, D.; Rui, H. Peridotites, chromitites and diamonds in ophiolites. Nat. Rev. Earth Environ. 2021, 2, 198–212. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Bulletin 2011, 123, 387–411. [Google Scholar] [CrossRef]
- Kusky, T.M.; Wang, L.; Dilek, Y.; Robinson, P.; Peng, S.; Huang, X. Application of the modern ophiolite concept with special reference to Precambrian ophiolites. Sci. China Earth Sci. 2011, 54, 315–341. [Google Scholar] [CrossRef]
- Arai, S. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chem. Geol. 1994, 113, 191–204. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Griffin, W.L.; Gervilla, F.; Proenza, J.A.; O’Reilly, S.Y.; Pearson, N.J. Chromitites in ophiolites: How, where, when, why? Part I. A review and new ideas on the origin and significance of platinum-group minerals. Lithos 2014, 189, 127–139. [Google Scholar] [CrossRef]
- Griffin, W.L.; Afonso, J.C.; Belousova, E.A.; Gain, S.E.; Gong, X.-H.; González-Jiménez, J.M.; Howell, D.; Huang, J.-X.; McGowan, N.; Pearson, N.J.; et al. Mantle Recycling: Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and its Tectonic Implications. J. Petrol. 2016, 57, 655–684. [Google Scholar] [CrossRef]
- Yang, J.; Robinson, P.T.; Dilek, Y. Diamond-bearing ophiolites and their geological occurrence. Episodes 2015, 38, 344–364. [Google Scholar] [CrossRef]
- Tommasi, A.; Mainprice, D.; Canova, G.; Chastel, Y. Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: Implications for the upper mantle seismic anisotropy. J. Geophys. Res. Solid Earth 2000, 105, 7893–7908. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Li, T.F.; Li, Z.L.; Ren, Y.F.; Xu, X.Z.; Ba, D.Z.; Bai, W.J.; Fang, Q.S.; Chen, S.; et al. Unusual minerals from harzburgite, the host rock of the Luobusa chromite deposit, Tibet. Acta Petrol. Sin. 2008, 24, 1445–1452. [Google Scholar]
- Zhou, M.-F.; Robinson, P.T.; Malpas, J.; Edwards, S.J.; Qi, L. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. J. Petrol. 2005, 46, 615–639. [Google Scholar] [CrossRef]
- Malpas, J.; Zhou, M.-F.; Robinson, P.T.; Reynolds, P.H. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. Geol. Soc. 2003, 218, 191–206. [Google Scholar] [CrossRef]
- Sun, S.; Ji, S.; Michibayashi, K.; Salisbury, M. Effects of olivine fabric, melt-rock reaction, and hydration on the seismic properties of peridotites: Insight from the Luobusha ophiolite in the Tibetan Plateau. J. Geophys. Res. Solid Earth 2016, 121, 3300–3323. [Google Scholar] [CrossRef]
- Zhou, M.F.; Robinson, P.T.; Malpas, J.; Li, Z. Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet): Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle. J. Petrol. 1996, 37, 3–21. [Google Scholar] [CrossRef]
- Huang, M.X.; Yang, J.-J.; Powell, R.; Mo, X. High-pressure metamorphism of serpentinized chromitite at Luobusha (southern Tibet). Am. J. Sci. 2014, 314, 400–433. [Google Scholar] [CrossRef]
- Yang, J.S.; Robinson, P.T.; Dilek, Y. Diamonds in Ophiolites. Elements 2014, 10, 127–130. [Google Scholar] [CrossRef]
- Zhang, H.; Ba, D.Z.; Guo, T.Y.; Mo, X.X.; Xue, J.Z.; Ruan, G.F.; Wang, Z.Y. Study of Luobusa Typical Chromite Ore Deposit Qusong County, Tibet (Xizang); Xizang People’s Publishing House: Lhasa, China, 1996; pp. 1–181. [Google Scholar]
- Ismail, W.B.; Mainprice, D. An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 1998, 296, 145–157. [Google Scholar] [CrossRef]
- Mainprice, D.; Bachmann, F.; Hielscher, R.; Schaeben, H. Descriptive tools for the analysis of texture projects with large datasets using MTEX: Strength, symmetry and components. Geol. Soc. 2015, 409, 251–271. [Google Scholar] [CrossRef]
- Mainprice, D. Seismic anisotropy of the deep Earth from a mineral and rock physics perspective. In Treatise Geophysics; Elsevier: London, UK, 2007; Volume 2, pp. 437–491. [Google Scholar]
- Bernard, R.E.; Behr, W.M.; Becker, T.W.; Young, D.J. Relationships between olivine CPO and deformation parameters in naturally deformed rocks and implications for mantle seismic anisotropy. Geochem. Geophys. Geosystems 2019, 20, 3469–3494. [Google Scholar] [CrossRef]
- Michibayashi, K.; Ina, T.; Kanagawa, K. The effect of dynamic recrystallization on olivine fabric and seismic anisotropy: Insight from a ductile shear zone, Oman ophiolite. Earth Planet. Sci. Lett. 2006, 244, 695–708. [Google Scholar] [CrossRef]
- Ren, H.; Wang, F.; Xiang, S.; Song, P. Preliminary studies on the microstructure and water content of the Mayoumu harzburgite from the southern Yarlung Zangbo Suture Zone. Acta Petrol. Sin. 2016, 32, 1653–1662. [Google Scholar]
- Mainprice, D.; Barruol, G.; Ismaïl, W.B. The Seismic Anisotropy of the Earth’s Mantle: From Single Crystal to Polycrystal. Am. Geophys. Union 2000, 117, 237–264. [Google Scholar]
- Michibayashi, K.; David, M. The Role of Pre-existing Mechanical Anisotropy on Shear Zone Development within Oceanic Mantle Lithosphere: An Example from the Oman Ophiolite. J. Petrol. 2004, 45, 405–414. [Google Scholar] [CrossRef]
- Tommasi, A.; Mameri, L.; Godard, M. Textural and compositional changes in the lithospheric mantle atop the Hawaiian plume: Consequences for seismic properties. Geochem. Geophys. Geosystems 2020, 21, e2020GC009138. [Google Scholar] [CrossRef]
- Chen, C.; Wang, C.Y.; Tan, W.; Yao, Z.-S. Origin of chromite nodules in podiform chromitite from the Kızıldağ ophiolite, southern Turkey. Ore Geol. Rev. 2021, 139, 104443. [Google Scholar] [CrossRef]
- Yudovskaya, M.A.; Costin, G.; Shilovskikh, V.; Chaplygin, I.; McCreesh, M.; Kinnaird, J. Bushveld symplectic and sieve-textured chromite is a result of coupled dissolution-reprecipitation: A comparison with xenocrystic chromite reactions in arc basalt. Contrib. Mineral. Petrol. 2019, 174, 74. [Google Scholar] [CrossRef]
- Boudier, F.; Mainprice, D.; Nicolas, A.; Barou, F. Textural insights into the significance of ophiolitic chromitites, with special reference to Oman. Tectonophysics 2021, 814, 228972. [Google Scholar] [CrossRef]
- Yu, M.; Wang, Q.; Yang, J. Fabrics and water contents of peridotites in the Neotethyan Luobusa ophiolite, southern Tibet: Implications for mantle recycling in supra-subduction zones. J. Geol. Soc. 2018, 176, 975–991. [Google Scholar] [CrossRef]
- Park, M.; Jung, H. Microstructural evolution of the Yugu peridotites in the Gyeonggi Massif, Korea: Implications for olivine fabric transition in mantle shear zones. Tectonophysics 2017, 709, 55–68. [Google Scholar] [CrossRef]
- Soustelle, V.; Tommasi, A.; Demouchy, S.; Ionov, D.A. Deformation and Fluid-Rock Interaction in the Supra-subduction Mantle: Microstructures and Water Contents in Peridotite Xenoliths from the Avacha Volcano, Kamchatka. J. Petrol. 2010, 51, 363–394. [Google Scholar] [CrossRef]
- Cao, Y.; Jung, H.; Song, S.; Park, M.; Jung, S.; Lee, J. Plastic Deformation and Seismic Properties in Fore-arc Mantles: A Petrofabric Analysis of the Yushigou Harzburgites, North Qilian Suture Zone, NW China. J. Petrol. 2015, 56, 1897–1944. [Google Scholar] [CrossRef]
- Higgie, K.; Tommasi, A. Feedbacks between deformation and melt distribution in the crust–mantle transition zone of the Oman ophiolite. Earth Planet. Sci. Lett. 2012, 359–360, 61–72. [Google Scholar] [CrossRef]
- Carter, N.L.; Ave’Lallemant, H.G. High Temperature Flow of Dunite and Peridotite. Geol. Soc. Am. Bull. 1970, 81, 2181–2202. [Google Scholar] [CrossRef]
- Demouchy, S.; Tommasi, A.; Ballaran, T.B.; Cordier, P. Low strength of Earth’s uppermost mantle inferred from tri-axial deformation experiments on dry olivine crystals. Phys. Earth Planet. Inter. 2013, 220, 37–49. [Google Scholar] [CrossRef]
- Karato, S.i.; Weidner, D.J. Laboratory Studies of the Rheological Properties of Minerals under Deep-Mantle Conditions. Elements 2008, 4, 191–196. [Google Scholar] [CrossRef]
- Bystricky, M.; Kunze, K.; Burlini, L.; Burg, J.P. High shear strain of olivine aggregates: Rheological and seismic consequences. Science 2000, 290, 1564–1567. [Google Scholar] [CrossRef]
- Jung, H.; Katayama, I.; Jiang, Z.; Hiraga, T.; Karato, S. Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 2006, 421, 1–22. [Google Scholar] [CrossRef]
- Shimada, M.; Kokawa, H.; Wang, Z.; Sato, Y.; Karibe, I. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering. Acta Mater. 2002, 50, 2331–2341. [Google Scholar] [CrossRef]
- Drury, M.R.; Urai, J.L. Deformation-related recrystallization processes. Tectonophysics 1990, 172, 235–253. [Google Scholar] [CrossRef]
- Halfpenny, A.; Prior, D.J.; Wheeler, J. Analysis of dynamic recrystallization and nucleation in a quartzite mylonite. Tectonophysics 2006, 427, 3–14. [Google Scholar] [CrossRef]
- Passchier, C.W.; Trouw, R.A. Microtectonics; Springer Science & Business Media: Berlin, Germany, 2005. [Google Scholar]
- Trimby, P.W.; Prior, D.J.; Wheeler, J. Grain boundary hierarchy development in a quartz mylonite. J. Struct. Geol. 1998, 20, 917–935. [Google Scholar] [CrossRef]
- Kruse, R.; Stünitz, H.; Kunze, K. Dynamic recrystallization processes in plagioclase porphyroclasts. J. Struct. Geol. 2001, 23, 1781–1802. [Google Scholar] [CrossRef]
- Prichard, H.M.; Barnes, S.; Godel, B.; Reddy, S.; Vukmanovic, Z.; Halfpenny, A.; Neary, C.; Fisher, P. The structure of and origin of nodular chromite from the Troodos ophiolite, Cyprus, revealed using high-resolution X-ray computed tomography and electron backscatter diffraction. Lithos 2015, 218–219, 87–98. [Google Scholar] [CrossRef]
- Ghosh, B.; Misra, S.; Morishita, T. Plastic deformation and post-deformation annealing in chromite: Mechanisms and implications. Am. Mineral. 2017, 102, 216–226. [Google Scholar] [CrossRef]
Rock Type | Modal Proportions (%) | CPO Parameters for Olivine | Shape Factor | Grain Area (μm2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ol | Chr | Py | J-index | BA-index | M2M | Rex | Fabric | Ol | Chr | Ol | Chr | |
Nodular Chromitite | 12 | 87 | 1 | 5.23 | 0.37 | 1.45 | 65% | B-type | 1.66 | 2.40 | 1.6 × 104 | 27.7 × 104 |
Disseminated Chromitite | 61 | 21 | 18 | 6.23 | 0.36 | 1.32 | 26% | C-type | 4.43 | 3.70 | 1.9 × 104 | 0.6 × 104 |
Massive Chromitite | 40 | 59 | 1 | 4.58 | 0.70 | 2.97 | 11% | D-type | 1.67 | 7.87 | 5.5 × 104 | 9.2 × 104 |
Dunite | 96 | 1 | 3 | 3.78 | 0.69 | 7.03 | 5% | D-type | 4.60 | - | 9.2 × 104 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Yang, J.; Wu, W.; Cai, P.; Ma, H. Microstructural Insights into the Evolution of Ophiolitic Chromite from Luobusha. Minerals 2023, 13, 1047. https://doi.org/10.3390/min13081047
Yang Y, Yang J, Wu W, Cai P, Ma H. Microstructural Insights into the Evolution of Ophiolitic Chromite from Luobusha. Minerals. 2023; 13(8):1047. https://doi.org/10.3390/min13081047
Chicago/Turabian StyleYang, Yu, Jingsui Yang, Weiwei Wu, Pengjie Cai, and Haitao Ma. 2023. "Microstructural Insights into the Evolution of Ophiolitic Chromite from Luobusha" Minerals 13, no. 8: 1047. https://doi.org/10.3390/min13081047
APA StyleYang, Y., Yang, J., Wu, W., Cai, P., & Ma, H. (2023). Microstructural Insights into the Evolution of Ophiolitic Chromite from Luobusha. Minerals, 13(8), 1047. https://doi.org/10.3390/min13081047