Using 1D Thermal Modeling to Evaluate Formation Models of Mafic-Ultramafic Intrusions and Associated Sulfide Cu-Ni-PGE Mineralization
Abstract
:1. Introduction
2. Research Methodology and Description of the Gehenna Program
2.1. Thermal Diffusivity Equation
2.2. Gehenna Program
3. Results
3.1. Monchegorsk Complex
3.1.1. NKT Massif
3.1.2. Thermal Modeling for the NKT Massif
3.1.3. Nude-Poaz Massif and Its Additional Phase Gabbro-10
3.1.4. Estimation of the Time Gap between the Nyud-Poaz and Gabbro-10 Intrusions
3.2. Fedorova–Pana Complex
3.2.1. Fedorova Intrusion
3.2.2. Estimation of the Time Gap between the Magmatic Phases of the Fedorova Intrusion
4. Discussion
4.1. A Moment of Sulfur Saturation
4.2. Emplacement of Sulfur-Saturated Magma and Gravity
4.3. Thermal Modeling of a High-Temperature Progressive Facies of Metamorphism in the Contact Halo of Ore-Bearing Intrusions in the Norilsk Region
5. Conclusions
- The key role for the concentration of sulfides in the lower parts of intrusions belongs to preliminary heating of the host rocks by early magmatic phases of a smaller volume. It is a necessary condition for the appearance of a significant halo of partial melting around the main magmatic phase. Its products, represented by felsic pegmatites, bring fluids into the near-contact zone of the main phase, reducing intercumulus melt viscosity and increasing the infiltration capacity of the cumulus sulfide (NKT, Sopcha, Nyud-Poaz).
- In the presence of late ore-bearing magmatic phases of a relatively small volume, the pattern of sulfide distribution along the smaller phase can be used to estimate the time gap with the main phase. Thermal modeling shows that the Gabbro-10 intrusion, an additional ore-bearing phase of the Nyud-Poaz massif, is separated from the main phase by a time gap of no more than 100 ka, while the minimum gap between the magmatic phases of the Fedorova intrusion is 650–700 ka.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naldrett, A.J. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration; Springer: Berlin, Germany, 2004; p. 488. [Google Scholar]
- Barnes, S.-J.; Lightfoot, P.C. Formation of Magmatic Nickel Sulfide Deposits and Processes Affecting Their Copper and Platinum Group Element Contents. In One Hundredth Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005. [Google Scholar] [CrossRef]
- Maier, W.D.; Lahtinen, R.; O’Brien, H. Mineral Deposits of Finland; Elsevier: Amsterdam, The Netherlands, 2015; p. 792. [Google Scholar]
- Cawthorn, R.G. The Platinum Group Element Deposits of the Bushveld Complex in South Africa. Platin. Met. Rev. 2010, 4, 205–215. [Google Scholar] [CrossRef]
- Grobler, D.F.; Brits, J.A.N.; Maier, W.D.; Crossingham, A. Litho- and Chemostratigraphy of the Flatreef PGE Deposit, Northern Bushveld Complex. Miner. Depos. 2019, 54, 3–28. [Google Scholar] [CrossRef] [Green Version]
- Kislov, E.V.; Khudyakova, L.I. Yoko–Dovyren Layered Massif: Composition, Mineralization, Overburden and Dump Rock Utilization. Minerals 2020, 10, 682. [Google Scholar] [CrossRef]
- Iljina, M. The Portimo Layered Igneous Complex: With Emphasis on Diverse Sulphide and Platinum-Group Element Deposits. Ph.D. Thesis, University of Oulu, Oulu, Finland, 1994; p. 158. [Google Scholar]
- Rasilainen, K.; Eilu, P.; Halkoaho, T.; Iljina, M.; Karinen, T. Quantitative Mineral Resource Assessment of Undiscovered PGE Resources in Finland. Ore Geol. Rev. 2010, 38, 270–287. [Google Scholar] [CrossRef]
- Annen, C. Implications of Incremental Emplacement of Magma Bodies for Magma Differentiation, Thermal Aureole Dimensions and Plutonism–Volcanism Relationships. Tectonophysics 2011, 500, 3–10. [Google Scholar] [CrossRef]
- Scoates, J.S.; Wall, C.J. Geochronology of Layered Intrusions. In Layered Intrusions; Charlier, B., Ed.; Springer: Dordrecht, The Netherlands, 2015; pp. 3–74. [Google Scholar]
- Barnes, S.J.; Robertson, J.C. Time Scales and Length Scales in Magma Flow Pathways and the Origin of Magmatic Ni–Cu–PGE Ore Deposits. Geosci. Front. 2019, 10, 77–87. [Google Scholar] [CrossRef]
- Dortman, N.B. Physical Properties of Formations and Minerals (Petrophysics): Geophysicist Manual; Nedra: Moscow, Russian, 1984; p. 455. [Google Scholar]
- Karykowski, B.T.; Maier, W.D.; Groshev, N.Y.; Barnes, S.J.; Pripachkin, P.V.; McDonald, I.; Savard, D. Critical Controls on the Formation of Contact-Style PGE-Ni-Cu Mineralization: Evidence from the Paleoproterozoic Monchegorsk Complex, Kola Region, Russia. Econ. Geol. 2018, 113, 911–935. [Google Scholar] [CrossRef]
- Stepenshchikov, D.G.; Groshev, N.Y. The Application Software for Thermal Modeling of Intrusions. Tr. FNS 2019, 16, 565–567. [Google Scholar] [CrossRef]
- Mudd, G.M.; Jowitt, S.M.; Werner, T.T. Global Platinum Group Element Resources, Reserves and Mining—A Critical Assessment. Sci. Total Environ. 2018, 622–623, 614–625. [Google Scholar] [CrossRef]
- Fedorova Tundra, Europe’s Largest Deposit of Platinum Group Metals. Available online: https://fedorovoresources.ru/ru/#field (accessed on 22 March 2022).
- The Suhanko Project Could Be the Next Mining Operation to Be Implemented in Finland. Available online: https://www.suhanko.com/what (accessed on 22 March 2022).
- Alapieti, T.T.; Filén, B.A.; Lahtinen, J.J.; Lavrov, M.M.; Smolkin, V.F.; Voitsekhovsky, S.N. Early Proterozoic Layered Intrusions in the Northeastern Part of the Fennoscandian Shield. Mineral. Petrol. 1990, 42, 1–22. [Google Scholar] [CrossRef]
- Sharkov, E.V.; Chistyakov, A.V. Geological and Petrological Aspects of Ni-Cu-PGE Mineralization in the Early Paleoproterozoic Monchegorsk Layered Mafic-Ultramafic Complex, Kola Peninsula. Geol. Ore Depos. 2014, 56, 147–168. [Google Scholar] [CrossRef]
- Mokrushin, A.V.; Smol’kin, V.F. Chromite Mineralization in the Sopcheozero Deposit (Monchegorsk Layered Intrusion, Fennoscandian Shield). Minerals 2021, 11, 772. [Google Scholar] [CrossRef]
- Karykowski, B.T.; Maier, W.D.; Groshev, N.Y.; Barnes, S.J.; Pripachkin, P.V.; McDonald, I. Origin of Reef-Style PGE Mineralization in the Paleoproterozoic Monchegorsk Complex, Kola Region, Russia. Econ. Geol. 2018, 113, 1333–1358. [Google Scholar] [CrossRef]
- Groshev, N.Y.; Pripachkin, P.V.; Karykowski, B.T.; Malygina, A.V.; Rodionov, N.V.; Belyatsky, B.V. Genesis of a Magnetite Layer in the Gabbro-10 Intrusion, Monchegorsk Complex, Kola Region: U–Pb SHRIMP-II Dating of Metadiorites. Geol. Ore Depos. 2018, 60, 486–496. [Google Scholar] [CrossRef]
- Kozlov, E.K. Natural Series of Nickel-Bearing Intrusion Rocks and Their Metallogeny; Nauka: Leningrad, Russia, 1973; p. 276. [Google Scholar]
- Chashchin, V.V.; Bayanova, T.B.; Mitrofanov, F.P.; Serov, P.A. Low-Sulfide PGE Ores in Paleoproterozoic Monchegorsk Pluton and Massifs of Its Southern Framing, Kola Peninsula, Russia: Geological Characteristic and Isotopic Geochronological Evidence of Polychronous Ore–Magmatic Systems. Geol. Ore Depos. 2016, 58, 37–57. [Google Scholar] [CrossRef]
- Chashchin, V.V.; Mitrofanov, F.P. The Paleoproterozoic Imandra-Varzuga Rifting Structure (Kola Peninsula): Intrusive Magmatism and Minerageny. Geodin. Tektonofiz. 2015, 5, 231–256. [Google Scholar] [CrossRef] [Green Version]
- Fedotov, Z.A.; Serov, P.A.; Elizarov, D.V. Tholeiites from the Depleted Subcontinental Mantle in the Root Zone of the Monchegorsk Pluton, Baltic Shield. Dokl. Earth Sci. 2009, 429, 1462–1466. [Google Scholar] [CrossRef]
- Huppert, H.E.; Stephen, R.; Sparks, J. Cooling and Contamination of Mafic and Ultramafic Magmas during Ascent through Continental Crust. Earth Planet. Sci. Lett. 1985, 74, 371–386. [Google Scholar] [CrossRef]
- Singh, J.; Johannes, W. Dehydration Melting of Tonalites. Part I. Beginning of Melting. Contrib. Mineral. Petrol. 1996, 125, 16–25. [Google Scholar] [CrossRef]
- Rundkvist, T.V.; Bayanova, T.B.; Sergeev, S.A.; Pripachkin, P.V.; Grebnev, R.A. The Paleoproterozoic Vurechuaivench Layered Pt-Bearing Pluton, Kola Peninsula: New Results of the U-Pb (ID-TIMS, SHRIMP) Dating of Baddeleyite and Zircon. Dokl. Earth Sci. 2014, 454, 1–6. [Google Scholar] [CrossRef]
- Groshev, N.Y.; Malygina, A.V.; Timofeeva, M.G. Nature of High-Magnesian Xenoliths of the Gabbro-10 Intrusion, Monchegorsk Complex, Kola Region. Vestn. MSTU 2018, 21, 5–17. [Google Scholar]
- Chashchin, V.V.; Ivanchenko, V.V. Sulfide PGE-Cu-Ni and Low-Sulfide Pt-Pd Ores of the Monchegorsk Ore Camp (Western Sector of the Arctic): Geological Characteristics, Mineralogical, Geochemical and Genetic Features. Geol. Geophys. 2022, 63, 622–650. [Google Scholar]
- Mitrofanov, F.P.; Smolkin, V.F. Layered Intrusions of the Monchegorsk Ore District: Petrology, Mineralization, Isotopy, and Deep Structure; KNTs RAN: Apatity, Russia, 2004. [Google Scholar]
- Amelin, Y.V.; Heaman, L.M.; Semenov, V.S. U-Pb Geochronology of Layered Mafic Intrusions in the Eastern Baltic Shield: Implications for the Timing and Duration of Paleoproterozoic Continental Rifting. Precambrian Res. 1995, 75, 31–46. [Google Scholar] [CrossRef]
- Groshev, N.Y.; Pripachkin, P.V. Geological Setting and Platinum Potential of the Gabbro-10 Massif, Monchegorsk Complex, Kola Region. Ores Met. 2018, 4, 4–13. [Google Scholar] [CrossRef]
- Wall, C.J.; Scoates, J.S.; Weis, D.; Friedman, R.M.; Amini, M.; Meurer, W.P. The Stillwater Complex: Integrating Zircon Geochronological and Geochemical Constraints on the Age, Emplacement History and Crystallization of a Large, Open-System Layered Intrusion. J. Petrol. 2018, 59, 153–190. [Google Scholar] [CrossRef] [Green Version]
- Groshev, N.Y.; Rundkvist, T.V.; Karykowski, B.T.; Maier, W.D.; Korchagin, A.U.; Ivanov, A.N.; Junge, M. Low-Sulfide Platinum-Palladium Deposits of the Paleoproterozoic Fedorova-Pana Layered Complex, Kola Region, Russia. Minerals 2019, 9, 764. [Google Scholar] [CrossRef] [Green Version]
- Schissel, D.; Tsvetkov, A.A.; Mitrofanov, F.P.; Korchagin, A.U. Basal Platinum-Group Element Mineralization in the Federov Pansky Layered Mafic Intrusion, Kola Peninsula, Russia. Econ. Geol. 2002, 97, 1657–1677. [Google Scholar] [CrossRef]
- Subbotin, V.V.; Korchagin, A.U.; Savchenko, E.E. PGE Mineralization of the Fedorova-Pana Ore Complex: Types of Mineralization, Mineral Composition, Features of Genesis. Her. Kola Sci. Cent. RAS 2012, 1, 55–66. [Google Scholar]
- Latypov, R.M.; Mitrofanov, F.P.; Skiba, V.I.; Alapieti, T.T. The Western Pansky Tundra Layered Intrusion, Kola Peninsula: Differentiation Mechanism and Solidification Sequence. Petrology 2001, 9, 214–251. [Google Scholar]
- Groshev, N.Y.; Nitkina, E.A.; Mitrofanov, F.P. Two-Phase Mechanism of the Formation of Platinum-Metal Basites of the Fedorova Tundra Intrusion on the Kola Peninsula: New Data on Geology and Isotope Geochronology. Dokl. Earth Sci. 2009, 427, 1012–1016. [Google Scholar] [CrossRef]
- Kalinin, A.A. Precious Metal Mineralization in the East Pansky Layered Massif. In Proceedings of the Fennoscandian School of Ore Genesis in Layered Intrusions; Groshev, N.Y., Ed.; Geological institute KSC RAS: Apatity, Russia, 2021; pp. 20–23. [Google Scholar] [CrossRef]
- Staritsina, G.N. Fedorova Tundra Massif of Basic-Ultrabasic Rocks. In Issues of Geology and Mineralogy, Kola Peninsula; Kola Branch AS USSR: Apatity, Russia, 1978; pp. 50–91. [Google Scholar]
- Bayanova, T.B. Age of Reference Geological Complexes of the Kola Region and Duration of Magmatic Processes; Nauka: St. Petersburg, Russia, 2004; p. 174. [Google Scholar]
- Maier, W.D.; Barnes, S.-J. Platinum-Group Elements in Silicate Rocks of the Lower, Critical and Main Zones at Union Section, Western Bushveld Complex. J. Petrol. 1999, 40, 1647–1671. [Google Scholar] [CrossRef]
- Ariskin, A.A.; Frenkel, M.Y.; Barmina, G.S.; Nielsen, R.L. Comagmat: A Fortran Program to Model Magma Differentiation Processes. Comput. Geosci. 1993, 19, 1155–1170. [Google Scholar] [CrossRef]
- Bohrson, W.A.; Spera, F.J.; Heinonen, J.S.; Brown, G.A.; Scruggs, M.A.; Adams, J.V.; Takach, M.K.; Zeff, G.; Suikkanen, E. Diagnosing Open-System Magmatic Processes Using the Magma Chamber Simulator (MCS): Part I—Major Elements and Phase Equilibria. Contrib. Mineral. Petrol. 2020, 175, 104. [Google Scholar] [CrossRef]
- Barnes, S.J.; Malitch, K.N.; Yudovskaya, M.A. Introduction to a Special Issue on the Norilsk-Talnakh Ni-Cu-Platinum Group Element Deposits. Econ. Geol. 2020, 115, 1157–1172. [Google Scholar] [CrossRef]
- Turovtsev, D.M. Contact Metamorphism of the Noril’sk Intrusions; Scientific World: Moscow, Russia, 2002; p. 319. [Google Scholar]
- Nikulin, I.I.; Mikhailova, Y.A.; Kalashnikov, A.O.; Groshev, N.Y.; Stepenshchikov, D.G.; Pakhomovskiy, Y.A.; Kadyrov, R.I. Structural, Textural and Material Properties of Sulfide Copper-Nickel Ores; Kola Science Centre of the Russian Academy of Sciences: Apatity, Russia, 2022; p. 82. [Google Scholar]
- Likhachev, A. Platinum-Copper-Nickel and Platinum Deposits; Eslan: Moscow, Russia, 2006. (In Russian) [Google Scholar]
- Radko, V.A. Facies of Intrusive and Effusive Magmatism in the Norilsk Region; A.P. Karpinsky Russian Geological Research Institute (VSEGEI): St. Petersburg, Russia, 2016; p. 226. [Google Scholar]
- Barnes, S.J.; Le Vaillant, M.; Godel, B.; Lesher, C.M. Droplets and Bubbles: Solidification of Sulphide-Rich Vapour-Saturated Orthocumulates in the Norilsk-Talnakh Ni–Cu–PGE Ore-Bearing Intrusions. J. Petrol. 2019, 60, 269–300. [Google Scholar] [CrossRef]
- Sluzhenikin, S.F.; Yudovskaya, M.A.; Barnes, S.J.; Abramova, V.D.; Le Vaillant, M.; Petrenko, D.B.; Grigor’eva, A.V.; Brovchenko, V.D. Low-Sulfide Platinum Group Element Ores of the Norilsk-Talnakh Camp. Econ. Geol. 2020, 115, 1267–1303. [Google Scholar] [CrossRef]
- Schoneveld, L.; Barnes, S.J.; Godel, B.; Le Vaillant, M.; Yudovskaya, M.A.; Kamenetsky, V.; Sluzhenikin, S.F. Oxide-Sulfide-Melt-Bubble Interactions in Spinel-Rich Taxitic Rocks of the Norilsk-Talnakh Intrusions, Polar Siberia. Econ. Geol. 2020, 115, 1305–1320. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepenshchikov, D.; Groshev, N. Using 1D Thermal Modeling to Evaluate Formation Models of Mafic-Ultramafic Intrusions and Associated Sulfide Cu-Ni-PGE Mineralization. Minerals 2023, 13, 1046. https://doi.org/10.3390/min13081046
Stepenshchikov D, Groshev N. Using 1D Thermal Modeling to Evaluate Formation Models of Mafic-Ultramafic Intrusions and Associated Sulfide Cu-Ni-PGE Mineralization. Minerals. 2023; 13(8):1046. https://doi.org/10.3390/min13081046
Chicago/Turabian StyleStepenshchikov, Dmitry, and Nikolay Groshev. 2023. "Using 1D Thermal Modeling to Evaluate Formation Models of Mafic-Ultramafic Intrusions and Associated Sulfide Cu-Ni-PGE Mineralization" Minerals 13, no. 8: 1046. https://doi.org/10.3390/min13081046
APA StyleStepenshchikov, D., & Groshev, N. (2023). Using 1D Thermal Modeling to Evaluate Formation Models of Mafic-Ultramafic Intrusions and Associated Sulfide Cu-Ni-PGE Mineralization. Minerals, 13(8), 1046. https://doi.org/10.3390/min13081046