Two-Stage Evolution of the Altyn Tagh Fault System during the Tertiary: Constraints from Heavy Mineral Chemistry in Sediments of the Northwestern Qaidam Basin, Western China
Abstract
:1. Introduction
2. Geological Setting and Stratigraphy
2.1. Geologic Setting
2.2. Stratigraphy
3. Materials and Methods
4. Results
4.1. Sedimental Facies and Sandstone Petrography
4.2. Heavy Mineral Data
4.3. Mineral Chemistry Data
5. Discussions
5.1. Methodological Evaluation
5.2. Provenance of the Northwestern Qaidam Basin in the Tertiary
5.3. Analysis of Depositional Records
5.3.1. Depositional Records in the Xichagou Outcrop Section
5.3.2. Depositional Records in the Yueyashan Section
5.4. Tectonic Evolution of the Altyn Tagh Fault
6. Conclusions
- Sediments of the Xichagou and Yueyashan sections are mainly from the Altyn Mountains, which provide terrific geologic materials to study the tectonic evolution history of the ATF.
- It is vital to determine the time limit of Tertiary tectonic activities in the ATF, which can limit the deformation time of the northern Tibet Plateau. We consider a two-stage evolution of the ATF during the Tertiary: (1) From the late Eocene to the Oligocene, there was no strong tectonic activity in the ATF; (2) In the early Miocene (~22 Ma), the ATF underwent large-scale tectonic activation. The significant changes were recorded by the petrology, heavy mineral characteristics, and stability of the sediments provided to the basin. It is likely to be a strike-slip tectonic activity of the ATF, accompanied by an uplift of the Altyn Mountains. Additionally, the active tectonic setting of the ATF was sustained after the Miocene.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.J.; Neubaue, F.; Genser, J.; Ge, X.H.; Takasu, A.; Yuan, S.H.; Chang, L.H.; Li, W.M. Geochronology of the initiation and displacement of the Altyn Strike-Slip Fault, western China. J. Asian Earth Sci. 2007, 29, 243–252. [Google Scholar] [CrossRef]
- Liu, Y.J.; Neubaue, F.; Ge, X.H.; Genser, J.; Yuan, S.H.; Li, W.M.; Gong, Q.L.; Chen, Y.Z. Geochronology of the initiation and displacement of the Altyn Strike-Slip Fault and the uplift history of the Altyn Mountains. Chin. J. Geol. 2007, 42, 134–146. [Google Scholar]
- Bendick, R.; Bilham, R.; Freymueller, J.; Lareon, K.; Yin, G. Geodetic evidence for a low slip rate in the Altyn Tagh fault system. Nature 2000, 404, 69–72. [Google Scholar] [CrossRef]
- Tapponnier, P.; Ryerson, F.J.; Van der Woerd, J.; Mériaux, A.S.; Lasserre, C. Long-term slip rates and characteristic slip: Keys to active fault behavior and earthquake hazard: Comptes Rendus. Académie Sci. Paris IIA 2001, 333, 483–494. [Google Scholar] [CrossRef]
- Yue, Y.; Ritts, B.D.; Graham, S.A.; Wooden, J.L.; Gehrels, G.E.; Zhang, Z. Slowing extrusion tectonics: Lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault. Earth Planet. Sci. Lett. 2003, 217, 111–122. [Google Scholar] [CrossRef]
- Cowgill, E.; Yin, A.; Harrison, T.M.; Xiaofeng, W. Reconstruction of the Altyn Tagh fault based on U-Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau. J. Geophys. Res. Solid Earth 2003, 108, 1–7. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, J.G. Two-stage evolution model for the Altyn Tagh fault, China. Geology 1999, 27, 227–230. [Google Scholar] [CrossRef]
- Ritts, B.D.; Biffi, U. Magnitude of post-Middle Jurassic (Bajocian) displacement on the central Altyn Tagh fault system, northwest China. Geol. Soc. Am. Bull. 2000, 112, 61–74. [Google Scholar] [CrossRef]
- Chen, Y.; Gilder, S.; Halim, N.; Cogné, J.P.; Courtillot, V. New paleomagnetic constraints on central Asian kinematics: Displacement along the Altyn Tagh fault and rotation of the Qaidam Basin. Tectonics 2002, 21, 6-1–6-19. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Xiao, A.C.; Ang, S.F.; Wang, L.Q.; Mao, L.G.; Wang, L.; Dong, Y.P.; Xu, B. Two-stage evolution of the Altyn Tagh Fault during the Cenozoic: New insight from provenance analysis of a geological section in NW Qaidam Basin, NW China. Terra Nova 2012, 24, 387–395. [Google Scholar] [CrossRef]
- Yin, A.; Rumelhart, P.E.; Cowgill, E.; Butler, R.; Harrison, T.M.; Ingersoll, R.V.; Cooper, K.; Zhang, Q.; Wang, X.F. Tectonic history of the Altyn Tagh fault in northern Tibet inferred from Cenozoic sedimentation. Geol. Soc. Am. Bull. 2002, 114, 1257–1295. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.M.; Wang, E.; Zhang, J.F.; Li, Q.; Sun, G.H. 40Ar/39Ar thermochronological evidence for formation and Mesozoic evolution of the northern-central segment of the Altyn Tagh fault system in the northern Tibetan Plateau. Geol. Soc. Am. Bull. 2005, 117, 1336–1346. [Google Scholar] [CrossRef]
- Yuan, S.H.; Liu, Y.J.; Ge, X.H.; Wu, G.D.; Hu, Y.Y.; Guo, X.Z.; Li, W.M. Uplift period of the northern margin of the Qinghai-Tibet Plateau: Evidences from the Altyn Mountains and Qaidam Basin. Acta Pe Trologica Mine Ralogica 2008, 27, 413–421. [Google Scholar]
- Liu, Y.J.; Ge, X.H.; Ye, H.W.; Liu, J.L. Strike-Slip Model for Altyn Tagh Fault developed since Late Mesozoic. Acta Geosci. Sin. 2001, 22, 23–28. [Google Scholar]
- Wang, Y.; Zheng, J.; Sun, G.; Zheng, Y.; Liu, X. Early Cenozoic Altyn Mountains Uplift Recorded by Detrital Zircon Fission Track Age in Northwest Qaidam Basin. J. Jinlin Univ. 2015, 45, 1447–1459. [Google Scholar]
- Peter, R.; An, Y.; Robert, B.; Richards, D.; Wang, X. Oligocene initiation of deformation of northern Tibet, evidence from the Tarim basin, NW China. Geol. Soc. Am. Abstr. Programs 1997, 29, A143. [Google Scholar]
- Zhuang, G.; Hourigan, J.K.; Ritts, B.D.; Kent-Corson, M.L. Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau: Constraints from sedimentary records from Qaidam basin, Hexi Corridor, and Subei basin, northwest China. Am. J. Sci. 2011, 311, 116–152. [Google Scholar] [CrossRef]
- Ritts, B.D.; Yue, Y.J.; Graham, S.A.; Sobel, E.R.; Abbink, O.A.; Stockli, D. From sea level to high elevation in 15 million years: Uplift history of the northern Tibetan Plateau margin in the Altyn Shan. Am. J. Sci. 2008, 308, 657–678. [Google Scholar] [CrossRef]
- Lu, H.J.; Fu, B.H.; Shi, P.L.; Ma, Y.X.; Li, H.B. Constraints on the uplift mechanism of northern Tibet. Earth Planet. Sci. Lett. 2016, 453, 108–118. [Google Scholar] [CrossRef]
- Song, X.; Cheng, X.; Lin, X.; Gao, S. Cenozoic uplifting history of the Altyn Mountains: Sedimentary records from the Ruoqiang Sag, southeastern Tarim Basin. Chin. J. Geol. 2019, 54, 330–344. [Google Scholar]
- Li, M.M.; Tang, L.J.; Qiu, H.J.; Wang, P.H.; Zhen, S.J. Evidences from ESR dating for structural deformation of Altyn Tagh Fault System since Middle Miocene. J. Earth Sci. Environ. 2015, 37, 58–65. [Google Scholar]
- Jian, X.; Guan, P.; Zhang, D.W.; Zhang, W.; Feng, F.; Liu, R.J.; Lin, S.D. Provenance of Tertiary sandstone in the northern Qaidam basin, northeastern Tibetan Plateau: Integration of framework petrography, heavy mineral analysis and mineral chemistry. Sediment. Geol. 2013, 290, 109–125. [Google Scholar] [CrossRef]
- Von Eynatten, H.; Gaupp, R. Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: Constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sediment. Geol. 1999, 124, 81–111. [Google Scholar] [CrossRef]
- Metivier, F.; Gaudemer, Y.; Tapponnier, P.; Meyer, B. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics 1998, 17, 823–842. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Yang, Z.; Pei, J.; Ge, X.; Wang, X.; Yang, T.; Li, W.; Yuan, S. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: Implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth Planet. Sci. Lett. 2005, 237, 635–646. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.R. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–29. [Google Scholar] [CrossRef]
- Razum, I.; Luar-Oberiter, B.; Zaccarini, F.; Babi, L.; Miko, S.; Hasan, O.; Ilijani, N.; Beqiraj, E.; Pawlowsky-Glahn, V. New sediment provenance approach based on orthonormal log ratio transformation of geochemical and heavy mineral data: Sources of eolian sands from the southeastern Adriatic archipelago. Chem. Geol. 2021, 583, 120451. [Google Scholar] [CrossRef]
- Morton, A. Stability of Detrital Heavy Minerals in Tertiary Sandstones from the North Sea Basin. Clay Miner. 1984, 19, 287–308. [Google Scholar] [CrossRef]
- Verhaegen, J.; Weltje, G.J.; Munsterman, D. Workflow for analysis of compositional data in sedimentary petrology: Provenance changes in sedimentary basins from spatio-temporal variation in heavy-mineral assemblages. Geol. Mag. 2018, 156, 1111–1130. [Google Scholar] [CrossRef]
- Eynatten, H.V. Statistical modelling of compositional trends in sediments. Sediment. Geol. 2004, 171, 79–89. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.R.; Chalton, B. Garnet compositions in Scottish and Norwegian basement terrains: A framework for interpretation of North Sea sandstone provenance. Mar. Pet. Geol. 2004, 21, 393–410. [Google Scholar] [CrossRef]
- Morton, A.; Whitham, A.; Fanning, C. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sediment. Geol. 2005, 182, 3–28. [Google Scholar] [CrossRef]
- Weltje, G.J.; Von Eynatten, H. Quantitative provenance analysis of sediments: Review and outlook. Sediment. Geol. 2004, 171, 1–11. [Google Scholar] [CrossRef]
- Gehrels, G.E.; Yin, A.; Wang, X.F. Magmatic history of the northeastern Tibetan Plateau. J. Geophys. Res. 2003, 108, 1–5. [Google Scholar] [CrossRef]
- Liu, L.; Chen, D.; Zhang, A.; Sun, Y.; Wang, Y.; Yang, J.; Luo, J. Ultrahigh pressure (>7 GPa) gneissic K-feldspar(-bearing) garnet clinopyroxenite in the Altyn Tagh, NW China: Evidence from clinopyroxene exsolution in garnet. Sci. China Ser. D Earth Sci. 2005, 48, 1000–1010. [Google Scholar] [CrossRef]
- Rieser, A.B.; Neubauer, F.; Liu, Y.; Ge, X. Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam basin, western China: Tectonic vs. climatic control. Sediment. Geol. 2005, 177, 1–18. [Google Scholar] [CrossRef]
- Yang, J.S.; Wu, C.L.; Zhang, J.X.; Shi, R.D.; Meng, F.C.; Wooden, J.; Yang, H.Y. Protolith of eclogites in the north Qaidam and Altyn UHP terrane NW China: Earlier oceanic crust? J. Asian Earth Sci. 2006, 28, 185–204. [Google Scholar] [CrossRef]
- Mattinson, C.G.; Menold, C.A.; Zhang, J.X.; Bird, D.K. High-and ultrahigh pressure metamorphism in the North Qaidam and South Altyn Terranes, western China. Int. Geol. Rev. 2007, 49, 969–995. [Google Scholar] [CrossRef]
- Wang, Y.D.; Zheng, J.J.; Zhang, W.L.; Li, S.Y.; Liu, X.W.; Yang, X.; Liu, Y.H. Cenozoic uplift of the Tibetan Plateau: Evidence from the tectonicesedimentary evolution of the western Qaidam Basin. Geocience Front. 2012, 3, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Sun, Z.; Li, D.; Jing, M.; Xu, F.; Liu, H. Ostracoda extinction and explosion events of the Mesozoic–Cenozoic in Qaidam basin, northwest China. J. Palaeogeogr. 2000, 2, 69–74. [Google Scholar]
- Fang, X.; Zhang, W.; Meng, Q.; Gao, J.; Wang, X.; King, J.; Song, C.; Dai, S.; Miao, Y. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet. Sci. Lett. 2007, 258, 293–306. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, Z.; Li, Q.; Wang, B.; Qiu, Z.; Downs, W.R.; Xie, G.; Xie, J.; Deng, T.; Takeuchi, G.T.; et al. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 254, 363–385. [Google Scholar] [CrossRef]
- Fu, L.; Guan, P.; Jian, X.; Liu, R.J.; Feng, F.; An, Q.; Fan, C.F. Sedimentary genetic types of coarse fragment of Paleogene Lulehe Formation in the Qaidam basin and time limit of Tibetan Plateau Uplift. Nat. Gas Geosci. 2012, 23, 833–840. [Google Scholar]
- Fu, L.; Guan, P.; Zhao, W.Y.; Wang, M.; Zhang, Y.; Lu, J.W. Heavy mineral feature and provenance analysis of Paleogene Lulehe Formation in the Qaidam basin. Acta Petrol. Sin. 2013, 29, 2867–2875. [Google Scholar]
- Gao, J.P.; Li, S.X.; Dai, S.; Li, A.Y.; Peng, Y.H. Constraints of tectonic evolution in provenance from detrital zircon fission-track data of Cenozoic strata of Xichagou district in western Qaidam Basin. J. Lanzhou Univ. (Nat. Sci.) 2009, 45, 1–7. [Google Scholar]
- Wang, Y.D.; Zhang, T.; Chi, Y.P.; Liu, Y.R.; Zhang, Z.G.; Li, S.Y.; Fang, X.M.; Zhang, Y.Z. Ceozoic uplift of the Tibetan Plateau:Evidence from tectonic-sedimentary evolution of the Western Qaidam Basin. Earth Sci. Front. 2011, 18, 141–150. [Google Scholar]
- Lu, H.; Xiong, S. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth Planet. Sci. Lett. 2009, 288, 539–550. [Google Scholar] [CrossRef]
- Meng, Q.Q. Fine Magnetic Stratigraphy and Sediments from the Northern Qaidam Basin Response to Tectonic Activities in Late Cenozoic; Lanzhou University: Lanzhou, China, 2008. [Google Scholar]
- Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. The effect of grain size on detrital modes: A test of the Gazzi–Dickinson point-counting method. J. Sediment. Petrol. 1984, 54, 103–116. [Google Scholar]
- Dickinson, W.R. Interpreting provenance relations from detrital modes of sandstones. Proven. Arenites 1985, 148, 333–336. [Google Scholar]
- Hallsworth, C.R.; Chisholm, J.I. Provenance of late Carboniferous sandstones in the Pennine Basin (UK) from combined heavy mineral, garnet geochemistry and palaeocurrent studies. Sediment. Geol. 2008, 203, 196–212. [Google Scholar] [CrossRef]
- Mange, M.A.; Maurer, H.F.W. Heavy Minerals in Colour, 1st ed.; Chapman and Hall: London, UK, 1992; pp. 1–145. [Google Scholar]
- Sabeen, H.M.; Ramanujam, N.; Morton, A.C. The provenance of garnet: Constraints provided by studies of coastal sediments from southern India. Sediment. Geol. 2002, 152, 279–287. [Google Scholar] [CrossRef]
- Weltje, G.J. A quantitative approach to capturing the compositional variability of modern sands. Sediment. Geol. 2004, 171, 59–77. [Google Scholar] [CrossRef]
- Hubert, J.F. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. J. Sediment. Res. 1962, 32, 440–450. [Google Scholar]
- Henry, D.J.; Guidotti, C.V. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. Am. Mineral. 1985, 70, 1–15. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals, 2nd ed.; Geological Society: London, UK, 1997; pp. 1–919. [Google Scholar]
- Mange, M.A.; Morton, A.C. Chapter 13 Geochemistry of Heavy Minerals. Dev. Sedimentol. 2007, 58, 345–391. [Google Scholar]
- Tsikouras, B.; Pe-Piper, G.; Piper, D.J.W.; Schaffer, M. Varietal heavy mineral analysis of sediment provenance, Lower Cretaceous Scotian Basin, eastern Canada. Sediment. Geol. 2011, 237, 150–165. [Google Scholar] [CrossRef]
- Marsaglia, K.M.; DeVaughn, A.M.; James, D.E.; Marden, M. Provenance of fluvial terrace sediments within the Waipaoa sedimentary system and their importance to New Zealand source-to-sink studies. Mar. Geol. 2010, 270, 84–93. [Google Scholar] [CrossRef]
- Rieser, A.B.; Liu, Y.; Genser, J.; Neubauer, F.; Handler, R.; Friedland, G.; Ge, X. 40Ar/39Ar ages of detrital white mica constrain the Cenozoic development of the intracontinental Qaidam Basin, China. Geol. Soc. Am. Bull. 2006, 118, 1522–1534. [Google Scholar] [CrossRef]
- Hanson, A.D. Organic Geochemistry and Petroleum Geology, Tectonics and Basin Analysis of Southern Tarim and Northern Qaidam Basins, Northwest China; Stanford University: Stanford, CA, China, 1999. [Google Scholar]
- Liu, B.J.; Ceng, Y.F. Lithofacies Paleogeographic Basis and Working Methods, 3rd ed.; Geological Publishing House: Beijing, China, 1985; pp. 1–442. [Google Scholar]
- Boggs, J.S. Petrology of Sedimentary Rocks, 1st ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 1–600. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals, 3rd ed.; Longman: London, UK, 2013; pp. 1–696. [Google Scholar]
- Liu, L.; Chen, D.; Wang, C.; Zhang, C. Geochronology and structurology of HP–UHP rocks from the Altyn Tagh, northern Qaidam and Northern Qinling Mountains. J. Northwest Univ. (Nat. Sci. Ed.) 2009, 39, 472–479. [Google Scholar]
- Liu, L.; Wang, C.; Chen, D.; Zhang, A.; Liou, J. Petrology and geochronology of HP–UHP rocks from the South Altyn Tagh, northwestern China. J. Asian Earth Sci. 2009, 35, 232–244. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Yang, W.Q.; Zhu, X.H.; Cao, Y.T.; Kang, L.; Chen, S.F.; Li, R.S.; He, S.P. Provenance and ages of the Altyn Complex in Altyn Tagh: Implications for the early Neoproterozoic evolution of northwestern China. Precambrian Res. 2013, 230, 193–208. [Google Scholar] [CrossRef]
- Ren, S.M.; Ge, X.H.; Liu, Y.J.; Ge, X.H.; Wu, G.D.; Yuan, S.H. Multi-stage strike-slip motion and uplift along the Altyn Tagh Fault since the Late Cretaceous. Geol. Bull. China 2004, 23, 926–932. [Google Scholar]
- Wan, J.L.; Wang, Y.; Li, Q.; Wang, F.; Wang, E.Q. FT Evidence of Northern Altyn Uplift in Late-Cenozoic. Bull. Mineral. Petrol. Geochem. 2001, 20, 222–224. [Google Scholar]
- Chen, Z.L.; Gong, H.L.; Li, L.; Wang, X.F.; Chen, B.L.; Chen, X.H. Uplift and exhumation of the Altyn Mountains during Neogene. Earth Sci. Front. 2006, 13, 91–102. [Google Scholar]
- Fu, L. Fine-Scale Division of the Paleogene–Neogene Sedimentary System in the Western Qaidam Basin and Its Implications for Tectonic Evolution; Peking University: Beijing, China, 2015. [Google Scholar]
- Sobel, E.R.; Arnaud, N.; Jolivet, M.; Ritts, B.D.; Brunel, M. Jurassic to Cenozoic exhumation history of the Altyn Tagh range, northwest China, constrained by 40Ar/39Ar and apatite fission track thermochronology. Geol. Soc. Am. Mem. 2001, 194, 247–267. [Google Scholar]
- Li, H.B.; Yang, J.S.; Xu, Z.Q.; Sun, Z.M. Constraints of the Altyn Tagh Fault on the Growth and Uplift of the Northern Tibetan Plateau. Earth Sci. Front. 2006, 13, 59–79. [Google Scholar]
Locality | Section | Formation | Analysis Items and Number of Samples | |||||
---|---|---|---|---|---|---|---|---|
XGF | SGF | XYF | SYF | Composition Point Counting | Heavy Mineral Analysis | Mineral Geochemistry | ||
Ganchaigou | XCG outcrop section | XCG-01~XCG-03 | XCG-04~XCG-07 | XCG-08~XCG-16 | XCG-19~XCG-27 | 16 | 21 | 4 |
Yueyashan | YYS well section | YYS-01, YYS-02 | YYS-03, YYS-04 | YYS-05, YYS-06 | YYS-07 | 0 | 6 | 4 |
Sample | Formation | Total | A | B | C | D | E | F | G | |
Tourma- lines | XCG-20 | SYF | 100.0 | 0.0 | 23.7 | 0.0 | 42.1 | 31.6 | 2.6 | 0.0 |
XCG-15 | XYF | 100.0 | 0.0 | 37.1 | 2.9 | 40.0 | 5.7 | 11.4 | 2.9 | |
XCG-04 | SGF | 100.0 | 0.0 | 47.5 | 0.0 | 40.0 | 12.5 | 0.0 | 0.0 | |
XCG-03 | XGF | 100.0 | 0.0 | 56.3 | 0.0 | 40.6 | 0.0 | 3.1 | 0.0 | |
Sample | Formation | Total | A | Bi | Bii | C | D | |||
Garnets | XCG-20 | SYF | 100.0 | 27.5 | 52.5 | 15.0 | 5.0 | 0.0 | ||
XCG-15 | XYF | 100.0 | 13.2 | 73.7 | 13.1 | 0.0 | 0.0 | |||
XCG-04 | SGF | 100.0 | 0.0 | 7.5 | 15.0 | 77.5 | 0.0 | |||
XCG-03 | XGF | 100.0 | 0.0 | 34.8 | 13.0 | 52.2 | 0.0 |
Sample | Formation | Total | A | B | C | D | E | F | G | |
Tourma- lines | YYS-07 | SYF | 100.0 | 0.0 | 18.4 | 0.0 | 73.7 | 5.3 | 2.6 | 0.0 |
YYS-06 | XYF | 100.0 | 0.0 | 26.3 | 0.0 | 55.3 | 15.8 | 2.6 | 0.0 | |
YYS-01 | XGF | 100.0 | 0.0 | 55.3 | 0.0 | 31.6 | 2.6 | 10.5 | 0.0 | |
Sample | Formation | Total | A | Bi | Bii | C | D | |||
Garnets | YYS-07 | SYF | 100 | 26 | 66 | 5 | 3 | 0 | ||
YYS-06 | XYF | 100 | 24 | 18 | 42 | 13 | 3 | |||
YYS-03 | SGF | 100 | 3 | 61 | 37 | 0 | 0 | |||
YYS-01 | XGF | 100 | 3 | 87 | 11 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Fu, L.; Guan, P.; Zhang, D. Two-Stage Evolution of the Altyn Tagh Fault System during the Tertiary: Constraints from Heavy Mineral Chemistry in Sediments of the Northwestern Qaidam Basin, Western China. Minerals 2023, 13, 1076. https://doi.org/10.3390/min13081076
Bai L, Fu L, Guan P, Zhang D. Two-Stage Evolution of the Altyn Tagh Fault System during the Tertiary: Constraints from Heavy Mineral Chemistry in Sediments of the Northwestern Qaidam Basin, Western China. Minerals. 2023; 13(8):1076. https://doi.org/10.3390/min13081076
Chicago/Turabian StyleBai, Lu, Ling Fu, Ping Guan, and Daowei Zhang. 2023. "Two-Stage Evolution of the Altyn Tagh Fault System during the Tertiary: Constraints from Heavy Mineral Chemistry in Sediments of the Northwestern Qaidam Basin, Western China" Minerals 13, no. 8: 1076. https://doi.org/10.3390/min13081076
APA StyleBai, L., Fu, L., Guan, P., & Zhang, D. (2023). Two-Stage Evolution of the Altyn Tagh Fault System during the Tertiary: Constraints from Heavy Mineral Chemistry in Sediments of the Northwestern Qaidam Basin, Western China. Minerals, 13(8), 1076. https://doi.org/10.3390/min13081076