Determination of the CO2 Uptake of Construction Products Manufactured by Mineral Carbonation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mineral Carbonation
2.2. Conversion of the Measured CO2 Contents to a CO2 Uptake
2.3. Analysis of the CO2 Content of a Material
2.3.1. Volumetric Determination of CO2 (Reference Method for EN 459-2:2021)
2.3.2. Gravimetric Determination of CO2
2.3.3. Comparison of Different CO2 Determination Methods
2.3.4. Drying of Samples before Determination of the CO2 Content
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency. Roadmap for Energy-Efficient Buildings and Construction in the Association of Southeast Asian Nations. Paris: International Energy Agency. 2022. Available online: https://www.iea.org/reports/roadmap-for-energy-efficient-buildings-and-construction-in-the-association-of-southeast-asian-nations (accessed on 30 June 2023).
- Proposal for a Directive of the European Parliament and of the Council Amending Directive 2003/87/EC Establishing a System for Greenhouse Gas Emission Allowance Trading within the Union, Decision (EU) 2015/1814 Concerning the Establishment and Operation of a Market Stability Reserve for the Union Greenhouse Gas Emission Trading Scheme and Regulation (EU) 2015/757. Available online: https://data.consilium.europa.eu/doc/document/ST-10796-2022-INIT/x/pdf (accessed on 30 June 2023).
- Regulation of the European Parliament and the Council Establishing a Union Certification Framework for Carbon Removal 2022/0394. Available online: https://climate.ec.europa.eu/system/files/2022-11/Proposal_for_a_Regulation_establishing_a_Union_certification_framework_for_carbon_removals.pdf (accessed on 30 June 2023).
- Papadakis, V.G.; Vayenas, C.G.; Fardis, M.N. Fundamental modeling and experimental investigation of concrete carbonation. ACI Mater. J. 1991, 88, 363–373. [Google Scholar]
- Yang, K.H.; Seo, E.A.; Tae, S.H. Carbonation and CO2 uptake of concrete. Environ. Impact Assess. Rev. 2014, 46, 43–52. [Google Scholar] [CrossRef]
- Grosso, M.; Biganzoli, L.; Campo, F.P.; Pantini, S.; Tua, C. Literature Review on the Assessment of the Carbonation Potential of Lime in Different Markets and Beyond. Report Prepared by Assessment on Waste and Resources (AWARE) Research Group at Politecnico di Milano (PoliMI), for the European Lime Association (EuLA). 2020, p. 333. Available online: https://www.eula.eu/download/polimi-literature-review-on-the-assessment-of-the-carbonation-potential-of-lime-in-different-markets-and-beyond/ (accessed on 30 June 2023).
- Polettini, A.; Pomi, R.; Stramazzo, A. Carbon sequestration through accelerated carbonation of BOF slag: Influence of particle size characteristics. Chem. Eng. J. 2016, 298, 26–35. [Google Scholar] [CrossRef]
- Librandi, P.; Nielsen, P.; Costa, G.; Snellings, R.; Quaghebeur, M.; Baciocchi, R. Mechanical and environmental properties of carbonated steel slag compacts as a function of mineralogy and CO2 uptake. J. CO2 Util. 2019, 33, 201–214. [Google Scholar] [CrossRef]
- Medas, D.; Cappai, G.; De Giudici, G.; Piredda, M.; Podda, S. Accelerated carbonation by cement kiln dust in aqueous slurries: Chemical and mineralogical investigation. Greenh. Gases Sci. Technol. 2017, 7, 692–705. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.-C. Production of artificial aggregates from steel-making slag: Influences of accelerated carbonation during granulation and/or post-curing. J. CO2 Util. 2020, 36, 135–144. [Google Scholar] [CrossRef]
- Li, Y.; Mehdizadeh, H.; Mo, K.H.; Ling, T.-C. Co-utilization of aqueous carbonated basic oxygen furnace slag (BOFS) andcarbonated filtrate in cement pastes considering reaction duration effect. Cem. Concr. Compos. 2023, 138, 104988. [Google Scholar] [CrossRef]
- Rostami, V.; Shao, Y.; Boyd, A.J. Durability of concrete pipes subjected to combined steam and carbonation curing. Constr. Build. Mater. 2011, 25, 3345–3355. [Google Scholar] [CrossRef]
- Zhang, D.; Shao, Y. Early age carbonation curing for precast reinforced concretes. Constr. Build. Mater. 2016, 113, 134–143. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Tian, X.; Chen, X. Superior CO2 uptake and enhanced compressive strength for carbonation curing of cement-based materials via flue gas. Constr. Build. Mater. 2022, 346, 128364. [Google Scholar] [CrossRef]
- Ghouleh, Z.; Guthrie, R.I.L.; Shao, Y. High-strength KOBM steel slag binder activated by carbonation. Constr. Build. Mater. 2015, 99, 175–183. [Google Scholar] [CrossRef]
- Salman, M.; Cizer, Ö.; Pontikes, Y.; Santos, R.M.; Snellings, R.; Vandewalle, L.; Blanpain, B.; Van Balen, K. Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material. Chem. Eng. J. 2014, 246, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Liao, H.; Cheng, F. Synergistic mechanisms of steelmaking slag coupled with carbide slag for CO2 mineralization. Int. J. Greenh. Gas Control 2021, 105, 103229. [Google Scholar] [CrossRef]
- Skocek, J.; Zajac, M.; Haha, B. Carbon Capture and Utilization by mineralization of cement pastes derived from recycled concrete. Sci. Rep. 2020, 10, 5614. [Google Scholar] [CrossRef] [Green Version]
- Dilnesa, B.Z.; Wieland, E.; Lothenbach, B.; Dähn, R.; Scrivener, K.L. Fe-containing phases in hydrated cements. Cem. Concr. Res. 2014, 58, 45–55. [Google Scholar] [CrossRef]
- Snellings, R.; Horckmans, L.; Van Bunderen, C.; Vandewalle, L.; Cizer, O. Flash-calcined dredging sediment blended cements: Effect on cement hydration and properties. Mater. Struct. 2017, 50, 241. [Google Scholar] [CrossRef]
- Hu, X.; Jarnerud, T.; Karasev, A.; Jönsson, P.G.; Wang, C. Utilization of fly ash and waste lime from pulp and paper mills in the Argon Oxygen Decarburization process. J. Clean. Prod. 2020, 261, 121182. [Google Scholar] [CrossRef]
- Gunning, P.J.; Hills, C.D.; Carey, P.J. Production of lightweight aggregate from industrial waste and carbon dioxide. Waste Manag. 2009, 29, 2722–2728. [Google Scholar] [CrossRef]
- Huijgen, W.J.J.; Witkamp, G.-J.; Comans, R.N.J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem. Eng. Sci. 2006, 61, 4242–4251. [Google Scholar] [CrossRef]
- O’Connor, W.K.; Dahlin, D.C.; Rush, G.E.; Gerdemann, S.J.; Penner, L.R.; Nilsen, D.N. Aqueous Mineral Carbonation: Mineral Availability, Pretreatment, Reaction Parameters, and Process Studies; Albany Research Center: Albany, OR, USA, 2005. [Google Scholar]
- Hopkinson, L.; Kristova, P.; Rutt, K.; Cressey, G. Phase transitions in the system MgO–CO2–H2O during CO2 degassing of Mg-bearing solutions. Geochim. Cosmochim. Acta 2012, 76, 1–13. [Google Scholar] [CrossRef]
- Morandeau, A.; Thiéry, M.; Dangla, P. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 2014, 56, 153–170. [Google Scholar] [CrossRef] [Green Version]
- Mu, Y.; Liu, Z.; Wang, F.; Huang, X. Carbonation characteristics of g-dicalcium silicate for low-carbon building material. Constr. Build. Mater. 2008, 177, 322–331. [Google Scholar] [CrossRef]
- Kastrinakis, A.; Skliros, V.; Tsakiridis, P.; Perraki, M. CO2-Mineralised Nesquehonite: A New “Green” Building Material. Mater. Proc. 2021, 5, 60. [Google Scholar] [CrossRef]
- EN 459-2 (2021); Building Lime–Part 2: Test Methods. CEN: Brussels, Belgium, 2021.
- ASTM C114-18 (2018); Standard Test Methods for Chemical Analysis of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D4373-14 (2014); Standard Test Method for (Rapid) Determination of Carbonate Contents of Soils. ASTM International: West Conshohocken, PA, USA, 2014.
- Fu, H.; Jian, X.; Zhang, W.; Shang, F. A comparative study of methods for determining carbonate content in marine and terrestrial sediments. Mar. Pet. Geol. 2020, 116, 104337. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, L.; Wang, Y.; Gao, S.; Daut, G. A comparison of different methods for determining the organic and inorganic carbon content of lake sediment from two lakes on the Tibetan Plateau. Quat. Int. 2012, 250, 49–54. [Google Scholar]
- Wang, D.; Chang, J. Comparison on accelerated carbonation of b-C2S, Ca(OH)2, and C4AF: Reaction degree, multi-properties, and products. Constr. Build. Mater. 2019, 224, 336–347. [Google Scholar] [CrossRef]
- Hollingbery, L.A.; Hull, T.R. The thermal decomposition of natural mixtures of huntite and hydromagnesite. Thermochim. Acta 2012, 528, 45–52. [Google Scholar] [CrossRef]
- Vágvölgyi, V.; Hales, M.; Frost, R.L.; Locke, A.; Kristóf, J.; Horváth, E. Conventional and controlled rate thermal analysis of nesquehonite Mg(HCO3)(OH)·2(H2O). J. Therm. Anal. Calorim. 2008, 94, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.; Boone, M.A.; Horckmans, L.; Snellings, R.; Quaghebeur, M. Accelerated carbonation of steel slag monoliths at low CO2 pressure-microstructure and strength development. J. CO2 Util. 2020, 36, 124–134. [Google Scholar] [CrossRef]
- Zajac, M.; Skibsted, J.; Bullerjahn, F.; Skocek, J. Semi-dry carbonation of recycled concrete paste. J. CO2 Util. 2022, 63, 102111. [Google Scholar] [CrossRef]
- Li, N.; Sack, D.; Sun, J.; Liu, S.; Liu, B.; Wang, J.; Gao, G.; Li, D.; Song, Z.; Jie, D. Quantifying the carbon content of aeolian sediments: Which method should we use? Catena 2020, 185, 104276. [Google Scholar]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolim. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Choi, S.-G.; Park, S.-S.; Wu, S.; Chu, J. Methods for calcium carbonate content measurements of biocemented soils. Technical Note. J. Mater. Civ. Eng. 2017, 29, 06017015. [Google Scholar] [CrossRef]
- ISO 11465: 1993/Cor1 1994; Soil Quality-Determination of Dry Matter and Water Content on a Mass Basis–Gravimetric Methods. ISO: Geneva, Switzerland, 1993.
- EN 14346: 2006; Characterization of Waste-Calculation of Dry Matter by Determination of Dry Residue or Water Content. CEN: Brussels, Belgium, 2006.
- EN 12880: 2000; Characterization of Sludges-Determination of Dry Residue and Water Content. CEN: Brussels, Belgium, 2000.
- EN 15934: 2012; Sludge, Treated Biowaste, Soil and Waste-Calculation of Dry Matter Fraction after Determination of Dry Residue or Water Content. CEN: Brussels, Belgium, 2012.
- Fagerlund, G. Chemically Bound Water as Measure of Degree of Hydration: Method and Potential Errors; Report TVBM; Division of Building Materials, LTH, Lund University: Lund, Sweden, 2009; Volume 3150, Available online: https://lucris.lub.lu.se/ws/files/3583346/1580156.pdf (accessed on 30 June 2023).
- Gruskovnjak, A.; Lothenbach, B.; Winnefeld, F.; Münch, B.; Figi, R.; Ko, S.-C.; Adler, M.; Mäder, U. Quantification of hydration phases in supersulfated cements: Review and new approaches. Adv. Cem. Res. 2011, 23, 265–275. [Google Scholar] [CrossRef]
- Lothenbach, B.; Durdzinski, P.; De Weerdt, K. Chapter 5: Thermogravimetric analysis. In A Practical Guide to Microstructural Analysis of Cementitious Materials; Scrivener, K., Snellings, R., Lothenbach, B., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 177–212. [Google Scholar]
- Korpa, A.; Trettin, R. The influence of different drying methods on cement paste microstructure as reflected by gas adsorption: Comparison between freeze-drying (F-drying), D-drying, P-drying and oven-drying methods. Cem. Concr. Res. 2006, 36, 634–649. [Google Scholar] [CrossRef]
- ISO 3052: 1974; Standard for Gypsum Plasters-Determination of Water of Crystallization Content. ISO: Geneva, Switzerland, 1974.
Material Type | Key Minerals | Content (%) | Reference |
---|---|---|---|
BOF steel slag | Ca(OH)2 | 17 | [8] |
Ca2SiO4 | 17 | ||
EAF steel slag | Ca2SiO4 | 12 | [8] |
Bredigite (Ca7Mg(SiO4)4) | 11 | ||
Merwinite (Ca3Mg(SiO4)2) | 20 | ||
Cuspidine (Ca4(Si2O7)(F,OH)2) | 13 | ||
AOD steel slag | Ca2SiO4 | 36 | [16] |
Bredigite (Ca7Mg(SiO4)4) | 15 | ||
Merwinite (Ca3Mg(SiO4)2) | 20 | ||
Cuspidine (Ca4(Si2O7)(F,OH)2) | 20 | ||
Carbide slag | Ca(OH)2 | 95 | [17] |
Waste concrete | Ca(OH)2 | [18] | |
C-S-H (3CaO·2SiO2·3H2O) | |||
ettringite (Ca6Al2(SO4)3(OH)12·26H2O) | |||
Hydrated OPC | Ca(OH)2 | 25 | [19,20] |
C-S-H (3CaO·2SiO2·3H2O) | 45 | ||
ettringite (Ca6Al2(SO4)3(OH)12·26H2O) | 13 | ||
Waste lime | CaO | 90 | [21] |
Paper/wood ash | CaO, Ca(OH)2 | [22] | |
Mine tailings | Wollastonite (CaSiO3) | [23] | |
Olivine (Mg2SiO4) | [24] | ||
Serpentine (Mg3Si2O5(OH)4) | [24] |
Example | Initial | CO2 | H2O | Final | Final CO2 | Calculated CO2 Uptake | Over/Under- | |
---|---|---|---|---|---|---|---|---|
Mass g Dry | Gain g | Loss/Gain g | Mass g dry | Content (%) | (Equation (1)) (%) | (Equation (17)) (%) | Estimated (%) | |
1 | 100 | 59.4 | −24.3 | 135.1 | 44.0 | 78.6 | 59.4 | +32.3 |
2 | 100 | 51.1 | +2.0 | 153.1 | 33.4 | 49.3 | 51.1 | −3.5 |
3 | 100 | 62.6 | +76.8 | 239.4 | 26.1 | 35.4 | 62.6 | −43.4 |
4 | 100 | 50.0 | +25.6 | 175.7 | 28.5 | 39.8 | 50.0 | −20.4 |
Minerals | Initial | CO2 | H2O | Final | Final CO2 | Calculated CO2 Uptake | Over/Under- | |
---|---|---|---|---|---|---|---|---|
Mass g Dry | Gain g | Loss/Gain g | Mass g dry | Content (%) | (Equation (1)) (%) | (Equation (17)) (%) | Estimated (%) | |
Ca(OH)2 | 25 | 14.9 | −6.1 | 33.8 | 11.0 | 19.7 | 14.9 | 8.0 |
C-S-H | 45 | 17.3 | 0.0 | 62.3 | 12.5 | 17.3 | 17.3 | 0.0 |
ettringite | 13 | 1.4 | −4.3 | 10.1 | 1.8 | 2.0 | 1.4 | 6.4 |
other phases | 17 | 0 | 0 | 17 | 0 | 0 | 0 | 0 |
HCP | 100 | 33.6 | −10.4 | 123.2 | 25.3 | 39.0 | 33.6 | +14.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nielsen, P.; Quaghebeur, M. Determination of the CO2 Uptake of Construction Products Manufactured by Mineral Carbonation. Minerals 2023, 13, 1079. https://doi.org/10.3390/min13081079
Nielsen P, Quaghebeur M. Determination of the CO2 Uptake of Construction Products Manufactured by Mineral Carbonation. Minerals. 2023; 13(8):1079. https://doi.org/10.3390/min13081079
Chicago/Turabian StyleNielsen, Peter, and Mieke Quaghebeur. 2023. "Determination of the CO2 Uptake of Construction Products Manufactured by Mineral Carbonation" Minerals 13, no. 8: 1079. https://doi.org/10.3390/min13081079
APA StyleNielsen, P., & Quaghebeur, M. (2023). Determination of the CO2 Uptake of Construction Products Manufactured by Mineral Carbonation. Minerals, 13(8), 1079. https://doi.org/10.3390/min13081079