Mineral Carbonation Potential (MCP) of Mine Waste Material: Derivation of an MCP Parameter
Abstract
:1. Introduction
2. Data Collection and Mineralogical Investigation for the Estimation of MCP
3. Case Study: Turnagain Ultramafic Deposit, British Columbia, Canada
3.1. Preliminary Data Analysis
3.2. The MCP Calculator
3.3. Reliability and Limitations of the MCP Calculator
4. Results and Evaluation of the MCP Calculator
4.1. Major Cation-to-Oxide Conversion
4.2. Reactant Modal Mineral Estimation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oelkers, E.H.; Gislason, S.R.; Matter, J. Mineral Carbonation of CO2. Elements 2008, 4, 333–337. [Google Scholar] [CrossRef]
- Herzog, H. Carbon Sequestration via Mineral Carbonation: Overview and Assessment 14 March 2002. 2002. Available online: http://callian2008.free.fr/climatechange/carbon-sequestration/sequestration2.pdf (accessed on 1 June 2023).
- Kirchofer, A.; Becker, A.; Brandt, A.; Wilcox, J. CO2 Mitigation Potential of Mineral Carbonation with Industrial Alkalinity Sources in the United States. Environ. Sci. Technol. 2013, 47, 7548–7554. [Google Scholar] [CrossRef] [PubMed]
- Bodénan, F.; Bourgeois, F.; Petiot, C.; Augé, T.; Bonfils, B.; Julcour-Lebigue, C.; Guyot, F.; Boukary, A.; Tremosa, J.; Lassin, A.; et al. Ex situ mineral carbonation for CO2 mitigation: Evaluation of mining waste resources, aqueous carbonation processability and life cycle assessment (Carmex project). Miner. Eng. 2014, 59, 52–63. [Google Scholar] [CrossRef]
- Li, J.; Hitch, M.; Power, I.M.; Pan, Y. Integrated mineral carbonation of ultramafic mine deposits—A review. Minerals 2018, 8, 147. [Google Scholar] [CrossRef]
- Bodor, M.; Santos, R.; Gerven, T.; Vlad, M. Recent developments and perspectives on the treatment of industrial wastes by mineral carbonation—A review. Open Eng. 2013, 3, 566–584. [Google Scholar] [CrossRef]
- Matter, J.M.; Kelemen, P.B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat. Geosci. 2009, 2, 837–841. [Google Scholar] [CrossRef]
- García del Real, P.; Vishal, V. Mineral Carbonation in Ultramafic and Basaltic Rocks. In Geologic Carbon Sequestration: Understanding Reservoir Behavior; Vishal, V., Singh, T.N., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 213–229. [Google Scholar]
- Kelemen, P.B.; Matter, J.; Streit, E.E.; Rudge, J.F.; Curry, W.B.; Blusztajn, J. Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage. Annu. Rev. Earth Planet. Sci. 2011, 39, 545–576. [Google Scholar] [CrossRef]
- O’Connor, W.K.; Dahlin, D.C.; Rush, G.E.; Dahlin, C.L.; Collins, W.K. Carbon dioxide sequestration by direct mineral carbonation: Process mineralogy of feed and products. Min. Metall. Explor. 2002, 19, 95–101. [Google Scholar] [CrossRef]
- Farhang, F.; Rayson, M.; Brent, G.; Hodgins, T.; Stockenhuber, M.; Kennedy, E. Insights into the dissolution kinetics of thermally activated serpentine for CO2 sequestration. Chem. Eng. J. 2017, 330, 1174–1186. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef]
- Sanna, A.; Maroto-Valer, M. CO2 Sequestration Using a Novel Na-salts pH Swing Mineral Carbonation Process. Energy Procedia 2014, 63, 5897–5903. [Google Scholar] [CrossRef]
- Rashid, M.I.; Benhelal, E.; Farhang, F.; Oliver, T.K.; Stockenhuber, M.; Kennedy, E.M. Application of a concurrent grinding technique for two-stage aqueous mineral carbonation. J. CO2 Util. 2020, 42, 101347. [Google Scholar] [CrossRef]
- Thonemann, N.; Zacharopoulos, L.; Fromme, F.; Nühlen, J. Environmental impacts of carbon capture and utilization by mineral carbonation: A systematic literature review and meta life cycle assessment. J. Clean. Prod. 2022, 332, 130067. [Google Scholar] [CrossRef]
- Khoo, H.; Bu, J.; Wong, R.; Kuan, S.; Sharratt, P. Carbon capture and utilization: Preliminary life cycle CO2, energy, and cost results of potential mineral carbonation. Energy Procedia 2011, 4, 2494–2501. [Google Scholar] [CrossRef]
- Farhang, F.; Oliver, T.K.; Rayson, M.S.; Brent, G.F.; Molloy, T.S.; Stockenhuber, M.; Kennedy, E.M. Dissolution of heat activated serpentine for CO2 sequestration: The effect of silica precipitation at different temperature and pH values. J. CO2 Util. 2019, 30, 123–129. [Google Scholar] [CrossRef]
- Haug, T.A.; Munz, I.A.; Kleiv, R.A. Importance of dissolution and precipitation kinetics for mineral carbonation. Energy Procedia 2011, 4, 5029–5036. [Google Scholar] [CrossRef]
- Wang, F.; Dreisinger, D.; Jarvis, M.; Hitchins, T. Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration. Miner. Eng. 2019, 131, 185–197. [Google Scholar] [CrossRef]
- Alexander, G.; Maroto-Valer, M.M.; Gafarova-Aksoy, P. Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation. Fuel 2007, 86, 273–281. [Google Scholar] [CrossRef]
- Zhao, L.; Sang, L.; Chen, J.; Ji, J.; Teng, H.H. Aqueous carbonation of natural brucite: Relevance to CO2 sequestration. Environ. Sci. Technol. 2010, 44, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Lavikko, S.; Eklund, O. The significance of the serpentinite characteristics in mineral carbonation by “the ÅA Route”. Int. J. Miner. Process. 2016, 152, 7–15. [Google Scholar] [CrossRef]
- Haque, F.; Santos, R.M.; Chiang, Y.W. Using nondestructive techniques in mineral carbonation for understanding reaction fundamentals. Powder Technol. 2019, 357, 134–148. [Google Scholar] [CrossRef]
- Farhang, F.; Oliver, T.K.; Rayson, M.; Brent, G.; Stockenhuber, M.; Kennedy, E. Experimental study on the precipitation of magnesite from thermally activated serpentine for CO2 sequestration. Chem. Eng. J. 2016, 303, 439–449. [Google Scholar] [CrossRef]
- Rashid, M.I.; Benhelal, E.; Farhang, F.; Oliver, T.K.; Rayson, M.S.; Brent, G.F.; Stockenhuber, M.; Kennedy, E.M. ACEME: Direct Aqueous Mineral Carbonation of Dunite Rock. Environ. Prog. Sustain. Energy 2019, 38, e13075. [Google Scholar] [CrossRef]
- Lechat, K.; Lemieux, J.-M.; Molson, J.; Beaudoin, G.; Hébert, R. Field evidence of CO2 sequestration by mineral carbonation in ultramafic milling wastes, Thetford Mines, Canada. Int. J. Greenh. Gas Control 2016, 47, 110–121. [Google Scholar] [CrossRef]
- Reynolds, B.; Reddy, K.J.; Argyle, M.D. Field Application of Accelerated Mineral Carbonation. Minerals 2014, 4, 191–207. [Google Scholar] [CrossRef]
- Oliver, T.K.; Farhang, F.; Hodgins, T.W.; Rayson, M.S.; Brent, G.F.; Molloy, T.S.; Stockenhuber, M.; Kennedy, E.M. CO2 Capture Modeling Using Heat-Activated Serpentinite Slurries. Energy Fuels 2019, 33, 1753–1766. [Google Scholar] [CrossRef]
- Teir, S.; Revitzer, H.; Eloneva, S.; Fogelholm, C.-J.; Zevenhoven, R. Dissolution of natural serpentinite in mineral and organic acids. Int. J. Miner. Process. 2007, 83, 36–46. [Google Scholar] [CrossRef]
- Hitch, M.; Ballantyne, S.; Hindle, S. Revaluing mine waste rock for carbon capture and storage. Int. J. Min. Reclam. Environ. 2010, 24, 64–79. [Google Scholar] [CrossRef]
- Puthiya Veetil, S.K.; Hitch, M. Aqueous mineral carbonation of ultramafic material: A pre-requisite to integrate into mineral extraction and tailings management operation. Environ. Sci. Pollut. Res. 2021, 28, 29096–29109. [Google Scholar] [CrossRef] [PubMed]
- Back, J.; Zevenhoven, R.; Fagerlund, J.; Sorjonen-Ward, P. Mineral Carbonation Using Mine Tailings-a Strategic Overview of Potential and Opportunities. SSRN 4285256. 2022. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4285256 (accessed on 28 November 2022).
- Jacobs, A.D. Quantifying the mineral carbonation potential of mine waste material: A new parameter for geospatial estimation. In Mining Engineering; University of British Columbia: Vancouver, BC, Canada, 2014; p. 250. [Google Scholar]
- Lackner, K.S.; Wendt, C.H.; Butt, D.P.; Joyce, E.L.; Sharp, D.H. Carbon dioxide disposal in carbonate minerals. Energy 1995, 20, 1153–1170. [Google Scholar] [CrossRef]
- Goff, F.; Lackner, K.S. Carbon dioxide sequestering using ultramafic rocks. Environ. Geosci. 1998, 5, 89–102. [Google Scholar] [CrossRef]
- Penner, L.R.; O’Connor, W.K.; Dahlin, D.C.; Gerdemann, S.J.; Rush, G.E. Mineral Carbonation: Energy Costs of Pretreatment Options and Insights Gained from Flow Loop Reaction Studies; Albany Research Center (ARC): Albany, OR, USA, 2004. [Google Scholar]
- Goff, F.; Guthrie, G.; Lipin, B.; Fite, M.; Chipera, S.; Counce, D.; Kluk, E.; Ziock, H. Evaluation of Ultramafic Deposits in the Eastern United States and Puerto Rico as Sources of Magnesium for Carbon Dioxide Sequestration; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2000.
- Nixon, G.T.; Hammack, J.L. Geology and Platinum-group Element Mineralization of Alaskan-type Ultramafic-Mafic Complexes in British Columbia; British Columbia, Ministry of Employment and Investment: Burnaby, BC, Canada, 1997; Volume 93, p. 141.
- Scheel, J.E. Age and Origin of the Turnagain Alaskan-Type Intrusion and Associated Ni-Sulphide Mineralization, North-Central British Columbia, Canada; University of British Columbia: Vancouver, BC, Canada, 2007. [Google Scholar]
- Herrmann, W.; Berry, R.F. MINSQ—A least squares spreadsheet method for calculating mineral proportions from whole rock major element analyses. Geochem. Explor. Environ. Anal. 2002, 2, 361–368. [Google Scholar] [CrossRef]
- Onyeagocha, A. Twin Sisters dunite: Petrology and mineral chemistry. Geol. Soc. Am. Bull. 1978, 89, 1459–1474. [Google Scholar] [CrossRef]
Lithology | Rock Code | Average Magnesium Number |
---|---|---|
Green Dunite | 1 | 93 |
Dunite | 2 | 91 |
Wehrlite | 3 | 88 |
Olivine Clinopyroxenite | 4 | 85 |
Serpentinite | 5 | 91 |
Sample ID | Data Type | Oxide Component (Wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Al2O3 | CaO | Fe2O3 | K2O | MgO | MnO | Na2O | P2O5 | TiO2 | Total | ||
04-24-AJ3 | Est. Oxide | 0.32 | 1.06 | 11.6 | 0.01 | 44.37 | 0.17 | 0.01 | 0.02 | - * | 57.56 |
Meas. Oxide | 0.36 | 0.9 | 10.23 | 0.03 | 43.81 | 0.14 | 0.02 | - | 0.03 | 55.52 | |
Residual | −0.04 | 0.16 | 1.37 | −0.02 | 0.56 | 0.03 | −0.01 | 0.02 | −0.03 | 2.24 | |
04-25-AJ6 | Est. Oxide | 0.4 | 4.97 | 15.31 | 0.01 | 37.16 | 0.21 | 0.04 | 0.02 | - | 58.12 |
Meas. Oxide | 0.41 | 4.35 | 13.91 | 0.06 | 38.28 | 0.18 | 0.03 | 0 | 0.06 | 57.28 | |
Residual | −0.01 | 0.62 | 1.4 | −0.05 | −1.12 | 0.03 | 0.01 | 0.02 | −0.06 | 3.32 | |
06-110-AJ2 | Est. Oxide | 0.11 | 0.29 | 10.01 | 0.01 | 43.71 | 0.15 | 0.01 | 0.01 | 0.02 | 54.32 |
Meas. Oxide | 0.15 | 0.3 | 10.39 | - | 46.64 | 0.16 | - | - | - | 57.64 | |
Residual | −0.04 | −0.01 | −0.38 | 0.01 | −2.93 | −0.01 | 0.01 | 0.01 | 0.02 | 3.42 | |
06-110-AJ6 | Est. Oxide | 0.26 | 0.36 | 11.85 | 0.01 | 46.01 | 0.14 | 0.01 | 0.01 | 0.02 | 58.67 |
Meas. Oxide | 0.13 | 0.42 | 11.21 | - | 47.23 | 0.16 | - | - | - | 59.15 | |
Residual | 0.13 | −0.06 | 0.64 | 0.01 | −1.22 | −0.02 | 0.01 | 0.01 | 0.02 | 2.12 | |
06-110-AJ10 | Est. Oxide | 0.19 | 0.53 | 10.27 | 0.01 | 49.51 | 0.15 | 0.01 | 0.01 | 0.02 | 60.7 |
Meas. Oxide | 0.2 | 0.63 | 9.31 | 0.01 | 48.51 | 0.13 | - | - | 0.01 | 58.8 | |
Residual | −0.01 | −0.1 | 0.96 | 0 | 1 | 0.02 | 0.01 | 0.01 | 0.01 | 2.12 | |
06-110-AJ13 | Est. Oxide | 0.19 | 0.98 | 11.77 | 0.05 | 48.75 | 0.17 | 0.01 | 0.01 | 0.03 | 61.96 |
Meas. Oxide | 0.21 | 0.91 | 10.53 | 0.03 | 45.51 | 0.16 | - | - | 0.03 | 57.38 | |
Residual | −0.02 | 0.07 | 1.24 | 0.02 | 3.24 | 0.01 | 0.01 | 0.01 | 0 | 4.62 | |
06-110-AJ17 | Est. Oxide | 0.21 | 3.15 | 11.91 | 0.01 | 39.79 | 0.19 | 0.05 | 0.01 | 0.05 | 55.37 |
Meas. Oxide | 0.17 | 3.47 | 10.86 | 0.03 | 40.16 | 0.1 | 0.04 | - | - | 54.83 | |
Residual | 0.04 | −0.32 | 1.05 | −0.02 | −0.37 | 0.09 | 0.01 | 0.01 | 0.05 | 1.96 | |
06-111-AJ1 | Est. Oxide | 0.4 | 1.05 | 11.24 | 0.01 | 43.64 | 0.18 | 0.01 | 0.05 | 0.05 | 56.63 |
Meas. Oxide | 0.17 | 1.06 | 11.04 | - | 44.56 | 0.21 | 0.01 | - | - | 57.05 | |
Residual | 0.23 | −0.01 | 0.2 | 0.01 | −0.92 | −0.03 | 0 | 0.05 | 0.05 | 1.5 | |
06-111-AJ4 | Est. Oxide | 0.13 | 0.29 | 11.74 | 0.01 | 46.19 | 0.18 | 0.01 | 0.01 | 0.02 | 58.58 |
Meas. Oxide | 0.14 | 0.23 | 10.95 | - | 47.15 | 0.15 | - | - | 0.04 | 58.66 | |
Residual | −0.01 | 0.06 | 0.79 | 0.01 | −0.96 | 0.03 | 0.01 | 0.01 | −0.02 | 1.9 | |
06-111-AJ7 | Est. Oxide | 0.13 | 0.42 | 11.68 | 0.01 | 43.33 | 0.18 | 0.01 | 0.01 | 0.03 | 55.8 |
Meas. Oxide | 0.16 | 0.45 | 11.54 | - | 45.63 | 0.18 | - | - | - | 57.96 | |
Residual | −0.03 | −0.03 | 0.14 | 0.01 | −2.3 | 0 | 0.01 | 0.01 | 0.03 | 2.56 | |
06-111-AJ10 | Est. Oxide | 0.28 | 1.12 | 13.37 | 0.01 | 41.34 | 0.18 | 0.01 | 0.01 | 0.02 | 56.34 |
Meas. Oxide | 0.09 | 1.38 | 13.01 | 0.02 | 42.62 | 0.12 | - | - | - | 57.24 | |
Residual | 0.19 | −0.26 | 0.36 | −0.01 | −1.28 | 0.06 | 0.01 | 0.01 | 0.02 | 2.2 | |
06-111-AJ13 | Est. Oxide | 0.11 | 1.15 | 11.19 | 0.01 | 42.61 | 0.15 | 0.01 | 0.01 | 0.01 | 55.25 |
Meas. Oxide | 0.14 | 1.18 | 10.89 | - | 44.87 | 0.16 | 0.06 | - | 0.01 | 57.31 | |
Residual | −0.03 | −0.03 | 0.3 | 0.01 | −2.26 | −0.01 | −0.05 | 0.01 | 0 | 2.7 | |
06-116-AJ7 | Est. Oxide | 0.06 | 0.15 | 8.45 | 0.01 | 45.28 | 0.12 | 0.01 | 0.01 | 0.02 | 54.11 |
Meas. Oxide | 0.09 | 0.16 | 8.07 | - | 48.01 | 0.12 | 0.01 | - | 0.03 | 56.49 | |
Residual | −0.03 | −0.01 | 0.38 | 0.01 | −2.73 | 0 | 0 | 0.01 | −0.01 | 3.18 | |
06-116-AJ9 | Est. Oxide | 0.21 | 0.18 | 9.55 | 0.01 | 45.05 | 0.13 | 0.01 | 0.01 | 0.02 | 55.17 |
Meas. Oxide | 0.26 | 0.22 | 8.34 | 0.02 | 46.34 | 0.11 | 0.01 | - | - | 55.3 | |
Residual | −0.05 | −0.04 | 1.21 | −0.01 | −1.29 | 0.02 | 0 | 0.01 | 0.02 | 2.65 | |
06-116-AJ11 | Est. Oxide | 0.09 | 0.15 | 8.64 | 0.01 | 45.71 | 0.13 | 0.01 | 0.01 | 0.02 | 54.77 |
Meas. Oxide | 0.13 | 0.16 | 7.94 | - | 47.69 | 0.11 | 0.01 | - | 0.02 | 56.06 | |
Residual | −0.04 | −0.01 | 0.7 | 0.01 | −1.98 | 0.02 | 0 | 0.01 | 0 | 2.77 | |
06-116-AJ12 | Est. Oxide | 0.19 | 0.21 | 8.48 | 0.01 | 47.01 | 0.13 | 0.01 | 0.01 | 0.02 | 56.07 |
Meas. Oxide | 0.08 | 0.31 | 7.86 | 0.01 | 47.25 | 0.1 | - | - | - | 55.61 | |
Residual | 0.11 | −0.1 | 0.62 | 0 | −0.24 | 0.03 | 0.01 | 0.01 | 0.02 | 1.14 |
Mineral | XRD (wt.%) | MCP Calculator (wt.%) | Residual |
---|---|---|---|
Olivine | 97.9 | 95.99 | 1.91 |
Chromite | 1.5 | 0.97 | 0.53 |
Magnetite | - | 1.91 | −1.91 |
Serpentine | 0.2 | 0.57 | −0.37 |
Quartz | 0.4 | 0.19 | 0.21 |
Anorthite | - | 0.36 | −0.36 |
Diopside | - | 0.01 | −0.01 |
Total | 100 | 100 |
MCP Calculator Mineral Results | Projected MCP Mineral Results from XRD | |||||
---|---|---|---|---|---|---|
Sample ID | Estimated MCP Value (%) by MCP Calculator | XRD Measured MCP Value (%) Post-Carbonation | Difference | XRD Projected MCP Value (%) from Reactant | XRD Measured MCP Value (%) Post-Carbonation | Difference |
04-24-AJ3 | 15.5 | 14.53 | 0.97 | 10.11 | 14.53 | 4.42 |
04-25-AJ6 | 14.84 | 26.93 | 12.09 | 10.43 | 26.93 | 16.5 |
06-110-AJ2 | 10.85 | 11.6 | 0.75 | 13.35 | 11.6 | 1.76 |
06-110-AJ6 | 15.4 | 12.64 | 2.76 | 11.97 | 12.64 | 0.67 |
06-110-AJ10 | 19.73 | 7.96 | 11.77 | 14.77 | 7.96 | 6.81 |
06-110-AJ13 | 19.02 | 7.45 | 11.57 | 13.97 | 7.45 | 6.53 |
06-110-AJ17 | 11.32 | 11.01 | 0.31 | 12.88 | 11.01 | 1.87 |
06-111-AJ1 | 13.24 | 13.15 | 0.08 | 13.69 | 13.15 | 0.54 |
06-111-AJ4 | 16.25 | 6.14 | 10.11 | 15.17 | 6.14 | 9.03 |
06-111-AJ7 | 11.45 | 16.32 | 4.87 | 14.15 | 16.32 | 2.18 |
06-111-AJ10 | 10.78 | 21.05 | 10.27 | 11.11 | 21.05 | 9.94 |
06-111-AJ13 | 11.07 | 22.74 | 11.67 | 12.84 | 22.74 | 9.9 |
06-116-AJ7 | 11.83 | 14.42 | 2.58 | 11.94 | 14.42 | 2.48 |
06-116-AJ9 | 12.46 | 11.5 | 0.96 | 12.41 | 11.5 | 0.91 |
06-116-AJ11 | 12.42 | 13.62 | 1.2 | 10.21 | 13.62 | 3.41 |
06-116-AJ12 | 14.65 | 14.17 | 0.48 | 12.92 | 14.17 | 1.25 |
Average | 13.8 | 14.08 | 5.15 | 12.62 | 14.08 | 4.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobs, A.; Hitch, M.; Mosallanejad, S.; Bhatelia, T.; Li, J.; Farhang, F. Mineral Carbonation Potential (MCP) of Mine Waste Material: Derivation of an MCP Parameter. Minerals 2023, 13, 1129. https://doi.org/10.3390/min13091129
Jacobs A, Hitch M, Mosallanejad S, Bhatelia T, Li J, Farhang F. Mineral Carbonation Potential (MCP) of Mine Waste Material: Derivation of an MCP Parameter. Minerals. 2023; 13(9):1129. https://doi.org/10.3390/min13091129
Chicago/Turabian StyleJacobs, Anthony, Michael Hitch, Sara Mosallanejad, Tejas Bhatelia, Jiajie Li, and Faezeh Farhang. 2023. "Mineral Carbonation Potential (MCP) of Mine Waste Material: Derivation of an MCP Parameter" Minerals 13, no. 9: 1129. https://doi.org/10.3390/min13091129
APA StyleJacobs, A., Hitch, M., Mosallanejad, S., Bhatelia, T., Li, J., & Farhang, F. (2023). Mineral Carbonation Potential (MCP) of Mine Waste Material: Derivation of an MCP Parameter. Minerals, 13(9), 1129. https://doi.org/10.3390/min13091129