A Step towards CO2 Sequestration through Mineral Carbonation: Using Ammonium-Based Lixiviants for the Dissolution of Calcium from Iron-Making Blast Furnace Slag
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Calcium Mineral Extraction Stage
2.3. Chemical Analysis and Material Characterisation
3. Results
3.1. Effect of Ammonium Lixiviants, Concentration, and Dissolution Time
3.2. Overall Summary of Results
4. Discussion
4.1. The Effect of Lixiviant Molar Concentration on Calcium Dissolution
4.2. The Effect of the Anion Type of Ammonium Salts on Calcium Dissolution
4.3. The Effect of Reaction Time on Calcium Dissolution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clift, R. Climate Change and Energy Policy: The Importance of Sustainability Arguments. Energy 2007, 32, 262–268. [Google Scholar] [CrossRef]
- Kabir, M.; Habiba, U.E.; Khan, W.; Shah, A.; Rahim, S.; Rios-Escalante, P.R.D.I.; Farooqi, Z.U.R.; Ali, L. Climate Change Due to Increasing Concentration of Carbon Dioxide and Its Impacts on Environment in 21st Century; a Mini Review. J. King Saud. Univ. Sci. 2023, 35, 102693. [Google Scholar] [CrossRef]
- Nunes, L.J.R. The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. Environments 2023, 10, 66. [Google Scholar] [CrossRef]
- Osman, K.; Coquelet, C.; Ramjugernath, D. Review of Carbon Dioxide Capture and Storage with Relevance to the South African Power Sector. S. Afr. J. Sci. 2014, 110, 12. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A Review of Mineral Carbonation Technologies to Sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef]
- Surridge, A.D.; Cloete, M. Carbon Capture and Storage in South Africa. Energy Procedia 2009, 1, 2741–2744. [Google Scholar] [CrossRef]
- DME. Digest of South African Energy Statistics: 2009, 4th ed.; Directorate: Energy Information Management Process Design and Publication: Pretoria, South Africa; Department Minerals and of Energy: Pretoria, South Africa, 2010; ISBN 9781920448257. [Google Scholar]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural Climate Solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [PubMed]
- Teir, S.; Eloneva, S.; Fogelholm, C.J.; Zevenhoven, R. Dissolution of Steelmaking Slags in Acetic Acid for Precipitated Calcium Carbonate Production. Energy 2007, 32, 528–539. [Google Scholar] [CrossRef]
- Kotoane, A.M. Development and Optimization of Selective Leaching Processes for The Extraction of Calcium from Steel Slag in View of Sequestering Carbon Dioxide. Ph.D. Thesis, Faculty of Applied and Computer Sciences Department of Chemistry, Vanderbijlpark, South Africa, 2013. [Google Scholar]
- Naidoo, Y. A Study Into the Viability of Mineral Carbonation as a Means of CO2 Sequestration in South Africa. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2013. [Google Scholar]
- Yogo, K.; Teng, Y.; Yashima, T.; Yamada, K. Development of a New CO2 Fixation/Utilization Process (1): Recovery of Calcium Form Steelmaking Slag and Chemical Fixation of Carbon Dioxide by Carbonation Reaction. Greenh. Gas. Control Technol. 2005, 2427–2430. [Google Scholar] [CrossRef]
- Kodama, S.; Nishimoto, T.; Yamamoto, N.; Yogo, K.; Yamada, K. Development of a New PH-Swing CO2 Mineralization Process with a Recyclable Reaction Solution. Energy 2008, 33, 776–784. [Google Scholar] [CrossRef]
- Yi, H.; Xu, G.; Cheng, H.; Wang, J.; Wan, Y.; Chen, H. An Overview of Utilization of Steel Slag. Procedia Environ. Sci. 2012, 16, 791–801. [Google Scholar] [CrossRef]
- Doucet, F.J. Effective CO2-Specific Sequestration Capacity of Steel Slags and Variability in Their Leaching Behaviour in View of Industrial Mineral Carbonation. Min. Eng. 2010, 23, 262–269. [Google Scholar] [CrossRef]
- Miranda-Pizarro, J.; Perejón, A.; Valverde, J.M.; Sánchez-Jiménez, P.E.; Pérez-Maqueda, L.A. Use of Steel Slag for CO2 Capture under Realistic Calcium-Looping Conditions. RSC Adv. 2016, 6, 37656–37663. [Google Scholar] [CrossRef]
- He, D.; Yang, L.; Luo, Y.; Liu, G.; Wu, Z. Synergistic Calcium Leaching and Iron Enrichment by Indirect Carbonation of Thermally Modified Steel Slag. Constr. Build. Mater. 2024, 411. [Google Scholar] [CrossRef]
- Moon, S.; Kim, E.; Noh, S.; Triwigati, P.T.; Choi, S.; Park, Y. Carbon Mineralization of Steel and Iron-Making Slag: Paving the Way for a Sustainable and Carbon-Neutral Future. J. Environ. Chem. Eng. 2024, 12, 112448. [Google Scholar] [CrossRef]
- Fruehan, R.J. Unique Functions of Slags in Steelmaking. In VII International Conference on Molten Slags Fluxes and Salts; The South African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2004. [Google Scholar]
- Teir, S.; Eloneva, S.; Zevenhoven, R. Production of Precipitated Calcium Carbonate from Calcium Silicates and Carbon Dioxide. Energy Convers. Manag. 2005, 46, 2954–2979. [Google Scholar] [CrossRef]
- Eloneva, S.; Teir, S.; Salminen, J.; Fogelholm, C.J.; Zevenhoven, R. Steel Converter Slag as a Raw Material for Precipitation of Pure Calcium Carbonate. Ind. Eng. Chem. Res. 2008, 47, 7104–7111. [Google Scholar] [CrossRef]
- Teir, S. Fixation of Carbon Dioxide by Producing Carbonates from Minerals and Steelmaking Slags; Helsinki University of Technology: Helsinki, Finland, 2008; ISBN 9789512293520. [Google Scholar]
- Xu, Y.; Lv, Y.; Qian, C. Comprehensive Multiphase Visualization of Steel Slag and Related Research in Cement: Detection Technology and Application. Constr. Build. Mater. 2023, 386, 131572. [Google Scholar] [CrossRef]
- Eloneva, S.; Mannisto, P.; Said, A.; Fogelholm, C.J.; Zevenhoven, R. Ammonium Salt-Based Steelmaking Slag Carbonation: Precipitation of CaCO3 and Ammonia Losses Assessment. Greenh. Gases: Sci. Technol. 2011, 1, 305–311. [Google Scholar] [CrossRef]
- Jo, H.; Park, S.H.; Jang, Y.N.; Chae, S.C.; Lee, P.K.; Jo, H.Y. Metal Extraction and Indirect Mineral Carbonation of Waste Cement Material Using Ammonium Salt Solutions. Chem. Eng. J. 2014, 254, 313–323. [Google Scholar] [CrossRef]
- Blamey, J.; Yao, J.G.; Arai, Y.; Fennell, P. Enhancement of Natural Limestone Sorbents for Calcium Looping Processes. In Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture; Elsevier: Amsterdam, The Netherlands, 2015; pp. 73–105. [Google Scholar]
- Tamilselvi Dananjayan, R.R.; Kandasamy, P.; Andimuthu, R. Direct Mineral Carbonation of Coal Fly Ash for CO2 Sequestration. J. Clean. Prod. 2016, 112, 4173–4182. [Google Scholar] [CrossRef]
- Coppola, A.; Scala, F.; Azadi, M. Direct Dry Carbonation of Mining and Industrial Wastes in a Fluidized Bed for Offsetting Carbon Emissions. Processes 2022, 10, 582. [Google Scholar] [CrossRef]
- Olajire, A.A. A Review of Mineral Carbonation Technology in Sequestration of CO2. J. Pet. Sci. Eng. 2013, 109, 364–392. [Google Scholar] [CrossRef]
- Yanagisawa, Y. A New CO2 Disposal Process via Artificial Weathering of Calcium Silicate Accelerated by Acetic Acid. Energy 2001, 26, 341–354. [Google Scholar] [CrossRef]
- Eloneva, S.; Said, A.; Fogelholm, C.J.; Zevenhoven, R. Preliminary Assessment of a Method Utilizing Carbon Dioxide and Steelmaking Slags to Produce Precipitated Calcium Carbonate. Appl. Energy 2012, 90, 329–334. [Google Scholar] [CrossRef]
- Liu, Y.M.; Cui, X.; Hao, C.M.; Tao, F.R.; Li, J.Y. Modified Gelatin with Quaternary Ammonium Salts Containing Epoxide Groups. Chin. Chem. Lett. 2014, 25, 1193–1197. [Google Scholar] [CrossRef]
- Hosseini, T.; Haque, N.; Selomulya, C.; Zhang, L. Mineral Carbonation of Victorian Brown Coal Fly Ash Using Regenerative Ammonium Chloride—Process Simulation and Techno-Economic Analysis. Appl. Energy 2016, 175, 54–68. [Google Scholar] [CrossRef]
- Bao, W.; Li, H.; Yi, Z. Selective Leaching of Steelmaking Slag for Indirect CO2 Mineral Sequestration. Ind. Eng. Chem. Res. 2010, 49, 2055–2063. [Google Scholar] [CrossRef]
- Sun, Y.; Yao, M.S.; Zhang, J.P.; Yang, G. Indirect CO2 Mineral Sequestration by Steelmaking Slag with NH4Cl as Leaching Solution. Chem. Eng. J. 2011, 173, 437–445. [Google Scholar] [CrossRef]
- Lee, H.; Kim, T.W.; Kim, S.H.; Lin, Y.-W.; Li, C.-T.; Choi, Y.; Choi, C. Carbon Dioxide Capture and Product Characteristics Using Steel Slag in a Mineral Carbonation Plant. Processes 2023, 11, 1676. [Google Scholar] [CrossRef]
- Wei, C.; Dong, J.; Hu, Z.; Zhang, H.; Wang, X.; Tong, Z.; Liao, C. CO2 Sequestration Exploration Utilizing Converter Slag and Cold-Rolling Waste Water: The Effect of Carbonation Parameters. Process Saf. Environ. Prot. 2021, 148, 1233–1242. [Google Scholar] [CrossRef]
- Eloneva, S.; Teir, S.; Revitzer, H.; Salminen, J.; Said, A.; Fogelholm, C.-J.; Zevenhoven, R. Process Metallurgy Reduction of CO2 Emissions from Steel Plants by Using Steelmaking Slags for Production of Marketable Calcium Carbonate. Steel Research Int. 2010, 80, 415–421. [Google Scholar] [CrossRef]
- Lin, Y.; Yan, B.; Mitas, B.; Li, C.; Fabritius, T.; Shu, Q. Calcium Carbonate Synthesis from Kambara Reactor Desulphurization Slag via Indirect Carbonation for CO2 Capture and Utilization. J. Environ. Manag. 2024, 351, 119773. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Yu, Z.; Zhang, Y.; Xu, T.; Guo, L.; Hao, S. Optimization of CO2 Sequestration in Alkaline Industrial Residues: The Enhancement Mechanism of Saline Soil. Chem. Eng. J. 2024, 486, 150402. [Google Scholar] [CrossRef]
- Wang, S.; Kim, J.; Qin, T. Mineral Carbonation of Iron and Steel By-Products: State-of-the-Art Techniques and Economic, Environmental, and Health Implications. J. CO2 Util. 2024, 81, 102707. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, Y.; Liu, H.; Boczkaj, G.; Cao, Y.; Wang, C. Carbon Dioxide Sequestration by Industrial Wastes through Mineral Carbonation: Current Status and Perspectives. J. Clean. Prod. 2024, 434, 140258. [Google Scholar] [CrossRef]
- Liu, L.; Gan, M.; Fan, X.; Gao, Z.; Sun, Z.; Ji, Z.; Wei, J.; Ma, S. Mechanism of Ultrasonic Enhanced Acetic Acid Efficiently Leaching of Steel Slag and Synthesis of Calcium Carbonate Whiskers. Sep. Purif. Technol. 2024, 339, 126615. [Google Scholar] [CrossRef]
- Liu, L.; Fan, X.; Gan, M.; Wei, J.; Gao, Z.; Sun, Z.; Ji, Z.; Wu, Y.; Li, J. Microwave-Enhanced Selective Leaching Calcium from Steelmaking Slag to Fix CO2 and Produce High Value-Added CaCO3. Sep. Purif. Technol. 2024, 330, 125395. [Google Scholar] [CrossRef]
- Mattila, H.P.; Grigaliu-naite, I.; Zevenhoven, R. Chemical Kinetics Modeling and Process Parameter Sensitivity for Precipitated Calcium Carbonate Production from Steelmaking Slags. Chem. Eng. J. 2012, 192, 77–89. [Google Scholar] [CrossRef]
- Said, A.; Mattila, O.; Eloneva, S.; Järvinen, M. Enhancement of Calcium Dissolution from Steel Slag by Ultrasound. Chem. Eng. Process. Process Intensif. 2015, 89, 1–8. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.W.; Chae, S.; Bang, J.H.; Lee, S.W. CO2 Sequestration Technology through Mineral Carbonation: An Extraction and Carbonation of Blast Slag. J. CO2 Util. 2016, 16, 336–345. [Google Scholar] [CrossRef]
- Stange, W. The Process Design of Gold Leaching and Carbon-in-Pulp Circuits Figure 2-The Carbon-In-Pulp (CIP) Process. J. South. Afr. Inst. Min. Metall. 1999, 99, 13–25. [Google Scholar]
- Wills, B.A.; Napier-Munn, T. An Introduction to the Practical Aspect of Ore Treatment and Mineral Recovery. In Mineral Processing Technology; Elsevier Science & Technology Books: Amsterdam, The Netherlands, 2006; Volume 7. [Google Scholar]
- Kohitlhetse, I. An Investigation Into the Effect of Physico-Chemical Factors Affecting the Extraction of Calcium from Iron and Steel Slag. Ph.D. Thesis, Vaal University of Technology, Vanderbijlpark, South Africa, 2020. [Google Scholar]
- Kohitlhetse, I.; Thubakgale, K.; Mendonidis, P.; Manono, M. Investigating the Effect of Reaction Temperature on the Extraction of Calcium from Ironmaking Slag: A Kinetics Study. Environ. Sci. Proc. 2021, 6, 31. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.C.; Shi, C.; Pan, S.Y. Characteristics of Steel Slags and Their Use in Cement and Concrete—A Review. Resour. Conserv. Recycl. 2018, 136, 187–197. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Polettini, A.; Pomi, R. Influence of Particle Size on the Carbonation of Stainless Steel Slag for CO2 Storage. Energy Procedia 2009, 1, 4859–4866. [Google Scholar] [CrossRef]
- Chiang, Y.W.; Santos, R.M.; Elsen, J.; Meesschaert, B.; Martens, J.A.; Van Gerven, T. Towards Zero-Waste Mineral Carbon Sequestration via Two-Way Valorization of Ironmaking Slag. Chem. Eng. J. 2014, 249, 260–269. [Google Scholar] [CrossRef]
- Engström, F. Mineralogical Influence on Leaching Behaviour of Steelmaking Slags: A Laboratory Investigation. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2010. [Google Scholar]
- Polettini, A.; Pomi, R.; Stramazzo, A. Carbon Sequestration through Accelerated Carbonation of BOF Slag: Influence of Particle Size Characteristics. Chem. Eng. J. 2016, 298, 26–35. [Google Scholar] [CrossRef]
Oxides | Compositions (wt.%) |
---|---|
Na2O | 0.1 |
MgO | 1.08 |
Al2O3 | 5.57 |
SiO2 | 24 |
P2O5 | 0.9 |
K2O | 1.27 |
CaO | 57.4 |
TiO2 | 1.7 |
MnO | 3.93 |
Fe2O3 | 4.1 |
Elements | Compositions (wt.%) |
---|---|
Mg | 0.8 |
Al | 3.67 |
Si | 13.9 |
P | 0.55 |
S | 1.28 |
Cl | 0.22 |
K | 1.51 |
Ca | 66.5 |
% Calcium Extraction | Solution pH | ||||||||
Time (min) | 30 | 60 | 90 | 120 | 0 | 30 | 60 | 90 | 120 |
Lixiviant | 2 M Solutions | 2 M Solutions | |||||||
NH4NO3 | 36.41 | 54.14 | 64.46 | 100 | 6.34 | 6.94 | 6.46 | 6.58 | 6.86 |
CH3COONH4 | 50.01 | 61.17 | 75.60 | 99.99 | 8.03 | 8.25 | 8.33 | 8.26 | 8.22 |
NH4Cl | 32.94 | 55.74 | 85.50 | 99.99 | 7.66 | 7.75 | 7.74 | 7.8 | 7.83 |
3 M Solutions | 3 M Solutions | ||||||||
NH4NO3 | 50.49 | 72.92 | 96.21 | 100 | 5.2 | 5.75 | 5.73 | 5.77 | 5.8 |
CH3COONH4 | 26.96 | 46.61 | 77.45 | 100 | 7.93 | 7.97 | 8.05 | 7.91 | 7.95 |
NH4Cl | 41.27 | 46.43 | 65.74 | 99.99 | 7.57 | 7.63 | 7.72 | 7.8 | 7.71 |
5 M Solutions | 5 M Solutions | ||||||||
NH4NO3 | 4.24 | 10.32 | 39.33 | 100 | 5.68 | 5.8 | 5.86 | 5.84 | 5.86 |
CH3COONH4 | 22.64 | 45.49 | 80.33 | 100 | 7.67 | 7.71 | 7.82 | 7.91 | 7.7 |
NH4Cl | 7.92 | 37.97 | 75.02 | 100 | 7.26 | 7.33 | 7.38 | 7.38 | 7.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohitlhetse, I.C.; Manono, M.S.; Motsetse, C.K.; Mendonidis, P.M. A Step towards CO2 Sequestration through Mineral Carbonation: Using Ammonium-Based Lixiviants for the Dissolution of Calcium from Iron-Making Blast Furnace Slag. Minerals 2024, 14, 695. https://doi.org/10.3390/min14070695
Kohitlhetse IC, Manono MS, Motsetse CK, Mendonidis PM. A Step towards CO2 Sequestration through Mineral Carbonation: Using Ammonium-Based Lixiviants for the Dissolution of Calcium from Iron-Making Blast Furnace Slag. Minerals. 2024; 14(7):695. https://doi.org/10.3390/min14070695
Chicago/Turabian StyleKohitlhetse, Itumeleng C., Malibongwe S. Manono, Catherine K. Motsetse, and Peter M. Mendonidis. 2024. "A Step towards CO2 Sequestration through Mineral Carbonation: Using Ammonium-Based Lixiviants for the Dissolution of Calcium from Iron-Making Blast Furnace Slag" Minerals 14, no. 7: 695. https://doi.org/10.3390/min14070695
APA StyleKohitlhetse, I. C., Manono, M. S., Motsetse, C. K., & Mendonidis, P. M. (2024). A Step towards CO2 Sequestration through Mineral Carbonation: Using Ammonium-Based Lixiviants for the Dissolution of Calcium from Iron-Making Blast Furnace Slag. Minerals, 14(7), 695. https://doi.org/10.3390/min14070695