Bubble Formation and Motion in Liquids—A Review
Abstract
:1. Introduction
2. Experimental Methods to Study Bubble Motion
3. Bubble Motion in Pure Liquids
- We ≪ 1—bubble shape tends to a spherical geometry;
- We ~ 1—moderate deviations, oblate spheroid is observed;
- We ≫ 1—large bubble shape distortion occurs; spherical cap and oblate ellipsoidal cap are observed.
- for Re < 150
- for Re > 565:
4. Bubble Motion in the Solution of a Surface-Active Substance
- (A)
- for a clean system
- (B)
- for a slightly ‘contaminated’ system
- (C)
- for a fully ‘contaminated’ system
5. Limitations and Future Directions
6. Conclusions
- Experimental methods to study bubble motion: visual observation (with use of cameras) is still the most reliable method for tracking bubbles. This method delivers the most comprehensive information about bubble motion, i.e., velocity, deformation, and path.
- Bubble motion in water: it was shown that predictions of the model proposed by Moore [20,21], supplemented by recent semi-empirical formulas (Legendre et al. [19]) describing the geometrical parameters of the rising bubble (deformation ratio), agree almost perfectly with experimental data for pure liquids.
- Bubble motion in liquid in the presence of surface-active substances (SAS): for SAS solutions, existing models describe relatively well the boundary case of fully ‘contaminated’ systems. It was shown that the semi-empirical model proposed by Kowalczuk et al. [22] is a very convenient tool for the description and prediction of bubble terminal velocities as a function of surfactant concentration for a wide range of bubble diameters.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leja, J. Surface Chemistry of Froth Flotation; Plenum Press: New York, NY, USA; London, UK, 1982. [Google Scholar]
- Nguyen, A.V.; Schulze, H.J. Colloidal Science of Flotation; Surfactant Science; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Nguyen, A.V.; Schulze, H.J.; Ralston, J. Elementary Steps in Particle-Bubble Attachment. Int. J. Miner. Process. 1997, 51, 183–195. [Google Scholar] [CrossRef]
- Fuerstenau, D.W. Pradip Zeta Potentials in the Flotation of Oxide and Silicate Minerals. Adv. Colloid Interface Sci. 2005, 114, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Drzymala, J. Characterization of Materials by Hallimond Tube Flotation. Part 1: Maximum Size of Entrained Particles. Int. J. Miner. Process. 1994, 42, 139–152. [Google Scholar] [CrossRef]
- Zawala, J.; Drzymala, J.; Malysa, K. Natural Hydrophobicity and Flotation of Fluorite. Physicochem. Probl. Miner. Process. 2007, 41, 5–11. [Google Scholar]
- Firouzi, M.; Nguyen, A.V.; Hashemabadi, S.H. The Effect of Microhydrodynamics on Bubble–Particle Collision Interaction. Miner. Eng. 2011, 24, 973–986. [Google Scholar] [CrossRef]
- Brabcová, Z.; Karapantsios, T.; Kostoglou, M.; Basařová, P.; Matis, K. Bubble–Particle Collision Interaction in Flotation Systems. Colloids Surf. A Physicochem. Eng. Asp. 2015, 473, 95–103. [Google Scholar] [CrossRef]
- Xing, Y.; Gui, X.; Pan, L.; Pinchasik, B.-E.; Cao, Y.; Liu, J.; Kappl, M.; Butt, H.-J. Recent Experimental Advances for Understanding Bubble-Particle Attachment in Flotation. Adv. Colloid Interface Sci. 2017, 246, 105–132. [Google Scholar] [CrossRef]
- Drzymala, J. Mineral Processing, Foundations of Theory and Practice of Minerallurgy; Oficyna Wydawnicza PWr.: Wroclaw, Poland, 2007. [Google Scholar]
- Grau, R.A.; Laskowski, J.S.; Heiskanen, K. Effect of Frothers on Bubble Size. Int. J. Miner. Process. 2005, 76, 225–233. [Google Scholar] [CrossRef]
- Melo, F.; Laskowski, J.S. Fundamental Properties of Flotation Frothers and Their Effect on Flotation. Miner. Eng. 2006, 19, 766–773. [Google Scholar] [CrossRef]
- Laskowski, J.S. A New Approach to Classification of Flotation Collectors. Can. Metall. Q. 2010, 49, 397–404. [Google Scholar] [CrossRef]
- Ralston, J. Thin Films and Froth Flotation. Adv. Colloid Interface Sci. 1983, 19, 1–26. [Google Scholar] [CrossRef]
- Albijanic, B.; Ozdemir, O.; Nguyen, A.V.; Bradshaw, D. A Review of Induction and Attachment Times of Wetting Thin Films between Air Bubbles and Particles and Its Relevance in the Separation of Particles by Flotation. Adv. Colloid Interface Sci. 2010, 159, 1–21. [Google Scholar] [CrossRef]
- Clift, R.; Grace, J.R.; Weber, M.E. Bubbles, Drops, and Particles; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Kulkarni, A.A.; Joshi, J.B. Bubble Formation and Bubble Rise Velocity in Gas−Liquid Systems: A Review. Ind. Eng. Chem. Res. 2005, 44, 5873–5931. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Chang, H.; Zhang, Q. A Review of Drag Coefficient Models in Gas-Liquid Two-Phase Flow. ChemBioEng Rev. 2023, 10, 311–325. [Google Scholar] [CrossRef]
- Legendre, D.; Zenit, R.; Velez-Cordero, J.R. On the Deformation of Gas Bubbles in Liquids. Phys. Fluids 2012, 24, 043303. [Google Scholar] [CrossRef]
- Moore, D.W. The Boundary Layer on a Spherical Gas Bubble. J. Fluid Mech. 1963, 16, 161–176. [Google Scholar] [CrossRef]
- Moore, D.W. The Velocity of Rise of Distorted Gas Bubbles in a Liquid of Small Viscosity. J. Fluid Mech. 1965, 23, 749–766. [Google Scholar] [CrossRef]
- Kowalczuk, P.B.; Zawala, J.; Drzymala, J. Concentration at the Minimum Bubble Velocity (CMV) for Various Types of Flotation Frothers. Minerals 2017, 7, 118. [Google Scholar] [CrossRef]
- Zawala, J.; Swiech, K.; Malysa, K. A Simple Physicochemical Method for Detection of Organic Contaminations in Water. Colloids Surf. A Physicochem. Eng. Asp. 2007, 302, 293–300. [Google Scholar] [CrossRef]
- Malysa, K.; Krasowska, M.; Krzan, M. Influence of Surface Active Substances on Bubble Motion and Collision with Various Interfaces. Adv. Colloid Interface Sci. 2005, 114, 205–225. [Google Scholar] [CrossRef]
- Saffman, P.G. On the Rise of Small Air Bubbles in Water. J. Fluid Mech. 1956, 1, 249–275. [Google Scholar] [CrossRef]
- Brücker, C. Structure and Dynamics of the Wake of Bubbles and Its Relevance for Bubble Interaction. Phys. Fluids 1999, 11, 1781–1796. [Google Scholar] [CrossRef]
- Mougin, G.; Magnaudet, J. Wake-Induced Forces and Torques on a Zigzagging/Spiralling Bubble. J. Fluid Mech. 2006, 567, 185–194. [Google Scholar] [CrossRef]
- Ju, E.; Cai, R.; Sun, H.; Fan, Y.; Chen, W.; Sun, J. Dynamic Behavior of an Ellipsoidal Bubble Contaminated by Surfactant near a Vertical Wall. Korean J. Chem. Eng. 2022, 39, 1165–1181. [Google Scholar] [CrossRef]
- Lunde, K.; Perkins, R.J. Shape Oscillations of Rising Bubbles. Appl. Sci. Res. 1997, 58, 387–408. [Google Scholar] [CrossRef]
- Zhang, T.; Qian, Y.; Yin, J.; Zhang, B.; Wang, D. Experimental Study on 3D Bubble Shape Evolution in Swirl Flow. Exp. Therm. Fluid Sci. 2019, 102, 368–375. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Z.; Zhang, B.; Guo, K.; Zheng, L.; Xiang, W.; Liu, H.; Liu, C. Experimental Study of the Effect of the Surfactant on the Single Bubble Rising in Stagnant Surfactant Solutions and a Mathematical Model for the Bubble Motion. Ind. Eng. Chem. Res. 2022, 61, 9514–9527. [Google Scholar] [CrossRef]
- Borkowski, M.; Zawala, J. Influence of Temperature on Rising Bubble Dynamics in Water and N-Pentanol Solutions. Minerals 2021, 11, 1067. [Google Scholar] [CrossRef]
- Malysa, K. Wet Foams: Formations, Properties and Mechanical Stability. Adv. Colloid Interface Sci. 1992, 40, 37–83. [Google Scholar] [CrossRef]
- Cho, Y.S.; Laskowski, J.S. Bubble Coalescence and Its Effect on Dynamic Foam Stability. Can. J. Chem. Eng. 2002, 80, 299–305. [Google Scholar] [CrossRef]
- Cho, Y.S.; Laskowski, J.S. Effect of Flotation Frothers on Bubble Size and Foam Stability. Int. J. Miner. Process. 2002, 64, 69–80. [Google Scholar] [CrossRef]
- Kowalczuk, P.B. Determination of Critical Coalescence Concentration and Bubble Size for Surfactants Used as Flotation Frothers. Ind. Eng. Chem. Res. 2013, 52, 11752–11757. [Google Scholar] [CrossRef]
- Tate, T. On the Magnitude of a Drop of Liquid Formed under Different Circumstances. Philos. Mag. 1864, 27, 176–180. [Google Scholar] [CrossRef]
- Kosior, D. Nanostructures and Stability of Thin Liquid Layers. Ph.D. Thesis, Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland, 2013. [Google Scholar]
- Oguz, H.N.; Prosperetti, A. Dynamics of Bubble Growth and Detachment from a Needle. J. Fluid Mech. 1993, 257, 111–145. [Google Scholar] [CrossRef]
- Garstecki, P.; Gitlin, I.; DiLuzio, W.; Whitesides, G.M.; Kumacheva, E.; Stone, H.A. Formation of Monodisperse Bubbles in a Microfluidic Flow-Focusing Device. Appl. Phys. Lett. 2004, 85, 2649–2651. [Google Scholar] [CrossRef]
- Martinez, C.J. Bubble Generation in Microfluidic Devices. Bubble Sci. Eng. Technol. 2009, 1, 40–52. [Google Scholar] [CrossRef]
- Niecikowska, A.; Krasowska, M.; Ralston, J.; Malysa, K. Role of Surface Charge and Hydrophobicity in the Three-Phase Contact Formation and Wetting Film Stability under Dynamic Conditions. J. Phys. Chem. C 2012, 116, 3071–3078. [Google Scholar] [CrossRef]
- Wielhorski, Y.; Abdelwahed, A.B.; Arquis, E.; Glockner, S.; Bréard, J. Numerical Simulation of Bubble Formation and Transport in Cross-Flowing Streams. J. Comput. Multiph. Flows. 2014, 6, 299–312. [Google Scholar] [CrossRef]
- Fu, T.; Ma, Y. Bubble Formation and Breakup Dynamics in Microfluidic Devices: A Review. Chem. Eng. Sci. 2015, 135, 343–372. [Google Scholar] [CrossRef]
- Vejražka, J.; Fujasová, M.; Stanovsky, P.; Ruzicka, M.C.; Drahoš, J. Bubbling Controlled by Needle Movement. Fluid Dyn. Res. 2008, 40, 521–533. [Google Scholar] [CrossRef]
- Sanada, T.; Abe, K. Generation of Single Bubbles of Various Sizes Using a Slitting Elastic Tube. Rev. Sci. Instrum. 2013, 84, 085106. [Google Scholar] [CrossRef]
- Najafi, A.S.; Xu, Z.; Masliyah, J. Single Micro-Bubble Generation by Pressure Pulse Technique. Chem. Eng. Sci. 2008, 63, 1779–1787. [Google Scholar] [CrossRef]
- Zawala, J.; Niecikowska, A. “Bubble-on-Demand” Generator with Precise Adsorption Time Control. Rev. Sci. Instrum. 2017, 88, 095106. [Google Scholar] [CrossRef] [PubMed]
- Kosior, D.; Zawala, J. Initial Degree of Detaching Bubble Adsorption Coverage and the Kinetics of Dynamic Adsorption Layer Formation. Phys. Chem. Chem. Phys. 2018, 20, 2403–2412. [Google Scholar] [CrossRef] [PubMed]
- Loth, E. Quasi-Steady Shape and Drag of Deformable Bubbles and Drops. Int. J. Multiph. Flow 2008, 34, 523–546. [Google Scholar] [CrossRef]
- Zawala, J. Formation and Rupture of Liquid Films Formed at Various Interfaces by the Colliding Bubble. Ph.D. Thesis, Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Krakow, Poland, 2008. [Google Scholar]
- Stokes, G.G. On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Trans. Camb. Philos. Soc. 1851, 9, 9–106. [Google Scholar]
- Hadamard, J.S. Mouvement Permanent Lent d’une Sphère Liquide et Visqueuse Dans Un Liquide Visqueux. Compt. Rend. Acad. Sci. 1911, 152, 1735–1752. [Google Scholar]
- Rybczynski, W. On the Translatory Motion of a Fluid Sphere in a Viscous Medium. Bull. Int. Acad. Sci. Crac. Sci. Math. Nat. 1911, Series A, 40–46. [Google Scholar]
- Levich, V.G. Physicochemical Hydrodynamics; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1962. [Google Scholar]
- Pawliszak, P.; Ulaganathan, V.; Bradshaw-Hajek, B.H.; Manica, R.; Beattie, D.A.; Krasowska, M. Mobile or Immobile? Rise Velocity of Air Bubbles in High-Purity Water. J. Phys. Chem. C 2019, 123, 15131–15138. [Google Scholar] [CrossRef]
- Vakarelski, I.U.; Manica, R.; Li, E.Q.; Basheva, E.S.; Chan, D.Y.C.; Thoroddsen, S.T. Coalescence Dynamics of Mobile and Immobile Fluid Interfaces. Langmuir 2018, 34, 2096–2108. [Google Scholar] [CrossRef]
- Levich, V.G. Motion of Gaseous Bubbles with High Reynolds Numbers. Zhn. Eksp. Teor. Fiz 1949, 19, 18–24. (In Russian) [Google Scholar]
- Ackeret, J. Über exakte Lösungen der Stokes-Navier-Gleichungen inkompressibler Flüssigkeiten bei veränderten Grenzbedingungen. J. Appl. Math. Phys. (ZAMP) 1952, 3, 259–271. [Google Scholar] [CrossRef]
- Duineveld, P.C. The Rise Velocity and Shape of Bubbles in Pure Water at High Reynolds Number. J. Fluid Mech. 1995, 292, 325–332. [Google Scholar] [CrossRef]
- Masliyah, J.; Jauhari, R.; Gray, M. Drag Coefficients for Air Bubble Rising along an Inclined Surface. Chem. Eng. Sci. 1994, 49, 1905–1911. [Google Scholar] [CrossRef]
- Karamanev, D.G. Rise of Gas Bubbles in Quiescent Liquids. AIChE J. 1994, 40, 1418–1421. [Google Scholar] [CrossRef]
- Karamanev, D.G. Equations for Calculations of the Terminal Velocity and Drag Coefficient of Solid Spheres and Gas Bubbles. Chem. Eng. Commun. 1996, 147, 75–84. [Google Scholar] [CrossRef]
- Mei, R.; Klausner, J.F. Unsteady Force on a Spherical Bubble at Finite Reynolds Number with Small Fluctuations in the Free-stream Velocity. Phys. Fluids A Fluid Dyn. 1992, 4, 63–70. [Google Scholar]
- Mei, R.; Klausner, J.F.; Lawrence, C.J. A Note on the History Force on a Spherical Bubble at Finite Reynolds Number. Phys. Fluids 1994, 6, 418–420. [Google Scholar] [CrossRef]
- Rodrigue, D. Drag Coefficient-Reynolds Number Transition for Gas Bubbles Rising Steadily in Viscous Fluids. Can. J. Chem. Eng. 2001, 79, 119–123. [Google Scholar]
- Rodrigue, D. Generalized Correlation for Bubble Motion. AIChE J. 2001, 47, 39–44. [Google Scholar]
- Abou-El-Hassan, M.E. A Generalized Bubble Rise Velocity Correlation. Chem. Eng. Commun. 1983, 22, 243–250. [Google Scholar]
- Rodrigue, D. A General Correlation for the Rise Velocity of Single Gas Bubbles. Can. J. Chem. Eng. 2004, 82, 382–386. [Google Scholar]
- Tomiyama, A.; Kataoka, I.; Zun, I.; Sakaguchi, T. Drag Coefficient of Single Bubbles under Normal and Micro Gravity Conditions. JSME Int. J. B Fluids Therm. Eng. 1998, 41, 472–479. [Google Scholar]
- Tomiyama, A.; Celata, G.P.; Hosokawa, S.; Yoshida, S. Terminal Velocity of Single Bubbles in Surface Tension Force Dominant Regime. Int. J. Multiph. Flow 2002, 28, 1497–1519. [Google Scholar]
- Myint, W.; Hosokawa, S.; Tomiyama, A. Terminal Velocity of Single Drops in Stagnant Liquid. J. Fluid Sci. Technol. 2006, 1, 72–81. [Google Scholar]
- Fdhila, R.B.; Duineveld, P.C. The Effect of Surfactant on the Rise of a Spherical Bubble at High Reynolds and Peclet Numbers. Phys. Fluids 1996, 8, 310–321. [Google Scholar]
- Sam, A.; Gomez, C.O.; Finch, J.A. Axial Velocity Profiles of Single Bubbles in Water/Frother Solutions. Int. J. Miner. Process. 1996, 47, 177–196. [Google Scholar]
- Krzan, M.; Malysa, K. Profiles of Local Velocities of Bubbles in N-Butanol, n-Hexanol and n-Nonanol Solutions. Colloids Surf. A Physicochem. Eng. Asp. 2002, 207, 279–291. [Google Scholar]
- Krzan, M.; Zawala, J.; Malysa, K. Development of Steady State Adsorption Distribution over Interface of a Bubble Rising in Solutions of N-Alkanols (C5, C8) and n-Alkyltrimethylammonium Bromides (C8, C12, C16). Colloids Surf. A Physicochem. Eng. Asp. 2007, 298, 42–51. [Google Scholar]
- Navarra, A.; Acuna, C.; Finch, J.A. Impact of Frother on the Terminal Velocity of Small Bubbles. Int. J. Miner. Process. 2009, 91, 68–73. [Google Scholar]
- Rafiei, A.A.; Robbertze, M.; Finch, J.A. Gas Holdup and Single Bubble Velocity Profile. Int. J. Miner. Process. 2011, 98, 89–93. [Google Scholar]
- Ulaganathan, V.; Krzan, M.; Lotfi, M.; Dukhin, S.S.; Kovalchuk, V.I.; Javadi, A.; Gunes, D.Z.; Gehin-Delval, C.; Malysa, K.; Miller, R. Influence of β-Lactoglobulin and Its Surfactant Mixtures on Velocity of the Rising Bubbles. Colloids Surf. A Physicochem. Eng. Asp. 2014, 460, 361–368. [Google Scholar]
- Hamdollahi, E.; Lotfi, M.; Shafiee, M.; Hemmati, A. Investigation of Antibiotic Surface Activity by Tracking Hydrodynamic of a Rising Bubble. J. Ind. Eng. Chem. 2022, 108, 101–108. [Google Scholar]
- Dukhin, S.S.; Krezstchmar, G.; Miller, R. Dynamics of Adsorption at Liquid Interfaces: Theory, Experiment, Application; Studies in Interface Science; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- McLaughlin, J.B. Numerical Simulation of Bubble Motion in Water. J. Colloid Interface Sci. 1996, 184, 614–625. [Google Scholar] [PubMed]
- Liao, Y.; McLaughlin, J.B. Bubble Motion in Aqueous Surfactant Solutions. J. Colloid Interface Sci. 2000, 224, 297–310. [Google Scholar]
- Zhang, Y.; McLaughlin, J.B.; Finch, J.A. Bubble Velocity Profile and Model of Surfactant Mass Transfer to Bubble Surface. Chem. Eng. Sci. 2001, 56, 6605–6616. [Google Scholar]
- Dukhin, S.S.; Kovalchuk, V.I.; Gochev, G.G.; Lotfi, M.; Krzan, M.; Malysa, K.; Miller, R. Dynamics of Rear Stagnant Cap Formation at the Surface of Spherical Bubbles Rising in Surfactant Solutions at Large Reynolds Numbers under Conditions of Small Marangoni Number and Slow Sorption Kinetics. Adv. Colloid Interface Sci. 2015, 222, 260–274. [Google Scholar] [PubMed]
- Dukhin, S.S.; Lotfi, M.; Kovalchuk, V.I.; Bastani, D.; Miller, R. Dynamics of Rear Stagnant Cap Formation at the Surface of Rising Bubbles in Surfactant Solutions at Large Reynolds and Marangoni Numbers and for Slow Sorption Kinetics. Colloids Surf. A Physicochem. Eng. Asp. 2016, 492, 127–137. [Google Scholar]
- Oseen, C.W. Uber Die Stokessche Formel Und Uber Eine Verwandte Aufgabe in Der Hydrodynamik. Ark. Mat. Astron. Fys. 1910, 6, 20. [Google Scholar]
- Schiller, L.; Naumann, A. Fundamental Calculations in Gravitational Processing. Z. Des Vereines Dtsch. Ingenieure 1933, 77, 318–320. [Google Scholar]
- Nguyen, A.V.; Stechemesser, H.; Zobel, G.; Schulze, H.J. An Improved Formula for Terminal Velocity of Rigid Sphere. Int. J. Miner. Process. 1997, 50, 53–61. [Google Scholar] [CrossRef]
- Nguyen, A.V. Prediction of Bubble Terminal Velocities in Contaminated Water. AIChE J. 1998, 44, 226–230. [Google Scholar] [CrossRef]
- Ng, S.; Warszyński, P.; Zembala, M.; Malysa, K. Composition of Bitumen-Air Aggregates Floating to Froth Layer during Processing of Two Different Oil Sands. Physicochem. Probl. Miner. Process. 1999, 33, 143–167. [Google Scholar]
- Ng, S.; Warszyński, P.; Zembala, M.; Malysa, K. Bitumen-Air Aggregates Flow to Froth Layer: I. Method of Analysis. Miner. Eng. 2000, 13, 1505–1517. [Google Scholar] [CrossRef]
- Davis, R.E.; Acrivos, A. The Influence of Surfactants on the Creeping Motion of Bubbles. Chem. Eng. Sci. 1966, 21, 681–685. [Google Scholar] [CrossRef]
- Sadhal, S.S.; Johnson, R.E. Stokes Flow Past Bubbles and Drops Partially Coated with Thin Films. Part 1. Stagnant Cap of Surfactant Film—Exact Solution. J. Fluid Mech. 1983, 126, 237–250. [Google Scholar] [CrossRef]
- Peebles, F.N.; Garber, H.J. Studies on the Motion of Gas Bubbles in Liquid. Chem. Eng. Prog. 1953, 49, 88–97. [Google Scholar]
- Ishii, M.; Chawla, T.C. Local Drag Laws in Dispersed Two-Phase Flow; Argonne National Lab.: Du Page County, IL, USA, 1979. [Google Scholar]
- Yan, X.; Zheng, K.; Jia, Y.; Miao, Z.; Wang, L.; Cao, Y.; Liu, J. Drag Coefficient Prediction of a Single Bubble Rising in Liquids. Ind. Eng. Chem. Res. 2018, 57, 5385–5393. [Google Scholar] [CrossRef]
- Ryskin, G.; Leal, L.G. Numerical Solution of Free-Boundary Problems in Fluid Mechanics. Part 1. The Finite-Difference Technique. J. Fluid Mech. 1984, 148, 1–17. [Google Scholar] [CrossRef]
- Harper, J.F. The Motion of Bubbles and Drops Through Liquids. Adv. Appl. Mech. 1972, 12, 59–129. [Google Scholar]
- Cuenot, B.; Magnaudet, J.; Spennato, B. The Effects of Slightly Soluble Surfactants on the Flow around a Spherical Bubble. J. Fluid Mech. 1997, 339, 25–53. [Google Scholar] [CrossRef]
- Mao, Q.; Yang, Q.-J.; Wang, D.-X.; Cao, W. Effect of Soluble Surfactant on the Interface Dynamics of a Rising Droplet. Phys. Fluids 2023, 35, 062112. [Google Scholar]
- Sugiyama, K.; Takagi, S.; Matsumoto, Y. Multi-Scale Analysis of Bubbly Flows. Comput. Methods Appl. Mech. Eng. 2001, 191, 689–704. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, J.; Nunge, R.J.; McLaughlin, J.B. Comments on “Bubble Motion in Aqueous Surfactant Solutions”. J. Colloid Interface Sci. 2004, 272, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Tasoglu, S.; Demirci, U.; Muradoglu, M. The Effect of Soluble Surfactant on the Transient Motion of a Buoyancy-Driven Bubble. Phys. Fluids 2008, 20, 040805. [Google Scholar] [CrossRef]
- Balachandar, S.; Eaton, J.K. Turbulent Dispersed Multiphase Flow. Annu. Rev. Fluid Mech. 2010, 42, 111–133. [Google Scholar] [CrossRef]
- Salibindla, A.K.R.; Masuk, A.U.M.; Tan, S.; Ni, R. Lift and Drag Coefficients of Deformable Bubbles in Intense Turbulence Determined from Bubble Rise Velocity. J. Fluid Mech. 2020, 894, A20. [Google Scholar] [CrossRef]
- Vejražka, J.; Zedníková, M.; Stanovský, P. Experiments on Breakup of Bubbles in a Turbulent Flow. AIChE J. 2018, 64, 740–757. [Google Scholar] [CrossRef]
- Chu, P.; Finch, J.; Bournival, G.; Ata, S.; Hamlett, C.; Pugh, R.J. A Review of Bubble Break-Up. Adv. Colloid Interface Sci. 2019, 270, 108–122. [Google Scholar] [CrossRef]
- Perrard, S.; Rivière, A.; Mostert, W.; Deike, L. Bubble Deformation by a Turbulent Flow. J. Fluid Mech. 2021, 920, A15. [Google Scholar] [CrossRef]
- Hashemi, N.; Ein-Mozaffari, F.; Upreti, S.R.; Hwang, D.K. Experimental Investigation of the Bubble Behavior in an Aerated Coaxial Mixing Vessel through Electrical Resistance Tomography (ERT). Chem. Eng. J. 2016, 289, 402–412. [Google Scholar] [CrossRef]
- Feng, J.; Bolotnov, I.A. Interfacial Force Study on a Single Bubble in Laminar and Turbulent Flows. Nucl. Eng. Des. 2017, 313, 345–360. [Google Scholar] [CrossRef]
- Mathai, V.; Lohse, D.; Sun, C. Bubbly and Buoyant Particle–Laden Turbulent Flows. Annu. Rev. Condens. Matter Phys. 2020, 11, 529–559. [Google Scholar] [CrossRef]
- Shu, S.; Vidal, D.; Bertrand, F.; Chaouki, J. Multiscale Multiphase Phenomena in Bubble Column Reactors: A Review. Renew. Energ. 2019, 141, 613–631. [Google Scholar] [CrossRef]
- Alméras, E.; Mathai, V.; Lohse, D.; Sun, C. Experimental Investigation of the Turbulence Induced by a Bubble Swarm Rising within Incident Turbulence. J. Fluid Mech. 2017, 825, 1091–1112. [Google Scholar] [CrossRef]
- Risso, F. Agitation, Mixing, and Transfers Induced by Bubbles. Annu. Rev. Fluid Mech. 2018, 50, 25–48. [Google Scholar] [CrossRef]
- Prosperetti, A.; Tryggvason, G. Computational Methods for Multiphase Flow; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Mühlbauer, A.; Hlawitschka, M.W.; Bart, H.-J. Models for the Numerical Simulation of Bubble Columns: A Review. Chem. Ing. Tech. 2019, 91, 1747–1765. [Google Scholar] [CrossRef]
- Kieckhefen, P.; Pietsch, S.; Dosta, M.; Heinrich, S. Possibilities and Limits of Computational Fluid Dynamics–Discrete Element Method Simulations in Process Engineering: A Review of Recent Advancements and Future Trends. Annu. Rev. Chem. Biomol. Eng. 2020, 11, 397–422. [Google Scholar] [CrossRef]
- Feng, J.; Bolotnov, I.A. Evaluation of Bubble-Induced Turbulence Using Direct Numerical Simulation. Int. J. Multiph. Flow 2017, 93, 92–107. [Google Scholar] [CrossRef]
- Elghobashi, S. Direct Numerical Simulation of Turbulent Flows Laden with Droplets or Bubbles. Annu. Rev. Fluid Mech. 2019, 51, 217–244. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Firouzi, M.; Albijanic, B.; Celik, M.S. A Review on Determination of Particle–Bubble Encounter Using Analytical, Experimental and Numerical Methods. Miner. Eng. 2018, 122, 296–311. [Google Scholar] [CrossRef]
- Wang, G.; Ge, L.; Mitra, S.; Evans, G.M.; Joshi, J.B.; Chen, S. A Review of CFD Modelling Studies on the Flotation Process. Miner. Eng. 2018, 127, 153–177. [Google Scholar] [CrossRef]
- Ge, L.; Evans, G.M.; Moreno-Atanasio, R. CFD-DEM Investigation of the Interaction between a Particle Swarm and a Stationary Bubble: Particle-Bubble Collision Efficiency. Powder Technol. 2020, 366, 641–652. [Google Scholar] [CrossRef]
- Xia, H.; Zhang, Z.; Liu, J.; Ao, X.; Lin, S.; Yang, Y. Modeling and Numerical Study of Particle-Bubble-Liquid Flows Using a Front-Tracking and Discrete-Element Method. Appl. Math. Model. 2023, 114, 525–543. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosior, D.; Wiertel-Pochopien, A.; Kowalczuk, P.B.; Zawala, J. Bubble Formation and Motion in Liquids—A Review. Minerals 2023, 13, 1130. https://doi.org/10.3390/min13091130
Kosior D, Wiertel-Pochopien A, Kowalczuk PB, Zawala J. Bubble Formation and Motion in Liquids—A Review. Minerals. 2023; 13(9):1130. https://doi.org/10.3390/min13091130
Chicago/Turabian StyleKosior, Dominik, Agata Wiertel-Pochopien, Przemyslaw B. Kowalczuk, and Jan Zawala. 2023. "Bubble Formation and Motion in Liquids—A Review" Minerals 13, no. 9: 1130. https://doi.org/10.3390/min13091130
APA StyleKosior, D., Wiertel-Pochopien, A., Kowalczuk, P. B., & Zawala, J. (2023). Bubble Formation and Motion in Liquids—A Review. Minerals, 13(9), 1130. https://doi.org/10.3390/min13091130