Continental Arc Flare-Ups and Crustal Thickening Events in NE China: Insights from Detrital Zircon U-Pb Dating and Trace Elements from the Heilongjiang Complex
Abstract
:1. Introduction
2. Geological Setting and Sampling
3. Results
4. Discussion
4.1. Types of Detrital Zircon Age Spectra and Provenance Analysis
4.2. Two Crustal Thickening Events in NE China Revealed by Zircon and Whole-Rock Geochemistry
4.3. Tectono-Magmatic Evolution in NE China: Not a “Cyclic Orogen”
4.4. Tectonic Implications in NE China: Two Orogenic Events during the Closure of the Mudanjiang Ocean
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chapman, J.B.; Shields, J.E.; Ducea, M.N.; Paterson, S.R.; Attia, S.; Ardill, K.E. The causes of continental arc flare ups and drivers of episodic magmatic activity in Cordilleran orogenic systems. Lithos 2021, 398–399, 106307. [Google Scholar] [CrossRef]
- Paterson, S.R.; Ducea, M.N. Arc Magmatic Tempos: Gathering the Evidence. Elements 2015, 11, 91–98. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Ducea, M.N.; Kapp, P.; Zandt, G. Cyclicity in Cordilleran orogenic systems. Nat. Geosci. 2009, 2, 251–257. [Google Scholar] [CrossRef]
- Lee, C.-T.A.; Thurner, S.; Paterson, S.; Cao, W. The rise and fall of continental arcs: Interplays between magmatism, uplift, weathering, and climate. Earth Planet. Sci. Lett. 2015, 425, 105–119. [Google Scholar] [CrossRef]
- Ducea, M. The California Arc: Thick Granitic Batholiths, Eclogitic Residues, Lithospheric-Scale Thrusting, and Magmatic Flare-Ups. GSA Today 2001, 11, 4. [Google Scholar] [CrossRef]
- Chapman, A.D.; Saleeby, J.B.; Eiler, J. Slab Fattening Trigger for Isotopic Disturbance and Magmatic Flare-up in the Southernmost Sierra Nevada Batholith, California. Geology 2013, 41, 1007–1010. [Google Scholar] [CrossRef]
- Karlstrom, L.; Lee, C.-T.A.; Manga, M. The role of magmatically driven lithospheric thickening on arc front migration. Geochem. Geophys. Geosystems 2014, 15, 2655–2675. [Google Scholar] [CrossRef]
- Chapman, J.B.; Ducea, M.N. The role of arc migration in Cordilleran orogenic cyclicity. Geology 2019, 47, 627–631. [Google Scholar] [CrossRef]
- Attia, S.; Cottle, J.M.; Paterson, S.R. Erupted zircon record of continental crust formation during mantle driven arc flare-ups. Geology 2020, 48, 446–451. [Google Scholar] [CrossRef]
- Xu, W.-L.; Pei, F.-P.; Wang, F.; Meng, E.; Ji, W.-Q.; Yang, D.-B.; Wang, W. Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. J. Asian Earth Sci. 2013, 74, 167–193. [Google Scholar] [CrossRef]
- Yang, H.; Ge, W.; Dong, Y.; Bi, J.; Wang, Z.; Ji, Z. Record of Permian–Early Triassic continental arc magmatism in the western margin of the Jiamusi Block, NE China: Petrogenesis and implications for Paleo-Pacific subduction. Int. J. Earth Sci. 2016, 106, 1919–1942. [Google Scholar] [CrossRef]
- Sun, M.; Chen, H.; Milan, L.A.; Wilde, S.A.; Jourdan, F.; Xu, Y. Continental Arc and Back-Arc Migration in Eastern NE China: New Constraints on Cretaceous Paleo-Pacific Subduction and Rollback. Tectonics 2018, 37, 3893–3915. [Google Scholar] [CrossRef]
- Dong, Y.; Ge, W.-C.; Yang, H.; Ji, Z.; He, Y.; Zhao, D.; Xu, W. Convergence history of the Jiamusi and Songnen-Zhangguangcai Range massifs: Insights from detrital zircon U-Pb geochronology of the Yilan Heilongjiang Complex, NE China. Gondwana Res. 2018, 56, 51–68. [Google Scholar] [CrossRef]
- Liu, K.; Wilde, S.A.; Zhang, J.; Xiao, W.; Wang, M.; Ge, M. Zircon U–Pb dating and whole-rock geochemistry of volcanic rocks in eastern Heilongjiang Province, NE China: Implications for the tectonic evolution of the Mudanjiang and Paleo-Pacific oceans from the Jurassic to Cretaceous. Geol. J. 2019, 55, 1866–1889. [Google Scholar] [CrossRef]
- Zhou, J.-B.; Wilde, S.A.; Zhang, X.-Z.; Zhao, G.-C.; Zheng, C.-Q.; Wang, Y.-J.; Zhang, X.-H. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang high-pressure metamorphic belt. Tectonophysics 2009, 478, 230–246. [Google Scholar] [CrossRef]
- Sundell, K.E.; George, S.W.; Carrapa, B.; Gehrels, G.E.; Ducea, M.N.; Saylor, J.E.; Pepper, M. Crustal Thickening of the Northern Central Andean Plateau Inferred from Trace Elements in Zircon. Geophys. Res. Lett. 2022, 49, e2021GL096443. [Google Scholar] [CrossRef]
- Wilde, S.A. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction—A review of the evidence. Tectonophysics 2015, 662, 345–362. [Google Scholar] [CrossRef]
- Pei, F.; Xu, W.; Yang, D.; Zhao, Q.; Liu, X.; Hu, Z. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin. Chin. Sci. Bull. 2007, 52, 942–948. [Google Scholar] [CrossRef]
- Song, Y.; Stepashko, A.; Liu, K.; He, Q.; Shen, C.; Shi, B.; Ren, J. Post-rift Tectonic History of the Songliao Basin, NE China: Cooling Events and Post-rift Unconformities Driven by Orogenic Pulses from Plate Boundaries. J. Geophys. Res. Solid Earth 2018, 123, 2363–2395. [Google Scholar] [CrossRef]
- Song, Y.; Ren, J.; Liu, K.; Lyu, D.; Feng, X.; Liu, Y.; Stepashko, A. Syn-rift to post-rift tectonic transition and drainage reorganization in continental rifting basins: Detrital zircon analysis from the Songliao Basin, NE China. Geosci. Front. 2022, 13, 101377. [Google Scholar] [CrossRef]
- Wang, P.-J.; Mattern, F.; Didenko, N.A.; Zhu, D.-F.; Singer, B.; Sun, X.-M. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin. Earth-Sci. Rev. 2016, 159, 82–102. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Yang, H.; Ge, W.-C.; Zhao, G.-C.; Bi, J.-H.; Wang, Z.-H.; Dong, Y.; Xu, W.-L. Zircon U–Pb ages and geochemistry of newly discovered Neoproterozoic orthogneisses in the Mishan region, NE China: Constraints on the high-grade metamorphism and tectonic affinity of the Jiamusi–Khanka Block. Lithos 2017, 268–271, 16–31. [Google Scholar] [CrossRef]
- Sorokin, A.A.; Ovchinnikov, R.O.; Kudryashov, N.M.; Sorokina, A.P. An Early Neoproterozoic gabbro–granite association in the Bureya Continental Massif (Central Asian fold belt): First geochemical and geochronological data. Dokl. Earth Sci. 2016, 471, 1307–1311. [Google Scholar] [CrossRef]
- Zhou, J.-B.; Wilde, S.A.; Zhang, X.-Z.; Zhao, G.-C.; Liu, F.-L.; Qiao, D.-W.; Ren, S.-M.; Liu, J.-H. A > 1300 km late Pan-African metamorphic belt in NE China: New evidence from the Xing’an block and its tectonic implications. Tectonophysics 2011, 509, 280–292. [Google Scholar] [CrossRef]
- Li, G.-Y.; Zhou, J.-B.; Li, L. The Jiamusi Block: A hinge of the tectonic transition from the Paleo-Asian Ocean to the Paleo-Pacific Ocean regimes. Earth-Sci. Rev. 2022, 236, 104279. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, J.; Wilde, S.A.; Zhou, J.; Wang, M.; Ge, M.; Wang, J.; Ling, Y. Initial subduction of the Paleo-Pacific Oceanic plate in NE China: Constraints from whole-rock geochemistry and zircon U–Pb and Lu–Hf isotopes of the Khanka Lake granitoids. Lithos 2017, 274–275, 254–270. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Zhao, G.; Sun, M.; Liu, Q.; Han, Y.; Hou, W.; Zhang, X.; Eizenhofer, P.R. Geochronology and geochemistry of the Yilan blueschists in the Heilongjiang Complex, northeastern China and tectonic implications. Lithos 2015, 216–217, 241–253. [Google Scholar] [CrossRef]
- Wang, F.; Xu, W.-L.; Gao, F.-H.; Meng, E.; Cao, H.-H.; Zhao, L.; Yang, Y. Tectonic history of the Zhangguangcailing Group in eastern Heilongjiang Province, NE China: Constraints from U–Pb geochronology of detrital and magmatic zircons. Tectonophysics 2012, 566–567, 105–122. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon: The Metamorphic Mineral. Rev. Mineral. Geochem. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Fornelli, A.; Micheletti, F.; Langone, A.; Perrone, V. First U–Pb detrital zircon ages from Numidian sandstones in Southern Apennines (Italy): Evidences of African provenance. Sediment. Geol. 2015, 320, 19–29. [Google Scholar] [CrossRef]
- Fornelli, A.; Micheletti, F.; Gallicchio, S.; Tursi, F.; Criniti, S.; Critelli, S. Detrital zircon ages of Oligocene to Miocene sandstone suites of the Southern Apennines foreland basin system, Italy. J. Palaeogeogr. 2022, 11, 222–237. [Google Scholar] [CrossRef]
- Cawood, P.; Hawkesworth, C.; Dhuime, B. Detrital zircon record and tectonic setting. Geology 2012, 40, 875–878. [Google Scholar] [CrossRef]
- Tang, M.; Ji, W.-Q.; Chu, X.; Wu, A.; Chen, C. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology 2020, 49, 76–80. [Google Scholar] [CrossRef]
- Profeta, L.; Ducea, M.N.; Chapman, J.B.; Paterson, S.R.; Gonzales, S.M.H.; Kirsch, M.; Petrescu, L.; DeCelles, P.G. Quantifying crustal thickness over time in magmatic arcs. Sci. Rep. 2015, 5, 17786. [Google Scholar] [CrossRef]
- Farner, M.J.; Lee, C.-T.A. Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study. Earth Planet. Sci. Lett. 2017, 470, 96–107. [Google Scholar] [CrossRef]
- Yakymchuk, C.; Kirkland, C.L.; Clark, C. Th/U ratios in metamorphic zircon. J. Metamorph. Geol. 2018, 36, 715–737. [Google Scholar] [CrossRef]
- Harrison, T.M.; Watson, E.B.; Aikman, A.B. Temperature spectra of zircon crystallization in plutonic rocks. Geology 2007, 35, 635. [Google Scholar] [CrossRef]
- Wu, J.T.-J.; Wu, J.; Alexandrov, I.; Lapen, T.; Lee, H.-Y.; Ivin, V. Continental growth during migrating arc magmatism and terrane accretion at Sikhote-Alin (Russian Far East) and adjacent northeast Asia. Lithos 2022, 432–433, 106891. [Google Scholar] [CrossRef]
- Jara, J.J.; Barra, F.; Reich, M.; Leisen, M.; Romero, R.; Morata, D. Episodic construction of the early Andean Cordillera unravelled by zircon petrochronology. Nat. Commun. 2021, 12, 4930. [Google Scholar] [CrossRef] [PubMed]
- Lieu, W.K.; Stern, R.J. The robustness of Sr/Y and La/Yb as proxies for crust thickness in modern arcs. Geosphere 2019, 15, 621–641. [Google Scholar] [CrossRef]
- Ji, W.-Q.; Wu, F.-Y.; Wang, J.-M.; Liu, X.-C.; Liu, Z.-C.; Zhang, Z.; Cao, W.; Wang, J.-G.; Zhang, C. Early Evolution of Himalayan Orogenic Belt and Generation of Middle Eocene Magmatism: Constraint From Haweng Granodiorite Porphyry in the Tethyan Himalaya. Front. Earth Sci. 2020, 8, 236. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
Sample Number | GPS Location | Area | Descriptions |
---|---|---|---|
TT10 | E 130°15′2.9″ N 48°22′34.4″ | Jiayin-Luobei | Grey, mica schist; Qz (>85%) + muscovite mica (5%–10%) + opaque mineral (3%–5%). |
TT23 | E 130°19′18.6″ N 48°28′29.9″ | Grey, garnet two-mica quartz schist; Qz (65%) + muscovite mica (15%) + biotite (5%) + opaque mineral (3%); accessory minerals: garnet, chlorite. | |
TT31 | E 130°33′14.9″ N 48°30′44.8″ | Grey greenish, biotite greenschist; highly deformed; Plagioclase (55%) + Qz (15%) + chlorite (25%) + biotite (5%). | |
TT39 | E 130°36′35″ N 48°28′46.4″ | Grey, mica schist; Plagioclase (35%) + Qz (35%) + muscovite mica (25%) + opaque mineral (5%). | |
TT79 | E 130°44′15.6″ N 48°19′58.3″ | Dark grey, hornblende greenschist; deformed; Plagioclase (55%) + chlorite (20%) + hornblende (15%) + Qz (10%). | |
TT95 | E 130°40′0.7″ N 48°09′6.5″ | Yellowish, garnet mica schist; highly deformed; Qz (75%) + muscovite mica (20%) + garnet (5%). | |
TT173 | E 129°52′23.7″ N 46°27′8″ | Yilan-Jiamusi | Dark grey, quartz greenschist; highly deformed; Plagioclase (70%) + Qz (15%) + chlorite (15%). |
TT206 | E 129°58′4.59″ N 46°40′14.32″ | Light grey, garnet muscovite mica schist; highly deformed; plagioclase (40%) + Qz (35%) + muscovite mica (20%) + tourmaline (3%) + garnet (2%). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Xu, M.; Liu, K.; Wang, M. Continental Arc Flare-Ups and Crustal Thickening Events in NE China: Insights from Detrital Zircon U-Pb Dating and Trace Elements from the Heilongjiang Complex. Minerals 2023, 13, 1121. https://doi.org/10.3390/min13091121
Pan Y, Xu M, Liu K, Wang M. Continental Arc Flare-Ups and Crustal Thickening Events in NE China: Insights from Detrital Zircon U-Pb Dating and Trace Elements from the Heilongjiang Complex. Minerals. 2023; 13(9):1121. https://doi.org/10.3390/min13091121
Chicago/Turabian StylePan, Yanchen, Mengyu Xu, Kai Liu, and Meng Wang. 2023. "Continental Arc Flare-Ups and Crustal Thickening Events in NE China: Insights from Detrital Zircon U-Pb Dating and Trace Elements from the Heilongjiang Complex" Minerals 13, no. 9: 1121. https://doi.org/10.3390/min13091121
APA StylePan, Y., Xu, M., Liu, K., & Wang, M. (2023). Continental Arc Flare-Ups and Crustal Thickening Events in NE China: Insights from Detrital Zircon U-Pb Dating and Trace Elements from the Heilongjiang Complex. Minerals, 13(9), 1121. https://doi.org/10.3390/min13091121