Petrogenesis of Devonian and Permian Pegmatites in the Chinese Altay: Insights into the Closure of the Irtysh–Zaisan Ocean
Abstract
:1. Introduction
Number | Pegmatite Deposit | Mineralisation Type | Position | Scale | Method | Age (Ma) | Reference |
---|---|---|---|---|---|---|---|
1 | Amulagong | Li-Be-Ta-Nb | Unit 3 | small | LA-ICP-MS | 373.0 ± 7.8 | this study |
358 | [23] | ||||||
2 | Talati | P-Cs-Nb-Be-Li | Unit 3 | small | LA-ICP-MS | 386 | [23] |
3 | Baicheng | Li-Be-Ta-Nb | Unit 3 | small | LA-ICP-MS | 274 | [22] |
4 | Tiemulete1 | (F)-Nb-P-B-Be | Unit 3 | small | LA-ICP-MS | 333 | [23] |
5 | Tiemulete2 | Mica-Be | Unit 3 | small | LA-ICP-MS | 360.0 ± 5.2 | this study |
6 | Bulukete | Be | Unit 3 | small | LA-ICP-MS | 275.5 ± 4.2 | [51] |
7 | Asikaerte | Be-Nb-Mu | Unit 2 | large | LA-ICP-MS | 229.0 ± 3.0 | [56] |
8 | Kokotokay No. 3 | Li-Be-Ta-Nb-Cs-Rb-Hf | Unit 2 | super large | LA-ICP-MS | 208.1 ± 0.8 | [51] |
LA-ICP-MS | 212.7 ± 0.5 | [51] | |||||
LA-ICP-MS | 220 | [45] | |||||
LA-ICP-MS | 220–209 | [46] | |||||
LA-ICP-MS | 190.6 ± 1.2 | [51] | |||||
LA-ICP-MS | 214.9 ± 2.1 | [51] | |||||
LA-ICP-MS | 180.7 ± 0.5 | [51] | |||||
9 | Husite | Be-Nb-Ta | Unit 2 | middle | LA-ICP-MS | 244.3 ± 1.1 | [51] |
10 | Qunku | Be-Nb-Ta | Unit 2 | small | LA-ICP-MS | 206.8 ± 1.6 | [51] |
11 | Azubai 01 | Be-Nb-Ta | Unit 2 | middle | LA-ICP-MS | 191.6 ± 2.0 | [21] |
12 | Jiamukai | Li-Be-Ta-Nb-Cs | Unit 2 | middle | LA-ICP-MS | 212.2 ± 1.7 | [51] |
192.0 ± 2.3 | [21] | ||||||
13 | Kelumute | Li-Be-Nb-Ta | Unit 2 | large | LA-ICP-MS | 202.9 ± 0.8 | [51] |
238.3 ± 2.0 | [50] | ||||||
14 | Kaluan | Li-Nb-Ta | Unit 2 | super large | LA-ICP-MS | 223.7 ± 1.8 | [49] |
221 ± 15 | [49] | ||||||
216 ± 2.6 | [49] | ||||||
224.6 ± 2.3 | [21] | ||||||
15 | Kukalagai | Li-Nb-Ta | Unit 2 | super large | LA-ICP-MS | 211.3 ± 2.4 | [49] |
16 | Dakalasu | Be-Nb-Ta | Unit 3 | small | LA-ICP-MS | 270.1 ± 1.7 | [51] |
272.5 ± 1.4 | [51] | ||||||
263.7 ± 4.4 | [64] | ||||||
258 | [22] | ||||||
17 | Hulugong | Be-Nb-Ta | Unit 2 | small | LA-ICP-MS | 246.8 ± 1.2 | [51] |
18 | Xiaokalasu | Be-Li-Nb-Ta | Unit 3 | small | LA-ICP-MS | 267.5 ± 3.5 | [64] |
19 | Qiemuerqieke | REE | Unit 3 | small | LA-ICP-MS | 253 | [22] |
20 | Taerlang | Be-Nb-Ta-REE | Unit 3 | small | LA-ICP-MS | 256 | [22] |
21 | Qiebielin | Nb-P-B-Be | Unit 3 | small | LA-ICP-MS | 403 | [23] |
22 | Akebasitawu | Be-Nb-Ta-REE | Unit 3 | small | LA-ICP-MS | 249.7 ± 0.7 | [51] |
253 | [22] | ||||||
23 | Saerjiake | Li-Be-Ta-Nb | Unit 3 | small | LA-ICP-MS | 253 | [22] |
24 | Hailiutan | REE | Unit 3 | small | LA-ICP-MS | 254 | [22] |
25 | Yelaman | Be-Nb-Ta | Unit 3 | small | LA-ICP-MS | 267.8 ± 1.4 | [51] |
262.8 ± 3.1 | [64] | ||||||
263 | [22] | ||||||
26 | Jiamanhaba | Be-Ta-Nb | Unit 3 | small | LA-ICP-MS | 269.4 ± 1.6 | [51] |
260.6 ± 2.5 | this study | ||||||
260 | [22] | ||||||
27 | Jiamanhaba02 | Nb-P-B-Be | Unit 3 | small | LA-ICP-MS | 395 | [23] |
2. Geological Setting
2.1. Regional Geology
2.2. Geology of the Jiamanhaba, Tiemulete and Amulagong Pegmatites
2.2.1. Jiamanhaba Pegmatite
2.2.2. Amulagong Pegmatite
2.2.3. Tiemulete Pegmatite
2.3. Materials
3. Methods
4. Results
4.1. Zircon U-Pb Dating
4.1.1. Jiamanhaba Pegmatite
4.1.2. The Amulagong Pegmatite
4.1.3. Tiemulete Pegmatite
4.2. Zircon Hf Isotope Compositions
4.2.1. Jiamanhaba Pegmatite
4.2.2. Amulagong Pegmatite
4.2.3. Tiemulete Pegmatite
4.3. Zircon O Isotopic Compositions
5. Discussion
5.1. Zircon U-Pb Geochronology
5.2. Source Characteristics
5.3. Petrogenesis
5.4. Implications for Magmatism in the Chinese Altay
6. Conclusions
- The Jiamanhaba, Amulagong and Tiemulete pegmatites were emplaced correspondingly at approximately 261, 373, and 360 Ma. These results indicated that the Jiamanhaba pegmatites were of Permian age, whereas those of the Amulagong and Tiemulete were Devonian.
- The εHf(t) values of 2.87–7.39, two-stage model ages of 900–1171 Ma and δ18O values of 9.55‰–15.86‰ that were obtained from samples of the Amulagong and Tiemulete pegmatites suggested that these were derived from anatexis of mature sedimentary rocks deep in the crust. In contrast, the Jiamanhaba pegmatite samples produced εHf(t) values of 2.87–4.94 and δ18O values of 6.05‰–7.32‰, which indicate the addition of minor amounts of mantle/juvenile materials to the original magma.
- Using a combination of available geochronological and Hf-O isotopic data of felsic igneous, sedimentary, and metamorphic rocks that occur in the Chinese Altay, the formation of the Jiamanhaba pegmatite was assigned to a post-collision tectonic setting, where intensive mantle–crustal interactions occurred in the magma source region. In contrast, the Amulagong and Tiemulete pegmatites were formed in a syn-collision tectonic setting, and juvenile or mantle materials that were produced through the slab window were incorporated in the initial magma.
- This paper puts forward an independent petrogenesis model of pegmatite in Chinese Altay, that is, the genesis of deep melting, which is different from the previous hypothesis that the pegmatite in Chinese Altay consists of fractionation products of granites during the late fractionation stage and provides reliable evidence for the deep melting of pegmatite. The Hf-O isotopic data of pegmatite and granites and sedimentary rocks in this region reveal the tectonic evolution of the region from Devonian to Permian, and they put forward the closing time of the Irtysh–Zaisan Ocean at about 300 Ma in the Late Carboniferous. The Hf-O isotope data of pegmatite provide a new perspective for revealing the tectonic setting of pegmatite formation, which in turn confines the petrogenesis of pegmatite. The coupling of the two relations provides a reliable guarantee for the study of petrogenesis of pegmatites in different periods in the Chinese Altay.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- London, D. Pegmatites. Can. Mineral. Spec. Publ. 2008, 10, 1–347. [Google Scholar]
- London, D. Ore-forming processes within granitic pegmatites. Ore Geol. Rev. 2018, 101, 349–383. [Google Scholar] [CrossRef]
- Tkachev, A. Evolution of metallogeny of granitic pegmatites associated with orogens throughout geological time. Geol. Soc. Lond. Spec. Publ. 2011, 350, 7–23. [Google Scholar] [CrossRef]
- McCauley, A.; Bradley, D.C. The global age distribution of granitic pegmatites. Can. Mineral. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Zagorsky, V.Y.; Vladimirov, A.; Makagon, V.; Kuznetsova, L.; Smirnov, S.; D’yachkov, B.; Annikova, I.Y.; Shokalsky, S.; Uvarov, A. Large fields of spodumene pegmatites in the settings of rifting and post-collisional shear-pull-apart dislocations of continental lithosphere. Russ. Geol. Geophys. 2014, 55, 237–251. [Google Scholar] [CrossRef]
- Ginsburg, A.I.; Timofeyev, I.N.; Feldman, L.G. Principles of Geology of the Granitic Pegmatites. Nedra Mosc. USSR 1979, 296. (In Russian) [Google Scholar]
- Černý, P.; Ercit, T.S. The classification of granitic pegmatites revisited. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef]
- Černý, P. Exploration Strategy and Methods for Pegmatite Deposits of Tantalum. In Lanthanides, Tantalum and Niobium; Möller, P., Černý, P., Saupé, F., Eds.; Springer: Berlin/Heidelberg, Germeny, 1989; pp. 274–302. [Google Scholar]
- Černý, P. Petrogenesis of granitic pegmatites. In Granitic Pegmatites in Science and Industry: A Short Course; Mineralogical Association of Canada: Québec, QC, Canada, 1982; Volume 8, pp. 405–462. [Google Scholar]
- Černý, P.; Meintzer, R.E. Fertile granites in the Archean and Proterozoic fields of rare-element pegmatites: Crustal environment, geochemistry and petrogenetic relationships. Recent Adv. Geol. Granite-Relat. Miner. Depos. 1988, 39, 170–206. [Google Scholar]
- Breaks, F.W.; Moore, J.M. The Ghost Lake Batholith, Superior Province of northwestern Ontario; a fertile, S-type, peraluminous granite-rare-element pegmatite system. Can. Mineral. 1992, 30, 835–875. [Google Scholar]
- Černý, P. Fertile granites of Precambrian rare-element pegmatite fields: Is geochemistry controlled by tectonic setting or source lithologies? Precambrian Res. 1991, 51, 429–468. [Google Scholar] [CrossRef]
- Selway, J.B.; Breaks, F.W.; Tindle, A.G. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits. Explor. Min. Geol. 2005, 14, 1–30. [Google Scholar] [CrossRef]
- Jahns, R.H.; Burnham, C.W. Experimental studies of pegmatite genesis; l, A model for the derivation and crystallization of granitic pegmatites. Econ. Geol. 1969, 64, 843–864. [Google Scholar] [CrossRef]
- London, D.; Hervig, R.L.; Morgan, G.B. Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: Experimental results with Macusani glass at 200 MPa. Contrib. Mineral. Petrol. 1988, 99, 360–373. [Google Scholar] [CrossRef]
- London, D.; Morgan, V.I.G.B.; Hervig, R.L. Vapor-undersaturated experiments in the system macusanite-H2O at 200 MPa, and the internal differentiation of granitic pegmatites. Contrib. Mineral. Petrol. 1989, 102, 1–17. [Google Scholar] [CrossRef]
- London, D. The origin of primary textures in granitic pegmatites. Can. Mineral. 2009, 47, 697–724. [Google Scholar] [CrossRef]
- Shearer, C.K.; Papike, J.J.; Jolliff, B.L. Petrogenetic links among granites and pegmatites in the Harney Peak rare-element granite-pegmatite system, Black Hills, South Dakota. Can. Mineral. 1992, 30, 785–809. [Google Scholar]
- Stewart, D.B. Petrogenesis of lithium-rich pegmatites. Am. Mineral. 1978, 63, 970–980. [Google Scholar]
- Henderson, I.H.C.; Ihlen, P.M. Emplacement of polygeneration pegmatites in relation to Sveco-Norwegian contractional tectonics: Examples from southern Norway. Precambrian Res. 2004, 133, 207–222. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Ma, Z.-L.; Tang, Y.; Lv, Z.-H.; Zhao, J.-Y.; Liu, Y.-L. A new model for the granite–pegmatite genetic relationships in the Kaluan–Azubai–Qiongkuer pegmatite-related ore fields, the Chinese Altay. J. Asian Earth Sci. 2016, 124, 139–155. [Google Scholar] [CrossRef]
- Lv, Z.-H.; Zhang, H.; Tang, Y. Anatexis origin of rare metal/earth pegmatites: Evidences from the Permian pegmatites in the Chinese Altai. Lithos 2021, 380, 105865. [Google Scholar] [CrossRef]
- Lv, Z.-H.; Zhang, H.; Tang, Y.; Liu, Y.-L.; Zhang, X. Petrogenesis of syn-orogenic rare metal pegmatites in the Chinese Altai: Evidences from geology, mineralogy, zircon U-Pb age and Hf isotope. Ore Geol. Rev. 2018, 95, 161–181. [Google Scholar] [CrossRef]
- Dill, H.G. The Hagendorf-Pleystein Province: The Center of Pegmatites in an Ensialic Orogen; Springer: Cham, Switzerland, 2015; Volume 15, pp. 1–465. [Google Scholar]
- Dill, H.G. Pegmatites and aplites: Their genetic and applied ore geology. Ore Geol. Rev. 2015, 69, 417–561. [Google Scholar] [CrossRef]
- Melleton, J.; Gloaguen, E.; Frei, D.; Novák, M.; Breiter, K. How are the emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic? Can. Mineral. 2012, 50, 1751–1773. [Google Scholar] [CrossRef]
- Müller, A.; Ihlen, P.M.; Snook, B.; Larsen, R.B.; Flem, B.; Bingen, B.; Williamson, B.J. The chemistry of quartz in granitic pegmatites of southern Norway: Petrogenetic and economic implications. Econ. Geol. 2015, 110, 1737–1757. [Google Scholar] [CrossRef]
- Müller, A.; Romer, R.L.; Szuszkiewicz, A.; Ilnicki, S.; Szełęg, E. Can pluton-related and pluton-unrelated granitic pegmatites be distinguished by their chemistry? In Proceedings of the Second Eugene E. Foord Pegmatite Symposium, Denver, CO, USA, 15–19 July 2016; pp. 67–69. [Google Scholar]
- Müller, A.; Romer, R.L.; Pedersen, R.B. The Sveconorwegian Pegmatite Province–Thousands of pegmatites without parental granites. Can. Mineral. 2017, 55, 283–315. [Google Scholar] [CrossRef]
- Simmons, W.B.; Falster, A.U. Evidence for an Anatectic Origin of an LCT Type Pegmatite: Mt. Mica, Maine. In Proceedings of the Second Eugene E. Foord Pegmatite Symposium, Golden, CO, USA, 15 July 2016; Volume 103. [Google Scholar]
- Sengör, A.M.C.; Natalín, B.A.; Burtman, V.S. Evolution of the Altayd tentonic collage and Paleozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Windley, B.F.; Kröner, A.; Guo, J.; Qu, G.; Li, Y.; Zhang, C. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution. J. Geol. 2002, 110, 719–737. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef]
- Xiao, W.; Windley, B.F.; Badarch, G.; Sun, S.; Li, J.; Qin, K.; Wang, Z. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia. J. Geol. Soc. 2004, 161, 339–342. [Google Scholar] [CrossRef]
- Long, X.; Sun, M.; Yuan, C.; Xiao, W.; Lin, S.; Wu, F.; Xia, X.; Cai, K. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt. Tectonics 2007, 26, TC5015. [Google Scholar] [CrossRef]
- Long, X.; Sun, M.; Yuan, C.; Xiao, W.; Cai, K. Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sediment. Geol. 2008, 208, 88–100. [Google Scholar] [CrossRef]
- Long, X.; Yuan, C.; Sun, M.; Xiao, W.; Zhao, G.; Wang, Y.; Cai, K.; Xia, X.; Xie, L. Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution. Tectonophysics 2010, 480, 213–231. [Google Scholar] [CrossRef]
- Sun, M.; Yuan, C.; Xiao, W.; Long, X.; Xia, X.; Zhao, G.; Lin, S.; Wu, F.; Kröner, A. Zircon U–Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic. Chem. Geol. 2008, 247, 352–383. [Google Scholar] [CrossRef]
- Sun, G.; Li, J.; Yang, T.; Li, Y.; Zhu, Z.; Yang, Z. Zircon SHRIMP U-Pb dating of two linear granite plutons in southern Altay Mountains and its tectonic implications. Geol. China 2009, 36, 976–987. [Google Scholar]
- Sun, M.; Long, X.; Cai, K.; Jiang, Y.; Wang, B.; Yuan, C.; Zhao, G.; Xiao, W.; Wu, F. Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions. Sci. China Ser. D Earth Sci. 2009, 52, 1345–1358. [Google Scholar] [CrossRef]
- Wu, B.Q.; Zou, T.R. The genesis of granitic pegmatites in Xinjiang Altai. Min. Geol. Xinjiang 1989, 1, 60–70. (In Chinese) [Google Scholar]
- Wang, D.H.; Chen, Y.C.; Xu, Z.G. Metallogenetic Series and Regularity of the Altay Metallogenic Province; Atomic Energy Press: Beijing, China, 2002; pp. 1–493. (In Chinese) [Google Scholar]
- Wang, D.H.; Zou, T.R.; Xu, Z.G.; Yu, J.J. Advance in the study of using pegmatite deposits as the tracer of orogenic process. Adv. Earth Sci. 2004, 19, 614–620, (In Chinese with English abstract). [Google Scholar]
- Zhu, Y.-F.; Zeng, Y.; Gu, L. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China. J. Asian Earth Sci. 2006, 27, 61–77. [Google Scholar] [CrossRef]
- Wang, T.; Tong, Y.; Jahn, B.-m.; Zou, T.-r.; Wang, Y.-b.; Hong, D.-w.; Han, B.-f. SHRIMP U–Pb Zircon geochronology of the Altai No. 3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geol. Rev. 2007, 32, 325–336. [Google Scholar] [CrossRef]
- Chen, J.F. Geochemistry of the Plate Part in Altay No. 3 Pegmatite and Its Formation and Evolution. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2011; pp. 1–86, (In Chinese with English Abstract). [Google Scholar]
- Liu, F.; Zhang, Z.-X.; Li, Q.; Zhang, C.; Li, C. New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton. Ore Geol. Rev. 2014, 56, 209–219. [Google Scholar] [CrossRef]
- Che, X.-D.; Wu, F.-Y.; Wang, R.-C.; Gerdes, A.; Ji, W.-Q.; Zhao, Z.-H.; Yang, J.-H.; Zhu, Z.-Y. In situ U–Pb isotopic dating of columbite–tantalite by LA–ICP–MS. Ore Geol. Rev. 2015, 65, 979–989. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, H.; Tang, Y.; Lv, Z.; Zhang, X.; Zhao, J. Zircon U-Pb geochronology and Hf isotopes of pegmatites from the Kaluan mining area in the Altay, Xinjiang and their genetic relationship with the Halong granite. Geochimica 2015, 44, 9–26. [Google Scholar]
- Lv, Z.-H.; Zhang, H.; Tang, Y.; Guan, S.-J. Petrogenesis and magmatic–hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northwestern China: Evidence from zircon UPb and Hf isotopes. Lithos 2012, 154, 374–391. [Google Scholar] [CrossRef]
- Ren, B.Q.; Zhang, H.; Tang, Y.; Lv, Z.H. LA-ICPMS U-Pb zircon geochronology of the Altay pegmatites and its geological significance. Acta Mineral. Sin. 2011, 31, 587–596, (In Chinese with English Abstract). [Google Scholar]
- Wang, D.H.; Chen, M.C.; Xu, Z.G. The metallogenic age evidence of metamorphogenic pegmatitic Muscovite deposit in the Altai Caledonian Age and its significance. Acta Geol. Sin. 2001, 3, 419–425. (In Chinese) [Google Scholar]
- Zhou, Q.; Qin, K.; Tang, D.; Tian, Y.; Cao, M.; Wang, C. Formation Age and Evolution Time Span of the Koktokay No. 3 Pegmatite, Altai, NW China: Evidence from U–Pb Zircon and 40Ar–39Ar Muscovite Ages. Resour. Geol. 2015, 65, 210–231. [Google Scholar] [CrossRef]
- Zhou, Q.; Qin, K.; Tang, D.; Wang, C.; Sakyi, P.A. LA-ICP-MS U–Pb zircon, columbite-tantalite and 40Ar–39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China. Geol. Mag. 2018, 155, 707–728. [Google Scholar] [CrossRef]
- Qin, K.; Shen, M.; Tang, D.; Guo, Z.; Zhou, Q.; Wang, C.; Guo, X.; Tian, Y.; Ding, J. Types, intrusive and mineralization ages of pegmatite rare-element deposits in Chinese Altay. Xinjiang Geol. 2013, 31 (Suppl. S1), 1–7. [Google Scholar]
- Liu, W.-z.; Zhang, H.; Tang, H.-f.; Tang, Y.; Lü, Z.-h. Molybdenite Re-Os dating of the Asikaerte Be-Mo deposit in Xinjiang, China and its genetic implications. Geochimica 2015, 44, 145–154, (In Chinese with English Abstract). [Google Scholar]
- Wang, C.; Qin, K.; Tang, D.; Zhou, Q.; Shen, M.; Guo, Z.; Guo, X. Geochronology and Hf isotope of zircon for the Arskartor Be-Nb-Mo deposit in Altay and its geological implcations. Atca Petrol. Sin. 2015, 31, 2337–2352, (In Chinese with English Abstract). [Google Scholar]
- Zhang, H.; Tang, Y.; Lv, Z.H.; Wen, X.P. Study on metallogenic regularity and prospecting target prediction of rare metals in Halong-Qinghe area, Altai Metallogenic Belt, Xinjiang. Res. Rep. Xinjiang Nonferrous Met. Group 2014, 1–154. (In Chinese) [Google Scholar]
- Yang, F.Q.; Geng, X.X.; Wang, R.; Zhang, Z.X.; Guo, X.J. A synthesis of mineralization styles and geodynamic settings of the Paleozoic and Mesozoic metallic ore deposits in the Altay Mountains, NW China. J. Asian Earth Sci. 2018, 159, 233–258. [Google Scholar] [CrossRef]
- Xiao, W.; Windley, B.; Yuan, C.; Sun, M.; Han, C.; Lin, S.; Chen, H.; Yan, Q.; Liu, D.; Qin, K. Paleozoic multiple subduction-accretion processes of the southern Altayds. Am. J. Sci. 2009, 309, 221–270. [Google Scholar] [CrossRef]
- Cai, K.; Sun, M.; Yuan, C.; Zhao, G.; Xiao, W.; Long, X.; Wu, F. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos 2011, 127, 261–281. [Google Scholar] [CrossRef]
- Cai, K.; Sun, M.; Yuan, C.; Zhao, G.; Xiao, W.; Long, X.; Wu, F. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U–Pb and Hf isotopic study of Paleozoic granitoids. J. Asian Earth Sci. 2011, 42, 949–968. [Google Scholar] [CrossRef]
- Xiao, W.J.; Santosh, M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Res. 2014, 25, 1429–1444. [Google Scholar] [CrossRef]
- Wang, M.-T.; Zhang, H.; Zhang, X.; Tang, Y.; Lv, Z.-H.; Chen, J.-Z.; An, Y. Petrogenetic studies of Permian pegmatites in the Chinese Altay: Implications for a two-stage post-collisional magmatism model. Geol. J. 2023, 58, 410–427. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, Z.C.; HE, B.; Wang, X.; Li, J.G.; He, Y.K.; Zheng, K.P.; Luo, S.B. SHRIMP zircon U-Pb dating of gneisses in the MayinObo fault belt, northern Xinjiang, and its significance. Geol. China 2006, 33, 1209–1216. [Google Scholar]
- Wang, T.; Hong, D.-w.; Jahn, B.-m.; Tong, Y.; Wang, Y.-b.; Han, B.-f.; Wang, X.-x. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen. J. Geol. 2006, 114, 735–751. [Google Scholar] [CrossRef]
- Lv, Z.H.; Zhang, H.; Tang, Y. The study of genetic relationship between Bieyesamasi No. L1 pegmatite Li-Nb-Ta ore deposit and wall rock granite, Xinjiang. Acta Mineral. Sin. 2015, 1, 323. (In Chinese) [Google Scholar]
- Qin, J.H.; Geng, X.X.; Wen, C.Q.; Guo, J.X.; Ren, Y.C. Zircon LA-ICP-MS U-Pb age of intrusion from Xiaotuergen copper deposit in Altay, Xinjiang, and its geological significance. Miner. Depos. 2016, 35, 18–32, (In Chinese with English Abstract). [Google Scholar]
- Yuan, F.; Zhou, T.F.; Yue, S.C. The ages and genetic types of the granites in the Nurtarea, Altai. Xinjiang Geol. 2001, 19, 292–296, (In Chinese with English Abstract). [Google Scholar]
- Wang, T.; Jahn, B.-M.; Kovach, V.P.; Tong, Y.; Hong, D.-W.; Han, B.-F. Nd–Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos 2009, 110, 359–372. [Google Scholar] [CrossRef]
- Wang, T.; Tong, Y.; Li, S.; Zhang, J.; Shi, X.; Li, J.; Han, B.-F.; Hong, D. Spatial and temporal variations of granitoids in the Altay orogen and their implications for tectonic setting and crustal growth: Perspectives from Chinese Altay. Acta Petrol. Mineral. 2010, 29, 595–618. [Google Scholar]
- Yuan, C.; Sun, M.; Xiao, W.; Li, X.; Chen, H.; Lin, S.; Xia, X.; Long, X. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. Chem. Geol. 2007, 242, 22–39. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, L.; Santosh, M.; Luo, Q.; Zhang, X. Sediment recycling and crustal growth in the Central Asian Orogenic Belt: Evidence from Sr–Nd–Hf isotopes and trace elements in granitoids of the Chinese Altay. Gondwana Res. 2017, 47, 142–160. [Google Scholar] [CrossRef]
- BGMRX (Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region) Regional Geology of Xinjiang Uygur Autonomous Region, People’s Republic of China, Ministry of Geology and Mineral Resources. Regional Geological Survey of Xinjiang. In Geological Memoirs, Series, Vol. 1, No. 32; Geological Publishing House: Beijing, China, 1993; pp. 6–206. (In Chinese) [Google Scholar]
- Yang, F.; Mao, J.; Liu, F.; Chai, F.; Guo, Z.; Zhou, G.; Geng, X.; Gao, J. Geochronologyand geochemistry of the granites from the Mengku iron deposit, Altay Mountains, northwest China: Implications for its tectonic setting and metallogenesis. Aust. J. Earth Sci. 2010, 57, 803–818. [Google Scholar] [CrossRef]
- Zheng, J.; Chai, F.; Yang, F. The 401–409 Ma Xiaodonggou granitic intrusion: Implications for understanding the Devonian Tectonics of the Northwest China Altaiorogen. Int. Geol. Rev. 2016, 58, 540–555. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, T.; Jahn, B.-m.; Sun, M.; Hong, D.-W.; Gao, J.-F. Post-accretionary permian granitoids in the Chinese Altai orogen: Geochronology, petrogenesis and tectonic implications. Am. J. Sci. 2014, 314, 80. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Tang, Y.; Zhang, X.; Lv, Z.; Zhao, J. Petrogenesis and tectonic setting of the Middle Permian A-type granites in Altay, northwestern China: Evidences from geochronological, geochemical, and Hf isotopic studies. Geol. J. 2018, 53, 527–546. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, T.; Siebel, W.; Hong, D.W.; Sun, M. Recognition of early Carboniferous alkaline granite in the southern Altai orogen: Post-orogenic processesconstrained by U-Pb zircon ages, Nd isotopes, and geochemical data. Int. J. Earth Sci. 2012, 101, 937–950. [Google Scholar] [CrossRef]
- Han, B.-f.; Wang, S.-g.; Jahn, B.-m.; Hong, D.-w.; Kagami, H.; Sun, Y.-l. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: Geochemistry and Nd–Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chem. Geol. 1997, 138, 135–159. [Google Scholar] [CrossRef]
- Chen, B.; Arakawa, Y. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth. Geochim. Cosmochim. Acta 2005, 69, 1307–1320. [Google Scholar] [CrossRef]
- Briggs, S.M.; Yin, A.; Manning, C.E.; Chen, Z.-L.; Wang, X.-F.; Grove, M. Late Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System. GSA Bull. 2007, 119, 944–960. [Google Scholar] [CrossRef]
- Cai, K.; Sun, M.; Yuan, C.; Xiao, W.; Zhao, G.; Long, X.; Wu, F. Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: Implications for geodynamic change of the accretionary orogenic belt. Gondwana Res. 2012, 22, 681–698. [Google Scholar] [CrossRef]
- Chai, F.; Mao, J.; Dong, L.; Yang, F.; Liu, F.; Geng, X.; Zhang, Z. Geochronology of metarhyolites from the Kangbutiebao Formation in the Kelang basin, Altay Mountains, Xinjiang: Implications for the tectonic evolution and metallogeny. Gondwana Res. 2009, 16, 189–200. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, M.; Long, X.; Li, P.; Zhao, G.; Kröner, A.; Broussolle, A.; Yang, J. Whole-rock Nd–Hf isotopic study of I-type and peraluminous granitic rocks from the Chinese Altai: Constraints on the nature of the lower crust and tectonic setting. Gondwana Res. 2017, 47, 131–141. [Google Scholar] [CrossRef]
- Tong, L.; Xu, Y.-G.; Cawood, P.A.; Zhou, X.; Chen, Y.; Liu, Z. Anticlockwise P-T evolution at ~ 280Ma recorded from ultrahigh-temperature metapelitic granulite in the Chinese Altai orogenic belt, a possible link with the Tarim mantle plume? J. Asian Earth Sci. 2014, 94, 1–11. [Google Scholar] [CrossRef]
- Wang, T. Zircon U-Pb SHRIMP age and origin of post-orogenic Lamazhao granitic pluton from Altai orogen: Its implication for vertical continental growth. Acta Petrol. Sin. 2005, 21, 640–650. [Google Scholar]
- Zhou, G.; Zhang, Z.C.; Luo, S.B.; He, B.; Wang, X.; Yin, L.J.; Zhao, H.; Li, A.H.; He, Y.K. Confirmation of high temperature strongly peraluminous Mayin’ ebo granites in the south margin of Altay, Xinjiang: Age, geochemistry and tectonic implcation. Atca Petrol. Sin. 2007, 23, 1909–1920, (In Chinese with English Abstract). [Google Scholar]
- Gao, F.P.; Zhou, G.; Lei, Y.X. Early Permian granite age and geochemical characteristics in Shaerbulake of Xinjiang’s Altay area and its geological significance. Geol. Bull. China 2010, 29, 1281–1293, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.; Gao, S.; Hu, Z.; Gao, C.; Zong, K.; Wang, D. Continental and Oceanic Crust Recycling-induced Melt–Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Y.; Chen, L.; Zhou, L.; Li, M.; Zong, K.; Zhu, L.; Gao, S. Contrasting matrix induced elemental fractionation in NIST SRM rock glasses during laser ablation ICP-MS analysis at high spatial resolution. J. Anal. At. Spectrom. 2011, 26, 425–430. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Zong, K.; Gao, C.; Gao, S.; Xu, J.; Chen, H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s manual for isoplot 3.00, a geochronlogical toolkit for microsoft excel. Berkeley Geochronl. Cent. Spec. Publ. 2003, 4, 25–32. [Google Scholar]
- Andersen, T. Correction of common lead in U–Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Chu, N.-C.; Taylor, R.N.; Chavagnac, V.; Nesbitt, R.W.; Boella, R.M.; Milton, J.A.; German, C.R.; Bayon, G.; Burton, K. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. J. Anal. At. Spectrom. 2002, 17, 1567–1574. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Li, X.H.; Long, W.G.; Li, Q.L.; Liu, Y.; Zheng, Y.F.; Yang, Y.H.; Chamberlain, K.R.; Wan, D.F.; Guo, C.H.; Wang, X.C. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf–O isotopes and U–Pb age. Geostand. Geoanalytical Res. 2010, 34, 117–134. [Google Scholar] [CrossRef]
- Slodzian, G.; Lorin, J.C.; Havette, A. Effet isotopique sur les probabilités d’ionisation en émission secondaire. C. R. Acad. Sci. 1980, 291, 121–124. [Google Scholar]
- Shimizu, N.; Hart, S.R. Isotope fractionation in secondary ion mass spectrometry. J. Appl. Phys. 1982, 53, 1303–1311. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; et al. Further Characterisation of the 91500 Zircon Crystal. Geostand. Geoanal. Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
- Peucat, J.; Tisserant, D.; Caby, R.; Clauer, N. Resistance of zircons to U–Pb resetting in a prograde metamorphic sequence of Caledonian age in East Greenland. Can. J. Earth Sci. 1985, 22, 330–338. [Google Scholar] [CrossRef]
- Davis, D.W.; Paces, J.B. Time resolution of geologic events on the Keweenaw Peninsula and implications for development of the Midcontinent Rift system. Earth Planet. Sci. Lett. 1990, 97, 54–64. [Google Scholar] [CrossRef]
- Lv, Z.-H.; Chen, J.; Zhang, H.; Tang, Y. Petrogenesis of Neoproterozoic rare metal granite-pegmatite suite in Jiangnan Orogen and its implications for rare metal mineralization of peraluminous rock in South China. Ore Geol. Rev. 2021, 128, 103923. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Li, J.; Yan, Q.; Li, P.; Ivan Jacobson, M. Formation of granitic pegmatites during orogenies: Indications from a case study of the pegmatites in China. Ore Geol. Rev. 2023, 156, 105391. [Google Scholar] [CrossRef]
- Watson, E.; Cherniak, D. Oxygen diffusion in zircon. Earth Planet. Sci. Lett. 1997, 148, 527–544. [Google Scholar] [CrossRef]
- Zheng, Y.-F.; Fu, B. Estimation of oxygen diffusivity from anion porosity in minerals. Geochem. J. 1998, 32, 71–89. [Google Scholar] [CrossRef]
- Valley, J.W.; Bindeman, I.N.; Peck, W.H. Empirical calibration of oxygen isotope fractionation in zircon. Geochim. Cosmochim. Acta 2003, 67, 3257–3266. [Google Scholar] [CrossRef]
- Zheng, Y.-F.; Wu, Y.-B.; Chen, F.-K.; Gong, B.; Li, L.; Zhao, Z.-F. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim. Cosmochim. Acta 2004, 68, 4145–4165. [Google Scholar] [CrossRef]
- Valley, J.W.; Chiarenzelli, J.R.; McLelland, J.M. Oxygen isotope geochemistry of zircon. Earth Planet. Sci. Lett. 1994, 126, 187–206. [Google Scholar] [CrossRef]
- Gilliam, C.E.; Valley, J.W. Low δ18O magma, Isle of Skye, Scotland: Evidence from zircons. Geochim. Cosmochim. Acta 1997, 61, 4975–4981. [Google Scholar] [CrossRef]
- King, E.M.; Valley, J.W.; Davis, D.W.; Edwards, G.R. Oxygen isotope ratios of Archean plutonic zircons from granite–greenstone belts of the Superior Province: Indicator of magmatic source. Precambrian Res. 1998, 92, 365–387. [Google Scholar] [CrossRef]
- Zheng, Y. Neoproterozoic magmatic activity and global change. Chin. Sci. Bull. 2003, 48, 1639–1656. [Google Scholar] [CrossRef]
- Zheng, Y.-F.; Fu, B.; Gong, B.; Li, L. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie–Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Sci. Rev. 2003, 62, 105–161. [Google Scholar] [CrossRef]
- O’Neil, J.R.; Taylor, H.P., Jr. The oxygen isotope and cation exchange chemistry of feldspars1. Am. Mineral. 1967, 52, 1414–1437. [Google Scholar]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, M.; Zhao, G.; Yuan, C.; Xiao, W.; Xia, X.; Long, X.; Wu, F. Precambrian detrital zircons in the Early Paleozoic Chinese Altai: Their provenanceand implications for the crustal growth of central Asia. Precambrian Res 2011, 189, 140–154. [Google Scholar] [CrossRef]
- Wang, W.; Wei, C.; Zhang, Y.; Chu, H.; Zhao, Y.; Liu, X. Age and origin of sillimanite schist from the Chinese Altai metamorphic belt: Implications for late Palaeozoic tectonic evolution of the Central Asian Orogenic Belt. Int. Geol. Rev. 2014, 56, 224–236. [Google Scholar] [CrossRef]
- Yang, T.N.; Li, J.Y.; Zhang, J.; Hou, K.J. The Altai-Mongolia terrane in the Central Asian Orogenic Belt (CAOB): A peri-Gondwana one? Evidence from zircon U–Pb, Hf isotopes and REE abundance. Precambrian Res. 2011, 187, 79–98. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, M.; Schulmann, K.; Zhao, G.; Wu, Q.; Jiang, Y.; Guy, A.; Wang, Y. Distinct deformational history of two contrasting tectonic domains in the Chinese Altai: Their significance in understanding accretionary orogenic process. J. Struct. Geol. 2015, 73, 64–82. [Google Scholar] [CrossRef]
- Broussolle, A.; Aguilar, C.; Min, S.; Schulmann, K.; Štípská, P.; Jiang, Y.D.; Yu, Y.; Xiao, W.; Wang, S.; Míková, J. Polycyclic Palaeozoic evolution of accretionary orogenic wedge in the southern Chinese Altai: Evidence from structural relationships and U-Pb geochronology. Lithos 2018, 314, 400–424. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Ding, R. Characteristics and U–Pb ages of zircon in meta volcanics from the Kangbutiebao Formation in the Altay orogen, Xinjiang. Reg. Geol. China 2000, 19, 281–287. [Google Scholar]
- Chai, F.M.; Yang, F.Q.; Liu, F.; Geng, X.X.; Jiang, L.P.; Lv, S.J.; Chen, B. Geochronology and genesis of meta-felsic volcanic rocks from the Kangbutiebao formation in Chonghu’er basin on southern margin of Altay, Xinjiang. Geol. Rev. 2012, 58, 1023–1037. [Google Scholar]
- Liu, W.; Liu, L.J.; Liu, X.J.; Shang, H.J.; Zhou, G. Age of the Early Devonian Kangbutiebao Formation along the southern Altay Mountains and its northeastern extension. Acta Petrol. Sin. 2010, 26, 387–400, (In Chinese with the English Abstract). [Google Scholar]
- Shan, Q.; Zeng, Q.S.; Luo, Y.; Yang, W.B.; Zhang, H.; Qiu, Y.Z.; Yu, X.Y. SHRIMP U–Pb ages and petrology studies on the potassic and sodic rhyolites in Altai, North Xinjiang. Acta Petrol. Sin. 2011, 27, 3653–3665, (In Chinese with English Abstract). [Google Scholar]
- Wan, B.; Xiao, W.; Zhang, L.; Windley, B.F.; Han, C.; Quinn, C.D. Contrasting styles of mineralization in the Chinese Altai and East Junggar, NW China: Implications for the accretionary history of the southern Altaids. J. Geol. Soc. 2011, 168, 1311–1321. [Google Scholar] [CrossRef]
- Geng, X.; Yang, F.; Chai, F.; Liu, M.; Guo, X.; Guo, Z.; Zhang, Z. LA-ICP-MS U-Pb dating of volcanic rocks from Dadonggou ore district on southern margin of Altay in Xinjiang and its geological implications. Miner. Depos. 2012, 31, 1119–1131. [Google Scholar]
- Guo, X.J.; Li, Y.; Kong, L.H.; Zheng, J.H.; Sun, D.Q. Geological characteristics and Metallogenesis of the Boketubayi iron-manganese deposit in Altay, Xinjiang. Geoscience 2015, 29, 1309–1318, (In Chinese with English Abstract). [Google Scholar]
- Yang, C.; Yang, F.; Chai, F.; Wu, Y. Timing of formation of the Keketale Pb–Zn deposit, Xinjiang, Northwest China, Central Asian Orogenic Belt: Implications for the metallogeny of the South Altay Orogenic Belt. Geol. J. 2018, 53, 899–913. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Zhang, H.; Tang, Y.; Lv, Z.H. Constrains on petrogenesis and geologic implications of the keketuohai granite batholith. Bol. Tec. Tech. Bull. 2017, 55, 19–32. [Google Scholar]
- He, D.; Dong, Y.; Xu, X.; Chen, J.; Liu, X.; Li, W.; Li, X. Geochemistry, geochronology and Hf isotope of granitoids in the Chinese Altai: Implications for Paleozoic tectonic evolution of the Central Asian Orogenic Belt. Geosci. Front. 2018, 9, 1399–1415. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, H.; Wang, Q.; Wyman, D.A.; Yang, Y. Late Devonian–Early Permian A-type granites in the southern Altay Range, Northwest China: Petrogenesis and implications for tectonic setting of “A2-type” granites. J. Asian Earth Sci. 2011, 42, 986–1007. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, D.; Luo, Q.; Liu, L.; Zhang, Y.; Zhu, D.; Wang, P.; Dai, Q. An evolving tectonic environment of Late Carboniferous to Early Permian granitic plutons in the Chinese Altai and Eastern Junggar terranes, Central Asian Orogenic Belt, NW China. J. Asian Earth Sci. 2018, 159, 185–208. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, C.; Liu, D.; Jiang, S.; Luo, Q.; Zeng, J.; Liu, L.; Luo, L.; Shao, H.; Liu, D.; et al. Disequilibrium partial melting of metasediments in subduction zones: Evidence from O-Nd-Hf isotopes and trace elements in S-type granites of the Chinese Altai. Lithosphere 2018, 11, 149–168. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, D.; Zeng, J.; Jiang, S.; Luo, Q.; Kong, X.; Yang, W.; Liu, L. Nd-O-Hf isotopic decoupling in S-type granites: Implications for ridge subduction. Lithos 2019, 332, 261–273. [Google Scholar] [CrossRef]
- Deschamps, F.; Duchêne, S.; de Sigoyer, J.; Bosse, V.; Benoit, M.; Olivier, V. Coevalmantle-derived and crust-derived magmas forming two neighbouring plutons inthe Songpan Ganze Accretionary Orogenic Wedge (SW China). J. Petrol. 2017, 58, 2221–2256. [Google Scholar] [CrossRef]
- Ma, S.C.; Wang, D.H.; Liu, S.B.; Sun, Y.; Guo, W.M.; Dai, H.Z.; Liu, L.J.; Li, C. Mineralchemistry of micas from Ke’eryin pegmatite type lithium orefield in western Sichuanand its indication for rare metal mineralization and prospecting. Miner. Depos. 2019, 38, 877–897, (In Chinese with English Abstract). [Google Scholar]
- Li, X.F.; Tian, S.H.; Wang, D.H.; Zhang, H.J.; Zhang, Y.J.; Fu, X.D.; Hao, X.F.; Hou, K.J.; Yu, Y.; Wang, H. Genetic relationship betweenpegmatite and granite inJiajika lithiumdeposit in western Sichuan: Evidence from zircon U-Pb dating, Hf-O isotope and geo-chemistry. Miner. Depos. 2020, 39, 273–304, (In Chinese with English Abstract). [Google Scholar]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Evensen, J.M.; London, D. Experimental silicate mineral/melt partition coefficients for beryllium, and the beryllium cycle from migmatite to pegmatite. Geochim. Cosmochim. Acta 2002, 66, 2239–2265. [Google Scholar] [CrossRef]
- London, D. Reading pegmatites: What beryl says. Rocks Min. 2015, 90, 138–149. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, S.; Chen, B.; Zhou, G.; He, Y.; Chai, F.; He, L.; Wan, Y. SHRIMP zircon U-Pb dating for subduction-related granitic rocks in the northern part of east Jungaar, Xinjiang. Chin. Sci. Bull. 2006, 51, 952–962. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, X.H.; Chung, S.L.; Lo, C.H.; Xu, X.S.; Li, W.X. Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics 2012, 532, 271–290. [Google Scholar] [CrossRef]
- Zhang, C.L.; Santosh, M.; Zou, H.B.; Xu, Y.G.; Zhou, G.; Dong, Y.G.; Ding, R.-F.; Wang, H.Y. Revisiting the “Irtish tectonic belt”: Implications for the Paleozoic tectonic evolution of the Altai orogen. J. Asian Earth Sci. 2012, 52, 117–133. [Google Scholar] [CrossRef]
- Wan, B.; Xiao, W.; Windley, B.F.; Yuan, C. Permian hornblende gabbros in the Chinese Altai from a subduction-related hydrous parent magma, not from the Tarim mantle plume. Lithosphere 2013, 5, 290–299. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.L.; Bai, J.K.; Tang, Z. LA-ICP-MS zircon U-Pb dating of gneissic granitic intrusive mass in Wuqiagou on the southern margin of Altay Orogenic Belt andits geological significance. Northwest. Geol. 2015, 48, 127–139, (In Chinese with English Abstract). [Google Scholar]
- Tong, Y.; Wang, T.; Kovach, V.P.; Hong, D.W.; Dai, Y.J.; Han, B.F. Age and origin of Takeshiken postorogenic alkali-rich intrusive rocks in southern Altai, near the Mongolian border in China and its implication for continental growth. Acta Petrol. Sin. 2006, 22, 1267–1278. [Google Scholar]
- Zhang, C.-L.; Li, Z.-X.; Li, X.-H.; Xu, Y.-G.; Zhou, G.; Ye, H.-M. A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China: Results of a ca. 275 Ma mantle plume? GSA Bull. 2010, 122, 2020–2040. [Google Scholar] [CrossRef]
- Lin, Z.; Yuan, C.; Zhang, Y.; Sun, M.; Long, X.; Wang, X.; Huang, Z.; Chen, Z. Petrogenesis and geodynamic implications of two episodes of Permian and Triassic high-silica granitoids in the Chinese Altai, Central Asian Orogenic Belt. J. Asian Earth Sci. 2019, 184, 103978. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, T.; Hong, D.W.; Dai, Y.J.; Han, B.F.; Liu, X.M. Ages and origin of the early Devonian granites from the north part of Chinese Altai Mountains and its tectonic implcations. Atca Petrol. Sin. 2007, 23, 1933–1944, (In Chinese with English Abstract). [Google Scholar]
- Baker, D.R. The escape of pegmatite dykes from granitic plutons: Constraints from new models of viscosity and dike propagation. Can Miner. 1998, 36, 255–263. [Google Scholar]
- Sengör, A.M.C.; Natal’in, B.A. Turkic-type orogeny and its role in the making of the continental crust. Annu. Rev. Earth Planet. Sci. 1996, 24, 263–337. [Google Scholar] [CrossRef]
- He, G.Q.; Han, B.F.; Yue, Y.J.; Wang, J.H. Tectonic division and crustal evolutionof Altay orogenic belt in China. Geosci. Xinjiang 1990, 2, 9–20, (In Chinese with English Abstract). [Google Scholar]
- Li, H.J.; He, G.Q.; Wu, T.R.; Wu, B. Confirmation of Altai-Mongolia microcontinent and its implications. Acta Petrol. Sin. 2006, 22, 1369–1379. (In Chinese) [Google Scholar]
- Xiao, W.; Windley, B.F.; Sun, S.; Li, J.; Huang, B.; Han, C.; Yuan, C.; Sun, M.; Chen, H. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annu. Rev. Earth Planet. Sci. 2015, 43, 477–507. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; Lu, X.; Liu, C.; Zhang, J. Polycyclic tectonic evolution and metallogeny of the Tianshan Mountains. Beijing Sci. Press 1990, 29, 37. [Google Scholar]
- Windley, B.F.; Allen, M.B.; Zhang, C.; Zhao, Z.Y.; Wang, G.R. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia. Geology 1990, 18, 128–131. [Google Scholar] [CrossRef]
- Allen, M.B.; Windley, B.F.; Zhang, C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics 1993, 220, 89–115. [Google Scholar] [CrossRef]
- Gao, J.; He, G.; Li, M.; Xiao, X.; Tang, Y.; Wang, J.; Zhao, M. The mineralogy, petrology, metamorphic PTDt trajectory and exhumation mechanism of blueschists, south Tianshan, northwestern China. Tectonophysics 1995, 250, 151–168. [Google Scholar] [CrossRef]
- Sun, S.; Li, J.L.; Lin, J.L.; Wang, Q.C.; Chen, H.H. Indosinides in China and the consumption of Eastern Paleotethys. In Symposium Controversies in Modern Geology; The Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS): Beijing, China, 1991; pp. 363–384. [Google Scholar]
- Li, Y.; Sun, L.; Wu, H.; Wang, G.; Peng, G. Permo-carboniferous radiolaria from the wupatarkan group, west terminal of chinese south tianshan. Chin. J. Geol. 2005, 40, 220–226. [Google Scholar]
- Xiao, W.; Windley, B.; Yan, Q.; Qin, K.; Chen, H.; Yuan, C.; Sun, M.; Li, J.; Sun, S. SHRIMP zircon age of the Aermantai ophiolite in the North Xinjiang area, China and its tectonic implications. Acta Geol. Sin. 2006, 80, 32–36. [Google Scholar]
- Xiao, W. The unique Carboniferous-early Permian tectonic-metallogenic framework of Northern Xinjiang (NW China): Constraints for the tectonics of the southern Paleo Asian Domain. Acta Petrol. Sin. 2006, 22, 1062–1076. [Google Scholar]
- Vladimirov, A.G.; Vystavnoi, S.A.; Titov, A.V.; Rudnev, S.N.; Dergachev, V.B.; Annikova, I.Y.; Tikunov, Y.V. Petrology of the Early Mesozoic rare-metal granitesof the southern Gorny Altai. Geol. Geofiz. Russ. Geol. Geophys. 1998, 39, 909–924. [Google Scholar]
- Altukhov, E.N.; Altukhov, E.E.; Vashurin, A.I.; Usova, T.Y. Fundamentals of Rare-Metal Metallogeny; IMGRE: Russia, Moscow, 2005; pp. 1–20. (In Russian) [Google Scholar]
- Martin, R.F.; De Vito, C. The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. Can. Mineral. 2005, 43, 2027–2048. [Google Scholar] [CrossRef]
- Gusev, G.S.; Gushchin, A.V.; Mezhelovskiy, N.V.; Kilipko, V.A. Two types of rare metal mineralization in territory of Russia: Geodynamic models of forming. Razvedka Okhrana Nedr. 2012, 2, 38–42. [Google Scholar]
- Vladimirov, A.G.; Izokh, A.E.; Polyakov, G.V.; Babin, G.A.; Mekhonoshin, A.S.; Kruk, N.N.; Khlestov, V.V.; Khromykh, S.V.; Travin, A.V.; Yudin, D.S.; et al. Gabbro–granite intrusive series and theirindicator importance for geodynamic reconstructions. Petrology 2013, 21, 158–180. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.; Chen, B. Granitoids of the Central Asian orogenic belt andcontinental growth in the Phanerozoic. Trans. R. Soc. Edinb. Earth Sci. 2000, 91, 181–193. [Google Scholar]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Massive granitoid generation in Central Asia: Ndisotope evidence and implication for continental growth in the Phanerozoic. Episodes 2000, 23, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Sun, M.; Rosenbaum, G.; Jourdan, F.; Li, S.; Cai, K. Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh shear zone (NW China): Implications for arc amalgamation and oroclinal bending in the Central Asian orogenic belt. GSA Bull. 2017, 129, 547–569. [Google Scholar] [CrossRef]
- Hu, W.; Li, P.; Rosenbaum, G.; Liu, J.; Jourdan, F.; Jiang, Y.; Wu, D.; Zhang, J.; Yuan, C.; Sun, M. Structural evolution of the eastern segment of the Irtysh Shear Zone: Implications for the collision between the East Junggar Terrane and the Chinese Altai Orogen (northwestern China). J. Struct. Geol. 2020, 139, 104–126. [Google Scholar] [CrossRef]
- Li, P.; Sun, M.; Rosenbaum, G.; Cai, K.; Yu, Y. Structural evolution of the Irtysh shear zone (north-western China) and implications for the amalgamation of arc systems in the Central Asian orogenic belt. J. Struct. Geol. 2015, 80, 142–156. [Google Scholar] [CrossRef]
- Li, Z.; Yang, X.; Li, Y.; Santosh, M.; Chen, H.; Xiao, W. Late Paleozoic tectono-metamorphic evolution ofthe Altai segment of the Central Asian orogenic belt: Constraints from metamorphic P-T pseudosection and zirconU-Pb dating of ultra-high-temperature granulite. Lithos 2014, 204, 83–96. [Google Scholar] [CrossRef]
- Pearce, J.A.; Bender, J.F.; Delong, S.E.; Kidd, W.S.F.; Low, P.J.; Guner, Y.; Sargolu, F.; Yilmaz, Y.; Moorbath, S.; Mitchell, J.G. Genesis of collision volcanism ineastern Anatolia, Turkey. J. Volcanol. Geotherm. Res. 1990, 44, 189–229. [Google Scholar] [CrossRef]
- Turner, S.; Sandiford, M.; Foden, J. Some geodynamic and compositional constraints on ‘postorogenic’ magmatism. Geology 1992, 20, 931–934. [Google Scholar] [CrossRef]
- Kay, R.W.; Mahlburg Kay, S. Delamination and delamination magmatism. Tectonophysics 1993, 219, 177–189. [Google Scholar] [CrossRef]
- Bird, P. Continental delamination and the Colorado Plateau. J. Geophys. Res. 1979, 84, 7561–7571. [Google Scholar] [CrossRef]
- Houseman, G.A.; McKenzie, D.P.; Molnar, P. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res. Solid Earth 1981, 86, 6115–6132. [Google Scholar] [CrossRef]
- Liégeois, J.-P.; Navez, J.; Hertogen, J.; Black, R. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos 1998, 45, 1–28. [Google Scholar] [CrossRef]
- Bonin, B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 2004, 78, 1–24. [Google Scholar] [CrossRef]
- Duggen, S.; Hoernle, K.; van Den Bogaard, P.; Garbe-Schönberg, D. Post-Collisional Transition from Subduction- to Intraplate-type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. J. Petrol. 2005, 46, 1155–1201. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Zheng, Y.F.; Wei, C.S.; Wu, Y.B. Post-collisional granitoids from the Dabie orogen in China: Zircon U–Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos 2007, 93, 248–272. [Google Scholar] [CrossRef]
Sample | Pb | Th | U | 207Pb/206Pb | 206Pb/238U | 238U/232Th | 206Pb/238U | Concordance | Th/U | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | ppm | ppm | Ratio | 1 Sigma | Ratio | 1 Sigma | Ratio | Age (Ma) | 1 Sigma | |||
Jiamanhaba 01 | 183.99 | 346.06 | 4348.64 | 0.057361 | 0.001638 | 0.042048 | 0.000735 | 12.825747 | 266 | 4.55 | 89% | 0.080 |
Jiamanhaba 02 | 63.78 | 121.82 | 1552.95 | 0.052802 | 0.001812 | 0.040358 | 0.000557 | 13.239468 | 255 | 3.45 | 97% | 0.078 |
Jiamanhaba 03 | 116.29 | 173.67 | 2616.00 | 0.062280 | 0.001717 | 0.042801 | 0.000698 | 15.654055 | 270 | 4.32 | 83% | 0.066 |
Jiamanhaba 04 | 93.60 | 267.74 | 1999.70 | 0.068614 | 0.002253 | 0.044488 | 0.000866 | 7.574216 | 281 | 5.34 | 75% | 0.134 |
Jiamanhaba 05 | 109.54 | 188.73 | 2197.48 | 0.080826 | 0.004052 | 0.045201 | 0.000879 | 12.989826 | 285 | 5.42 | 65% | 0.086 |
Jiamanhaba 06 | 112.22 | 1851.54 | 2221.95 | 0.095521 | 0.002978 | 0.043001 | 0.000630 | 2.312056 | 271 | 3.90 | 48% | 0.833 |
Jiamanhaba 07 | 102.10 | 114.38 | 2499.22 | 0.051724 | 0.001511 | 0.041081 | 0.000686 | 22.546406 | 260 | 4.25 | 99% | 0.046 |
Jiamanhaba 08 | 156.34 | 631.29 | 3001.38 | 0.128373 | 0.003875 | 0.039502 | 0.000562 | 4.944176 | 250 | 3.49 | 26% | 0.210 |
Jiamanhaba 09 | 127.71 | 1356.84 | 2788.61 | 0.081997 | 0.002592 | 0.041318 | 0.000862 | 2.109520 | 261 | 5.34 | 60% | 0.487 |
Jiamanhaba 10 | 124.62 | 197.33 | 2724.45 | 0.065753 | 0.002145 | 0.043838 | 0.001020 | 14.085445 | 277 | 6.30 | 78% | 0.072 |
Jiamanhaba 11 | 170.92 | 369.89 | 3724.09 | 0.071823 | 0.002019 | 0.042634 | 0.000757 | 10.290779 | 269 | 4.68 | 72% | 0.099 |
Jiamanhaba 12 | 128.46 | 715.75 | 3212.64 | 0.126546 | 0.007357 | 0.032398 | 0.000987 | 5.282133 | 206 | 6.16 | 29% | 0.223 |
Jiamanhaba 13 | 200.14 | 333.14 | 4261.21 | 0.078899 | 0.001743 | 0.043126 | 0.000639 | 13.280314 | 272 | 3.95 | 64% | 0.078 |
Jiamanhaba 14 | 110.68 | 269.43 | 2258.75 | 0.088961 | 0.004326 | 0.043104 | 0.000804 | 8.872965 | 272 | 4.97 | 52% | 0.119 |
Jiamanhaba 15 | 170.81 | 918.64 | 3848.93 | 0.084320 | 0.001868 | 0.040264 | 0.000740 | 5.836801 | 254 | 4.59 | 58% | 0.239 |
Jiamanhaba 16 | 122.76 | 217.49 | 2864.89 | 0.058676 | 0.001283 | 0.041919 | 0.000550 | 13.835594 | 265 | 3.41 | 88% | 0.076 |
Jiamanhaba 17 | 179.89 | 517.26 | 3929.58 | 0.070328 | 0.001989 | 0.043096 | 0.000679 | 9.016384 | 272 | 4.20 | 72% | 0.132 |
Jiamanhaba 18 | 123.40 | 520.78 | 2920.75 | 0.065649 | 0.001453 | 0.039962 | 0.000747 | 5.902105 | 253 | 4.63 | 78% | 0.178 |
Jiamanhaba 19 | 184.86 | 564.75 | 3334.16 | 0.163997 | 0.008366 | 0.037974 | 0.000658 | 6.026068 | 240 | 4.09 | 8% | 0.169 |
Jiamanhaba 20 | 122.68 | 766.15 | 2529.16 | 0.091700 | 0.002380 | 0.041449 | 0.000684 | 3.807381 | 262 | 4.24 | 52% | 0.303 |
Jiamanhaba 21 | 122.33 | 365.77 | 2737.11 | 0.065215 | 0.001683 | 0.041792 | 0.000563 | 7.643289 | 264 | 3.49 | 79% | 0.134 |
Jiamanhaba 22 | 230.68 | 538.50 | 5199.49 | 0.060367 | 0.001270 | 0.043736 | 0.000639 | 9.864293 | 276 | 3.95 | 86% | 0.104 |
Jiamanhaba 23 | 92.71 | 304.48 | 1987.76 | 0.071074 | 0.001739 | 0.042786 | 0.000523 | 6.661006 | 270 | 3.24 | 72% | 0.153 |
Jiamanhaba 24 | 123.06 | 152.18 | 2937.72 | 0.051092 | 0.001126 | 0.041639 | 0.000539 | 19.728021 | 263 | 3.34 | 99% | 0.052 |
Jiamanhaba 25 | 132.48 | 323.06 | 3776.90 | 0.089738 | 0.001970 | 0.030039 | 0.000360 | 11.893359 | 191 | 2.25 | 48% | 0.086 |
Jiamanhaba 26 | 129.15 | 110.43 | 3129.59 | 0.050805 | 0.001134 | 0.040989 | 0.000522 | 29.070767 | 259 | 3.23 | 99% | 0.035 |
Jiamanhaba 27 | 7.64 | 106.64 | 77.86 | 0.053176 | 0.003443 | 0.067581 | 0.001249 | 0.750263 | 422 | 7.55 | 96% | 1.370 |
Jiamanhaba 28 | 116.67 | 146.08 | 2760.23 | 0.056010 | 0.001246 | 0.041123 | 0.000469 | 19.506242 | 260 | 2.91 | 92% | 0.053 |
Jiamanhaba 29 | 77.23 | 120.85 | 1868.87 | 0.055988 | 0.001390 | 0.040142 | 0.000451 | 15.833978 | 254 | 2.80 | 92% | 0.065 |
Jiamanhaba 30 | 283.45 | 271.94 | 6619.34 | 0.060757 | 0.001734 | 0.041453 | 0.000509 | 24.754284 | 262 | 3.15 | 84% | 0.041 |
Amulagong 01 | 15.83 | 0.83 | 1497.69 | 0.054734 | 0.001571 | 0.058838 | 0.001381 | 2911.375377 | 369 | 8.41 | 98% | 0.001 |
Amulagong 02 | 95.80 | 4.07 | 1534.46 | 0.056518 | 0.001645 | 0.058977 | 0.001903 | 612.062711 | 369 | 11.58 | 95% | 0.003 |
Amulagong 03 | 2.74 | 3.71 | 2304.46 | 0.054474 | 0.001666 | 0.060976 | 0.001447 | 642.321830 | 382 | 8.80 | 99% | 0.002 |
Amulagong 04 | 0.10 | 2.99 | 1777.93 | 0.053565 | 0.001941 | 0.061402 | 0.001472 | 628.623270 | 384 | 8.94 | 99% | 0.002 |
Amulagong 05 | 0.01 | 6.17 | 2559.35 | 0.054624 | 0.001675 | 0.060100 | 0.001405 | 424.756847 | 376 | 8.55 | 98% | 0.002 |
Amulagong 06 | 416.81 | 7.33 | 2855.01 | 0.056667 | 0.001788 | 0.058720 | 0.001484 | 418.729516 | 368 | 9.04 | 95% | 0.003 |
Amulagong 07 | 1.41 | 6.32 | 2306.08 | 0.055047 | 0.001822 | 0.058851 | 0.001395 | 375.576182 | 369 | 8.50 | 97% | 0.003 |
Amulagong 08 | 27.34 | 1.16 | 1159.36 | 0.055431 | 0.002187 | 0.059972 | 0.001409 | 1067.137138 | 375 | 8.57 | 97% | 0.001 |
Amulagong 09 | 20.29 | 4.43 | 2782.25 | 0.053819 | 0.001593 | 0.060174 | 0.001506 | 644.785354 | 377 | 9.16 | 99% | 0.002 |
Amulagong 10 | 6.44 | 1.72 | 1317.29 | 0.054472 | 0.002047 | 0.059648 | 0.001419 | 807.019061 | 373 | 8.64 | 98% | 0.001 |
Amulagong 11 | 1.44 | 10.46 | 3837.11 | 0.056838 | 0.001774 | 0.060027 | 0.001546 | 374.449433 | 376 | 9.40 | 95% | 0.003 |
Amulagong 12 | 14.86 | 4.51 | 1374.01 | 0.057896 | 0.001842 | 0.060309 | 0.001492 | 315.800502 | 378 | 9.07 | 94% | 0.003 |
Amulagong 13 | 0.47 | 1.32 | 1338.74 | 0.055119 | 0.001875 | 0.060582 | 0.001422 | 1082.378851 | 379 | 8.65 | 98% | 0.001 |
Amulagong 14 | 0.31 | 3.31 | 1120.51 | 0.056670 | 0.001687 | 0.068982 | 0.001576 | 352.629848 | 430 | 9.51 | 97% | 0.003 |
Amulagong 15 | 11.04 | 4.11 | 2089.54 | 0.058551 | 0.002129 | 0.062841 | 0.001495 | 543.342589 | 393 | 9.07 | 93% | 0.002 |
Tiemulete 01 | 740.00 | 696.37 | 3135.78 | 0.425251 | 0.013040 | 0.095003 | 0.001494 | 4.974462 | 585 | 8.80 | −7% | 0.222 |
Tiemulete 02 | 670.93 | 319.98 | 2773.61 | 0.465163 | 0.011346 | 0.094877 | 0.001727 | 8.799213 | 584 | 10.17 | −10% | 0.115 |
Tiemulete 03 | 488.70 | 100.55 | 4255.11 | 0.220619 | 0.008916 | 0.069567 | 0.000926 | 50.724626 | 434 | 5.59 | 9% | 0.024 |
Tiemulete 04 | 127.64 | 21.48 | 2195.46 | 0.059284 | 0.001709 | 0.057870 | 0.000822 | 102.790913 | 363 | 5.01 | 91% | 0.010 |
Tiemulete 05 | 205.14 | 37.64 | 3137.53 | 0.079958 | 0.004096 | 0.059860 | 0.000930 | 86.099086 | 375 | 5.66 | 67% | 0.012 |
Tiemulete 06 | 197.92 | 25.33 | 3346.64 | 0.060191 | 0.001824 | 0.057921 | 0.000765 | 131.858292 | 363 | 4.67 | 90% | 0.008 |
Tiemulete 07 | 386.66 | 462.48 | 2493.92 | 0.315203 | 0.006811 | 0.075770 | 0.001113 | 5.654171 | 471 | 6.67 | −4% | 0.185 |
Tiemulete 08 | 1284.41 | 572.01 | 4300.98 | 0.540468 | 0.011528 | 0.102901 | 0.001842 | 7.829960 | 631 | 10.77 | −11% | 0.133 |
Tiemulete 09 | 730.01 | 144.22 | 4273.16 | 0.346816 | 0.008355 | 0.079125 | 0.001447 | 32.160684 | 491 | 8.65 | −7% | 0.034 |
Tiemulete 10 | 482.21 | 309.95 | 3812.63 | 0.250423 | 0.006939 | 0.070590 | 0.001051 | 13.259689 | 440 | 6.33 | 3% | 0.081 |
Tiemulete 11 | 167.87 | 7.15 | 1767.59 | 0.148054 | 0.005202 | 0.079313 | 0.001958 | 256.452435 | 492 | 11.70 | 33% | 0.004 |
Tiemulete 12 | 223.69 | 41.03 | 4563.76 | 0.112827 | 0.003811 | 0.069254 | 0.001795 | 199.341776 | 432 | 10.82 | 46% | 0.009 |
Tiemulete 13 | 9.32 | 6.95 | 2717.30 | 0.057503 | 0.001856 | 0.056426 | 0.001676 | 418.718268 | 354 | 10.23 | 93% | 0.003 |
Tiemulete 14 | 482.54 | 57.66 | 3505.16 | 0.173041 | 0.005323 | 0.066851 | 0.001657 | 61.916343 | 417 | 10.01 | 20% | 0.016 |
Tiemulete 15 | 7.29 | 6.31 | 2838.11 | 0.055940 | 0.001825 | 0.055738 | 0.001400 | 458.074782 | 350 | 8.55 | 95% | 0.002 |
Tiemulete 16 | 44.49 | 2.58 | 1503.83 | 0.126596 | 0.005312 | 0.063587 | 0.001844 | 615.414580 | 397 | 11.18 | 36% | 0.002 |
Tiemulete 17 | 621.47 | 11.25 | 2240.30 | 0.228988 | 0.007939 | 0.073218 | 0.001650 | 207.634680 | 456 | 9.91 | 8% | 0.005 |
Tiemulete 18 | 0.03 | 3.90 | 4478.65 | 0.054815 | 0.001724 | 0.056220 | 0.001328 | 1215.092676 | 353 | 8.11 | 97% | 0.001 |
Tiemulete 19 | 669.41 | 51.03 | 2395.59 | 0.219201 | 0.012017 | 0.076159 | 0.002587 | 56.493580 | 473 | 15.50 | 10% | 0.021 |
Tiemulete 20 | 92.97 | 15.21 | 4232.11 | 0.111963 | 0.004121 | 0.062123 | 0.001507 | 295.115984 | 389 | 9.15 | 44% | 0.004 |
Sample | 176Yb/177Hf | 1 Sigma | 176Lu/177Hf | 1 Sigma | 176Hf/177Hf | 1 Sigma | Age | εHf(t) | 1 Sigma | TDM1 | TDM2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Jiamanhaba 01 | 0.021535 | 0.000140 | 0.000693 | 0.0000032 | 0.2826946 | 0.00001 | 261 | 2.87 | 0.4 | 783 | 1100 |
Jiamanhaba 02 | 0.032983 | 0.000180 | 0.001146 | 0.0000052 | 0.2827239 | 0.0000085 | 261 | 3.83 | 0.3 | 751 | 1039 |
Jiamanhaba 03 | 0.029732 | 0.000180 | 0.000808 | 0.0000039 | 0.282741 | 0.0000099 | 261 | 4.49 | 0.4 | 720 | 997 |
Jiamanhaba 04 | 0.024594 | 0.000250 | 0.000634 | 0.0000051 | 0.2827507 | 0.0000083 | 261 | 4.87 | 0.3 | 703 | 974 |
Jiamanhaba 05 | 0.027514 | 0.000240 | 0.000781 | 0.000005 | 0.2827535 | 0.0000087 | 261 | 4.94 | 0.3 | 702 | 969 |
Jiamanhaba 06 | 0.072113 | 0.000320 | 0.002193 | 0.0000079 | 0.2827071 | 0.0000073 | 261 | 3.05 | 0.3 | 797 | 1089 |
Jiamanhaba 07 | 0.021297 | 0.000210 | 0.000629 | 0.0000057 | 0.2827268 | 0.000009 | 261 | 4.02 | 0.3 | 737 | 1027 |
Jiamanhaba 08 | 0.039408 | 0.000063 | 0.001061 | 0.0000019 | 0.2827475 | 0.0000084 | 261 | 4.68 | 0.3 | 716 | 985 |
Jiamanhaba 09 | 0.040564 | 0.000210 | 0.001077 | 0.0000044 | 0.2827298 | 0.000008 | 261 | 4.05 | 0.3 | 741 | 1025 |
Jiamanhaba 10 | 0.024028 | 0.000110 | 0.000704 | 0.0000033 | 0.2827298 | 0.0000078 | 261 | 4.11 | 0.3 | 734 | 1021 |
Amulagong 01 | 0.003888 | 0.000012 | 0.000093 | 0.00000024 | 0.2827454 | 0.000011 | 373 | 7.25 | 0.4 | 701 | 909 |
Amulagong 02 | 0.001193 | 0.000004 | 0.000031 | 0.00000011 | 0.28272 | 0.0000092 | 373 | 6.36 | 0.3 | 735 | 965 |
Amulagong 03 | 0.003669 | 0.000032 | 0.000088 | 0.00000092 | 0.2827115 | 0.0000087 | 373 | 6.05 | 0.3 | 748 | 985 |
Amulagong 04 | 0.001810 | 0.000005 | 0.000046 | 0.00000012 | 0.2827105 | 0.0000092 | 373 | 6.02 | 0.3 | 748 | 987 |
Amulagong 05 | 0.003921 | 0.000045 | 0.000103 | 0.0000012 | 0.2827069 | 0.00001 | 373 | 5.88 | 0.4 | 754 | 996 |
Amulagong 06 | 0.007036 | 0.000083 | 0.000170 | 0.000002 | 0.2827398 | 0.000035 | 373 | 7.03 | 1.2 | 710 | 923 |
Amulagong 07 | 0.004397 | 0.000024 | 0.000103 | 0.00000066 | 0.2827108 | 0.0000088 | 373 | 6.02 | 0.3 | 749 | 987 |
Amulagong 08 | 0.002171 | 0.000036 | 0.000052 | 0.00000087 | 0.282705 | 0.0000099 | 373 | 5.83 | 0.4 | 756 | 999 |
Amulagong 09 | 0.001989 | 0.000004 | 0.000046 | 0.00000017 | 0.2827266 | 0.0000092 | 373 | 6.59 | 0.3 | 726 | 950 |
Amulagong 10 | 0.003800 | 0.000016 | 0.000094 | 0.00000039 | 0.2827494 | 0.000015 | 373 | 7.39 | 0.5 | 695 | 900 |
Tiemulete 01 | 0.031169 | 0.000310 | 0.000625 | 0.0000056 | 0.2826941 | 0.0000094 | 360 | 5.02 | 0.3 | 782 | 1040 |
Tiemulete 02 | 0.028038 | 0.000100 | 0.000610 | 0.0000023 | 0.2826448 | 0.0000094 | 360 | 3.28 | 0.3 | 851 | 1151 |
Tiemulete 03 | 0.028071 | 0.000160 | 0.000588 | 0.0000042 | 0.2826354 | 0.0000097 | 360 | 2.95 | 0.3 | 864 | 1171 |
Tiemulete 04 | 0.047595 | 0.000160 | 0.001020 | 0.0000057 | 0.2826999 | 0.000011 | 360 | 5.13 | 0.4 | 782 | 1033 |
Tiemulete 05 | 0.037695 | 0.000270 | 0.000772 | 0.0000059 | 0.2826919 | 0.0000084 | 360 | 4.90 | 0.3 | 789 | 1048 |
Tiemulete 06 | 0.026417 | 0.000160 | 0.000580 | 0.0000028 | 0.2827263 | 0.0000085 | 360 | 6.17 | 0.3 | 737 | 967 |
Tiemulete 07 | 0.033801 | 0.000320 | 0.000745 | 0.0000065 | 0.2827218 | 0.0000096 | 360 | 5.97 | 0.3 | 746 | 980 |
Tiemulete 08 | 0.069240 | 0.000460 | 0.001552 | 0.000013 | 0.2827049 | 0.0000079 | 360 | 5.18 | 0.3 | 787 | 1030 |
Tiemulete 09 | 0.026999 | 0.000910 | 0.000668 | 0.000018 | 0.2827115 | 0.000014 | 360 | 5.62 | 0.5 | 759 | 1002 |
Tiemulete 10 | 0.009072 | 0.000210 | 0.000191 | 0.000005 | 0.2826961 | 0.000013 | 360 | 5.19 | 0.5 | 771 | 1029 |
Sample | 18O/16O | SE (%) | δ18Ocorrect | 2SE (‰) |
---|---|---|---|---|
Jiamanhaba 01 | 0.0020188 | 0.015 | 6.77 | 0.31 |
Jiamanhaba 02 | 0.0020193 | 0.012 | 7.02 | 0.23 |
Jiamanhaba 03 | 0.0020174 | 0.008 | 6.09 | 0.15 |
Jiamanhaba 04 | 0.0020199 | 0.012 | 7.32 | 0.24 |
Jiamanhaba 05 | 0.0020173 | 0.019 | 6.05 | 0.38 |
Jiamanhaba 06 | 0.0020196 | 0.014 | 7.16 | 0.28 |
Jiamanhaba 07 | 0.0020181 | 0.016 | 6.42 | 0.31 |
Jiamanhaba 08 | 0.0020186 | 0.014 | 6.68 | 0.29 |
Jiamanhaba 09 | 0.0020183 | 0.016 | 6.51 | 0.31 |
Jiamanhaba 10 | 0.0020198 | 0.015 | 7.29 | 0.3 |
Amulagong 01 | 0.0020298 | 0.017 | 12.24 | 0.33 |
Amulagong 02 | 0.002027 | 0.016 | 10.89 | 0.32 |
Amulagong 03 | 0.0020324 | 0.014 | 13.58 | 0.29 |
Amulagong 04 | 0.0020257 | 0.016 | 10.22 | 0.32 |
Amulagong 05 | 0.0020317 | 0.013 | 13.23 | 0.27 |
Amulagong 06 | 0.0020279 | 0.018 | 11.31 | 0.37 |
Amulagong 07 | 0.0020338 | 0.014 | 14.27 | 0.27 |
Amulagong 08 | 0.0020331 | 0.015 | 13.9 | 0.31 |
Amulagong 09 | 0.0020268 | 0.014 | 10.79 | 0.29 |
Amulagong 10 | 0.0020243 | 0.016 | 9.55 | 0.33 |
Tiemulete 01 | 0.0020296 | 0.023 | 12.15 | 0.46 |
Tiemulete 02 | 0.0020286 | 0.016 | 11.66 | 0.32 |
Tiemulete 03 | 0.0020317 | 0.022 | 13.21 | 0.43 |
Tiemulete 04 | 0.0020351 | 0.015 | 14.92 | 0.29 |
Tiemulete 05 | 0.0020283 | 0.012 | 11.54 | 0.24 |
Tiemulete 06 | 0.002029 | 0.018 | 11.85 | 0.37 |
Tiemulete 07 | 0.0020282 | 0.016 | 11.47 | 0.32 |
Tiemulete 08 | 0.002037 | 0.018 | 15.86 | 0.36 |
Tiemulete 09 | 0.0020288 | 0.018 | 11.79 | 0.35 |
Tiemulete 10 | 0.0020286 | 0.019 | 11.69 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhang, X. Petrogenesis of Devonian and Permian Pegmatites in the Chinese Altay: Insights into the Closure of the Irtysh–Zaisan Ocean. Minerals 2023, 13, 1127. https://doi.org/10.3390/min13091127
Wang M, Zhang X. Petrogenesis of Devonian and Permian Pegmatites in the Chinese Altay: Insights into the Closure of the Irtysh–Zaisan Ocean. Minerals. 2023; 13(9):1127. https://doi.org/10.3390/min13091127
Chicago/Turabian StyleWang, Mengtao, and Xin Zhang. 2023. "Petrogenesis of Devonian and Permian Pegmatites in the Chinese Altay: Insights into the Closure of the Irtysh–Zaisan Ocean" Minerals 13, no. 9: 1127. https://doi.org/10.3390/min13091127
APA StyleWang, M., & Zhang, X. (2023). Petrogenesis of Devonian and Permian Pegmatites in the Chinese Altay: Insights into the Closure of the Irtysh–Zaisan Ocean. Minerals, 13(9), 1127. https://doi.org/10.3390/min13091127