Petrogenesis of Late Cretaceous Muscovite-Bearing Peraluminous Granites in the Youjiang Basin, South China Block: Implications for Tin Mineralization
Abstract
:1. Introduction
2. Geological Setting and Sampling
3. Analytical Methods
4. Results
4.1. Whole Rock Major and Trace Element Data
Sample No. | DL-34 | DL-35 | DL-36 | DL-37 | DL-39 | DL-44 | DL-45 | DL-46 | DL-49 | DL-52 |
---|---|---|---|---|---|---|---|---|---|---|
Rock Type | Medium- to Coarse-Grained Monzogranite | Fine-Grained Monzogranite | ||||||||
SiO2 | 73.5 | 73.6 | 76.6 | 76.9 | 74.9 | 73.5 | 73 | 76.5 | 74.5 | 76.3 |
Al2O3 | 14 | 13.6 | 12.4 | 12.2 | 13.4 | 13.7 | 14.2 | 12.4 | 13.6 | 12.4 |
Fe2O3t | 1.41 | 1.39 | 0.85 | 0.67 | 0.69 | 1.51 | 1.38 | 1.08 | 0.89 | 0.98 |
MgO | 0.28 | 0.26 | 0.26 | 0.18 | 0.14 | 0.3 | 0.27 | 0.16 | 0.18 | 0.19 |
CaO | 0.79 | 0.9 | 0.63 | 0.64 | 0.74 | 1.05 | 0.76 | 0.63 | 0.81 | 0.76 |
Na2O | 3.68 | 3.82 | 3.24 | 3.1 | 3.53 | 3.94 | 3.79 | 3.61 | 3.94 | 3.43 |
K2O | 5.42 | 5.27 | 5.12 | 5.25 | 5.7 | 4.94 | 5.34 | 4.65 | 4.91 | 4.75 |
MnO | 0.04 | 0.04 | 0.02 | 0.02 | 0.02 | 0.05 | 0.05 | 0.03 | 0.04 | 0.04 |
TiO2 | 0.18 | 0.18 | 0.21 | 0.14 | 0.14 | 0.21 | 0.16 | 0.09 | 0.12 | 0.12 |
P2O5 | 0.24 | 0.25 | 0.25 | 0.23 | 0.22 | 0.21 | 0.22 | 0.22 | 0.24 | 0.22 |
LOI | 0.31 | 0.52 | 0.35 | 0.46 | 0.49 | 0.56 | 0.53 | 0.51 | 0.6 | 0.56 |
Total | 99.8 | 99.82 | 99.85 | 99.8 | 99.98 | 99.89 | 99.79 | 99.86 | 99.76 | 99.79 |
ACNK | 1.04 | 1.00 | 1.03 | 1.02 | 1.00 | 1.00 | 1.06 | 1.02 | 1.02 | 1.02 |
Sn | 16.7 | 15.8 | 18.2 | 31.7 | 17.1 | 16.3 | 20.4 | 27.5 | 18.9 | 19.7 |
Cu | 1.66 | 1.45 | 1.66 | 19 | 3.57 | 2.97 | 6.47 | 14.6 | 4.5 | 9.16 |
Zn | 36.8 | 36.1 | 28.7 | 68.2 | 23.5 | 45.5 | 34.1 | 31.3 | 35.3 | 32.9 |
Ga | 26.8 | 25.8 | 26.2 | 25 | 23.6 | 24.5 | 28.1 | 25.4 | 25.4 | 24.9 |
Rb | 450 | 459 | 444 | 507 | 463 | 441 | 487 | 445 | 470 | 433 |
Sr | 65.4 | 57.8 | 58.1 | 49.4 | 81.5 | 77.2 | 72.4 | 38.9 | 65.4 | 65.9 |
Y | 11.8 | 11.4 | 12.6 | 7.47 | 9.01 | 13.8 | 11.1 | 11.7 | 8.89 | 8.1 |
Zr | 86.9 | 89.1 | 110 | 39.5 | 87.2 | 108 | 73.1 | 46.2 | 57.8 | 61 |
Nb | 26.3 | 25.8 | 27.3 | 20.8 | 19.4 | 25 | 30 | 25.1 | 27.3 | 22.7 |
Ba | 227 | 210 | 225 | 152 | 305 | 252 | 192 | 96.2 | 181 | 226 |
La | 27.3 | 28.6 | 31.4 | 15.3 | 24.5 | 33.6 | 22.7 | 11.8 | 17.1 | 16 |
Ce | 55.8 | 58.1 | 64.7 | 31.5 | 48.8 | 68 | 45.4 | 24.3 | 33.5 | 32.3 |
Pr | 6.44 | 6.75 | 7.53 | 3.53 | 5.61 | 7.79 | 5.18 | 2.71 | 3.87 | 3.69 |
Nd | 23.5 | 24.6 | 27.6 | 13 | 20.2 | 28.5 | 18.7 | 9.85 | 14.1 | 13.4 |
Sm | 4.65 | 4.93 | 5.47 | 2.65 | 3.96 | 5.6 | 3.66 | 2.27 | 2.82 | 2.65 |
Eu | 0.42 | 0.42 | 0.41 | 0.27 | 0.45 | 0.5 | 0.34 | 0.22 | 0.28 | 0.28 |
Gd | 3.34 | 3.46 | 3.82 | 1.88 | 2.74 | 3.96 | 2.57 | 1.95 | 2 | 1.89 |
Tb | 0.48 | 0.49 | 0.53 | 0.28 | 0.39 | 0.57 | 0.39 | 0.35 | 0.3 | 0.28 |
Dy | 2.33 | 2.32 | 2.53 | 1.43 | 1.88 | 2.76 | 1.98 | 2.13 | 1.61 | 1.44 |
Ho | 0.39 | 0.38 | 0.41 | 0.24 | 0.31 | 0.46 | 0.35 | 0.38 | 0.28 | 0.26 |
Er | 1.05 | 1 | 1.11 | 0.68 | 0.83 | 1.24 | 1.01 | 1.01 | 0.82 | 0.75 |
Tm | 0.14 | 0.13 | 0.14 | 0.09 | 0.11 | 0.16 | 0.15 | 0.15 | 0.12 | 0.11 |
Yb | 0.97 | 0.92 | 1.02 | 0.69 | 0.79 | 1.13 | 1.07 | 1.06 | 0.9 | 0.83 |
Lu | 0.13 | 0.12 | 0.14 | 0.09 | 0.11 | 0.16 | 0.15 | 0.15 | 0.13 | 0.12 |
Hf | 2.77 | 2.92 | 3.37 | 1.47 | 2.66 | 3.42 | 2.4 | 1.75 | 1.99 | 2.11 |
Ta | 6.08 | 5.17 | 4.99 | 4.27 | 3.94 | 4.67 | 6.71 | 6.02 | 5.9 | 5.76 |
Pb | 38.3 | 38.2 | 36.9 | 26.1 | 40.3 | 40.6 | 39.7 | 27 | 34.2 | 30.5 |
Th | 22.9 | 24.1 | 27.2 | 13.5 | 20.5 | 27.8 | 18.9 | 10.2 | 15 | 15.7 |
U | 9.88 | 12.1 | 14 | 18.4 | 10.5 | 20.8 | 23 | 20.4 | 18.1 | 15.2 |
Rb/Sr | 6.9 | 7.9 | 7.6 | 10.3 | 5.7 | 5.7 | 6.7 | 11.4 | 7.2 | 6.6 |
Zr/Hf | 31 | 31 | 33 | 27 | 33 | 32 | 30 | 26 | 29 | 29 |
Nb/Ta | 4.3 | 5 | 5.5 | 4.87 | 4.92 | 5.35 | 4.47 | 4.17 | 4.63 | 3.94 |
K/Rb | 100 | 95 | 96 | 86 | 102 | 93 | 91 | 87 | 87 | 91 |
TZr(°C) | 742 | 738 | 763 | 684 | 740 | 752 | 729 | 695 | 709 | 714 |
4.2. Whole Rock Sm–Nd Isotopes
5. Discussion
5.1. Genetic Type
5.2. Petrogenesis of the Laojunshan Monzogranites
5.3. Implications for Tin Mineralization in the Youjiang Basin
6. Conclusions
- (1)
- The Laojunshan medium- to coarse-grained and fine-grained muscovite-bearing peraluminous granites exhibit geochemical characteristics that are indicative of highly fractionated compositions.
- (2)
- These granites were the result of mineral differentiation (involving Biotite + Plagioclase + Zircon) and fluid exsolution of crust-derived melts during the process of magmatic evolution.
- (3)
- The entirety of muscovite-bearing peraluminous granites found in the Youjiang Basin have been formed through the processes of mineral differentiation and fluid exsolution of crust-derived melts subsequent to partial melting, rather than originating directly from the melting of metasedimentary rocks.
- (4)
- The Late Cretaceous tin mineralization in the Youjiang Basin was controlled by extreme differentiation and fluid exsolution.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, B. Tin granites, geochemical heritage, magmatic differentiation. Geol. Rundsch. 1987, 76, 177–185. [Google Scholar] [CrossRef]
- Lehmann, B. Metallogeny of Tin; Springer: Berlin/Heidelberg, Germany, 1990; p. 211. [Google Scholar]
- Lehmann, B. Formation of tin ore deposits: A reassessment. Lithos 2021, 402–403, 105756. [Google Scholar] [CrossRef]
- Barbarin, B. Genesis of the two main types of peraluminous granitoids. Geology 1996, 24, 295–298. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Zhu, S.-Q. Petrogenesis of the Late Jurassic peraluminous biotite granites and muscovite-bearing granites in SE China: Geochronological, elemental and Sr-Nd-O-Hf isotopic constraints. Contrib. Mineral. Petrol. 2017, 172, 101. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, T.; Shen, W.; Shu, L.; Niu, Y. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes 2006, 29, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tan, S.C.; Wang, G.C.; Li, M.L.; He, X.H.; Zhang, Y.H. Peraluminous granite related to tin mineralization formed by magmatic differentiation and fluid exsolution of metaluminous melt: A case study from the Bozhushan batholith, South China Block. Ore Geol. Rev. 2022, 150, 105148. [Google Scholar] [CrossRef]
- Romer, R.L.; Kroner, U. Sediment and weathering control on the distribution of Paleozoic magmatic tin–tungsten mineralization. Miner. Deposita 2015, 50, 327–338. [Google Scholar] [CrossRef]
- Xu, B.; Jiang, S.Y.; Wang, R.; Ma, L.; Zhao, K.D.; Yan, X. Late Cretaceous granites from the giant Dulong Sn-polymetallic ore district in Yunnan Province, South China: Geochronology, geochemistry, mineral chemistry and Nd–Hf isotopic compositions. Lithos 2015, 218–219, 54–72. [Google Scholar] [CrossRef]
- Wolf, M.; Romer, R.L.; Franz, L.; López-Moro, F.J. Tin in granitic melts: The role of melting temperature and protolith composition. Lithos 2018, 310–311, 20–30. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Harris, N. Experimental Constraints on Himalayan Anatexis. J. Petrol. 1998, 39, 689–710. [Google Scholar] [CrossRef]
- Castro, A.; Patiño Douce, A.E.; Guillermo Corretgé, L.; de la Rosa, J.D.; El-Biad, M.; El-Hmidi, H. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: An experimental test of granite petrogenesis. Contrib. Mineral. Petrol. 1999, 135, 255–276. [Google Scholar] [CrossRef]
- Boissavy-Vinau, M.; Roger, G. The TiO2/Ta ratio as an indicator of the degree of differentiation of tin granites. Miner. Depos. 1980, 15, 231–236. [Google Scholar] [CrossRef]
- Lehmann, B. Metallogeny of tin; magmatic differentiation versus geochemical heritage. Econ. Geol. 1982, 77, 50–59. [Google Scholar] [CrossRef]
- Li, K.W.; Zhang, Q.; Wang, D.P.; Cai, Y.; Liu, Y.P. LA-MC-ICP-MS U-Pb geochronology of cassiterite from the Bainiuchang polymetallic deposit, Yunnan Province, China. Acta Mineral. Sin. 2013, 33, 203–209, (In Chinese with English abstract). [Google Scholar]
- Guo, J.; Zhang, R.Q.; Sun, W.D.; Ling, M.X.; Hu, Y.B.; Wu, K.; Luo, M.; Zhang, L. Genesis of tin-dominant polymetallic deposits in the Dachang district, South China: Insights from cassiterite U–Pb ages and trace element compositions. Ore Geol. Rev. 2018, 95, 863–879. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, R.Q.; Li, C.Y.; Sun, W.D.; Hu, Y.B.; Kang, D.M.; Wu, J.D. Genesis of the Gaosong Sn–Cu deposit, Gejiu district, SW China: Constraints from in situ LA-ICP-MS cassiterite U–Pb dating and trace element fingerprinting. Ore Geol. Rev. 2018, 92, 627–642. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Hou, L.; Ding, J.; Zhang, Q.M.; Wu, S.Y. A genetic link between Late Cretaceous granitic magmatism and Sn mineralization in the southwestern South China Block: A case study of the Dulong Sn-dominant polymetallic deposit. Ore Geol. Rev. 2018, 93, 268–289. [Google Scholar] [CrossRef]
- Mao, J.W.; Ouyang, J.G.; Song, S.W.; Santosh, M.; Yuan, S.D.; Zhou, Z.H.; Zheng, W.; Liu, H.; Liu, P.; Cheng, Y.B.; et al. Geology and Metallogeny of Tungsten and Tin deposits in China. Soc. Econ. Geol. Spec. Publ. 2019, 22, 411–482. [Google Scholar]
- Cheng, Y.B.; Mao, J.W.; Spandler, C. Petrogenesis and geodynamic implications of the Gejiu igneous complex in the western Cathaysia block, South China. Lithos 2013, 175–176, 213–229. [Google Scholar] [CrossRef]
- Sun, W. Initiation and evolution of the South China Sea: An overview. Acta Geochim. 2016, 35, 215–225. [Google Scholar] [CrossRef]
- Guo, J.; Wu, K.; Seltmann, R.; Zhang, R.; Ling, M.; Li, C.; Sun, W. Unraveling the link between mantle upwelling and formation of Sn-bearing granitic rocks in the world-class Dachang tin district, South China. Geol. Soc. Am. Bull 2022, 134, 1043–1064. [Google Scholar] [CrossRef]
- Cheng, Y.B.; Mao, J.W.; Xie, G.Q.; Chen, M.H.; Zhao, C.S.; Yang, Z.X.; Zhao, H.J.; Li, X.Q. Petrogenesis of the Laochang-Kafang Granite in the Gejiu Area, Yunnan Province: Constraints from geochemistry and zircon U-Pb dating. Acta Geol. Sin. 2008, 82, 1476–1493, (In Chinese with English abstract). [Google Scholar]
- Liu, Y.; Zhang, L.; Mo, X.; Santosh, M.; Dong, G.; Zhou, H. The giant tin polymetallic mineralization in southwest China: Integrated geochemical and isotopic constraints and implications for Cretaceous tectonomagmatic event. Geosci. Front. 2020, 11, 1593–1608. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, H.W.; Gan, N.J.; Wei, S.C.; Liao, J.; Zhang, J.; Liang, H.Y. Source characteristics of magmatic rocks and zircon U-Pb age in the Mangchang ore field, Danchi metallogenic belt, Guangxi. Acta Petrol. Sin. 2020, 36, 1586–1596, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wang, G.C.; Liu, Z.; Tan, S.C.; Wang, Y.-K.; He, X.H.; Li, M.L.; Qi, C.S. Petrogenesis of biotite granite with transitional I-A-type affinities: Implications for continental crust generation. Lithos 2021, 396–397, 106199. [Google Scholar] [CrossRef]
- Cheng, Y.; Spandler, C.; Mao, J.; Rusk, B.G. Granite, gabbro and mafic microgranular enclaves in the Gejiu area, Yunnan Province, China: A case of two-stage mixing of crust- and mantle-derived magmas. Contrib. Mineral. Petrol. 2012, 164, 659–676. [Google Scholar] [CrossRef]
- Guo, J. Tin mineralization Events and Fertility of Granitoids in the Youjiang Basin, South China: The Gejiu and Dachang Sn-Polymetallic Districts as Examples. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2019; p. 247. [Google Scholar]
- Liu, Y.P.; Ye, L.; Li, C.Y.; Song, B.; Li, T.S.; Guo, L.G.; Pi, D.H. Discovery of the Neoproterozoic magmatics in southeastern Yunnan: Evidence from SHRIMP zircon U-Pb dating and lithogeochemistry. Acta Petrol. Sin. 2006, 22, 916–926, (In Chinese with English abstract). [Google Scholar]
- Liu, J.-S.; Zhang, H.-P.; Ouyang, Y.-F.; Zhang, C.-H. Bainiuchang super-large silver-polymetallic ore deposit related to granitic magmatism in Mengzi, Yunnan. J. Central South. Univ. Technol. 2007, 14, 568–574. [Google Scholar] [CrossRef]
- Yang, G.S.; Wen, H.J.; Ren, T.; Xu, S.H.; Wang, C.Y. Geochronology, geochemistry and Hf isotopic composition of Late Cretaceous Laojunshan granites in the western Cathaysia block of South China and their metallogenic and tectonic implications. Ore Geol. Rev. 2020, 117, 103297. [Google Scholar] [CrossRef]
- Feng, J.; Mao, J.; Pei, R.; Zhou, Z.; Yang, Z. SHRIMP zircon U-Pb dating and geochemical characteristics of Laojunshan granite intrusion from the Wazha tungsten deposit, Yunnan Province and their implications for petrogenesis. Acta Petrol. Sin. 2010, 26, 845–857, (in Chinese with English abstract). [Google Scholar]
- Lan, J.B.; Liu, Y.P.; Ye, L.; Zhang, Q.; Wang, D.P.; Su, H. Geochemistry and age spectrum of late Yanshanian granites from Laojunshan area, southeastern Yunnan province, China. Acta Mineral. Sin. 2016, 36, 441–454, (In Chinese with English abstract). [Google Scholar]
- Li, X.L.; Mao, J.W.; Cheng, Y.B.; Zhang, J. Petrogenesis of the Gaofengshan granite in Gejiu area, Yunnan Province: Zircon U-Pb dating and geochemical constraints. Acta Petrol. Sin. 2012, 28, 183–198, (In Chinese with English abstract). [Google Scholar]
- Jia, R.X. Geological and Geochemical Study of Gejiu Tin Ore Concentration Area in Yunnan. Ph.D. Thesis, Northwest University, Xi’an, China, 2005; p. 150. [Google Scholar]
- Xie, H.J.; Zhang, Q.; Zhu, C.H. Petrology and REE-trace element geochemistry of Bozhushan granite pluton in southeastern Yunnan Province, China. Acta Mineral. Sin. 2009, 29, 481–490, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Chen, W. The Granitic Magmatism and Its Significance of Mineralization in Gejiu, Yunnan. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2019; p. 71. [Google Scholar]
- Patiño Douce, A.E.; Johnston, A.D. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol. 1991, 107, 202–218. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Beard, J.S. Dehydration-melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. J. Petrol. 1995, 36, 707–738. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean. Basin; Geological Society Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Xiong, X.; Keppler, H.; Audétat, A.; Ni, H.; Sun, W.; Li, Y. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochim. Cosmochim. Acta 2011, 75, 1673–1692. [Google Scholar] [CrossRef]
- Stepanov, A.; Mavrogenes, J.A.; Meffre, S.; Davidson, P. The key role of mica during igneous concentration of tantalum. Contrib. Mineral. Petrol. 2014, 167, 1009. [Google Scholar] [CrossRef]
- Ballouard, C.; Poujol, M.; Boulvais, P.; Branquet, Y.; Tartèse, R.; Vigneresse, J.L. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology 2016, 44, 231–234. [Google Scholar] [CrossRef]
- Shaw, D. A review of K-Rb fractionation trends by covariance analysis. Geochim. Cosmochim. Acta 1968, 32, 573–601. [Google Scholar] [CrossRef]
- Chevychelov, V.Y.; Zaraisky, G.P.; Borisovskii, S.E.; Borkov, D.A. Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between granitic (alkaline) melt and fluorine-bearing aqueous fluid: Fractionation of Ta and Nb and conditions of ore formation in rare-metal granites. Petrology 2005, 13, 305–321. [Google Scholar]
- Barsukov, V.L. The geochemistry of tin, (translated from Geokhimiya 1957: 36–45). Geochemistry 1957, 1, 41–52. [Google Scholar]
Sample No. | DL-34 | DL-35 | DL-36 | DL-37 | DL-39 | DL-44 | DL-45 | DL-46 | DL-49 | DL-52 |
---|---|---|---|---|---|---|---|---|---|---|
Rock Type | Medium- to Coarse-Grained Monzogranite | Fine-Grained Monzogranite | ||||||||
147Sm/144Nd | 0.119554 | 0.121086 | 0.119745 | 0.123164 | 0.118447 | 0.11872 | 0.118255 | 0.139242 | 0.12084 | 0.119487 |
143Nd/144Nd | 0.511916 | 0.511915 | 0.51189 | 0.511889 | 0.511941 | 0.511976 | 0.51194 | 0.512001 | 0.512006 | 0.512017 |
±2σ | 0.000003 | 0.000002 | 0.000004 | 0.000004 | 0.000003 | 0.000003 | 0.000004 | 0.000003 | 0.000003 | 0.000004 |
εNd(t) | −13.2 | −13.2 | −13.7 | −13.8 | −12.7 | −12 | −12.7 | −11.8 | −11.5 | −11.2 |
T2DM(Ga) | 1.9647 | 1.9672 | 2.0057 | 2.0096 | 1.9234 | 1.8679 | 1.9247 | 1.8482 | 1.823 | 1.8046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Liu, X.; Liu, L. Petrogenesis of Late Cretaceous Muscovite-Bearing Peraluminous Granites in the Youjiang Basin, South China Block: Implications for Tin Mineralization. Minerals 2023, 13, 1206. https://doi.org/10.3390/min13091206
Li P, Liu X, Liu L. Petrogenesis of Late Cretaceous Muscovite-Bearing Peraluminous Granites in the Youjiang Basin, South China Block: Implications for Tin Mineralization. Minerals. 2023; 13(9):1206. https://doi.org/10.3390/min13091206
Chicago/Turabian StyleLi, Ping, Xijun Liu, and Lei Liu. 2023. "Petrogenesis of Late Cretaceous Muscovite-Bearing Peraluminous Granites in the Youjiang Basin, South China Block: Implications for Tin Mineralization" Minerals 13, no. 9: 1206. https://doi.org/10.3390/min13091206
APA StyleLi, P., Liu, X., & Liu, L. (2023). Petrogenesis of Late Cretaceous Muscovite-Bearing Peraluminous Granites in the Youjiang Basin, South China Block: Implications for Tin Mineralization. Minerals, 13(9), 1206. https://doi.org/10.3390/min13091206