Source and Migration of Fluids in a Meso-Tethyan Subduction Zone: Fluid Inclusion Study of Syn-Mélange Veins from the Mugagangri Accretionary Complex
Abstract
:1. Introduction
Locality | Depth (km) | T (°C) | P (Mpa) | Method | Data References | |
---|---|---|---|---|---|---|
Shimanto Belt | Mugi mélange | >3 | Cementation of sandstone blocks | [43] | ||
Shimanto Belt | Mugi mélange | 4–6 | 125–245 | 92–149 | Microthermometry of fluid inclusion | [6] |
Shimanto Belt | Mugi mélange | 4–6 | 130–180 | Microthermometry of fluid inclusion | [27] | |
Shimanto Belt | Mugi mélange | 4–6 | 185–260 | Chlorite geothermometry | [44] | |
Shimanto Belt | Mugi mélange | 6–7 | 150–200 | Vitrinite reflectance; microthermometry of fluid inclusion | [11] | |
Shimanto Belt | Hyuga tectonic mélange | 312–372 | Raman spectroscopy of carbonaceous materials | [45] | ||
Shimanto Belt | Hyuga tectonic mélange | 6–10 | 140–250 | 150–210 | Vitrinite reflectance; microthermometry of fluid inclusion | [25] |
Shimanto Belt | Hyuga tectonic mélange | 8.6–14.4 | 260–340 | 235–250 | Microthermometry of fluid inclusion | [25] |
Shimanto Belt | Makimine mélange | 10–15 | 150–340 | Microthermometry of fluid inclusion | [8] | |
Shimanto Belt | Miyama assemblage | 190–312 | 140–304 | Microthermometry of fluid inclusion | [23] | |
Shimanto Belt | Miyama assemblage | 125–251 | 81–253 | Microthermometry of fluid inclusion | [22] | |
Shimanto Belt | Yokonami mélange | 175–225 | 143–215 | Microthermometry of fluid inclusion | [1] | |
Shimanto Belt | Otaki Group | 270–300 | 140–190 | Microthermometry of fluid inclusion | [46] | |
Kodiak accretionary complex | Tectonic mélange | 10–14 | 215–290 | Microthermometry of fluid inclusion | [28] | |
Sanbagawa Belt | Chlorize zone | 10–20 | 320–450 | 370–650 | Microthermometry of fluid inclusion | [7] |
Nacimiento block of Central California | Franciscan complex | ~20 | 180–360 | Raman spectroscopy of carbonaceous materials | [47] | |
Nacimiento block of Central California | Franciscan complex | 100–250 | 200–800 | Metamorphic mineral assemblages | [48] | |
Hellenides–Taurides belt | Cycladic blueschist unit | 10–30 | 440–540 | 300–1000 | Microthermometry of fluid inclusion | [21] |
Southwest Japan | Shikoku | 30–35 | ~425 | Thermal model | [9] | |
Southwest Japan | Kii Peninsula | 30–40 | ~325 | Thermal model | [9] | |
Rio San Juan complex | Jagua Clara serpentinite mélange | 30–50 | 360–500 | Microthermometry of fluid inclusion | [24] | |
Sistan suture zone | Ratuk complex | 65–80 | 1900–2300 | Thermobarometry | [12] | |
Indus suture zone | Shergol ophiolitic mélange | ~470 | ~1900 | Microthermometry of fluid inclusion | [26] | |
Northern Thailand | Inthanon zone | 246–295 | Illite crystallinity | [10] | ||
Western Alps | Sesia-Lanzo Zone | 3.5–7 | 700–750 | Thermobarometry | [19] | |
Western Alps | Zermatt Saas unit | ~75 | Zr-in-rutile thermometry | [13] | ||
Eastern Alps | Austroalpine nappes | 800–850 | ≥3500 | Microthermometry of fluid inclusion | [15] | |
New Caledonia | Eclogite-facies mélange belt | 400–650 ~800 | Oxygen and carbon isotope | [16] | ||
New Caledonia | Northern metamorphic belt | ~35 | 300–550 | 800–2400 | Raman spectroscopy of carbonaceous materials; thermobarometry | [17] |
West Kunlun | Kangxiwar khondalite | 700 | 680 | Electron microprobe | [18] | |
Nordfjord | Western gneiss | 550–650 | 2000–2600 | Pseudosection modelling | [14] |
2. Geological Setting
3. Occurrences of Mélanges and Veins
4. Materials and Methods
4.1. Petrography and Mineralogy
4.2. Microthermometry
4.3. Raman Spectroscopy
5. Results
5.1. Fluid Inclusion Characteristics
5.2. Microthermometry of Fluid Inclusions
5.3. Composition of Fluid Inclusions
6. Discussion
6.1. Characteristics of Shallow Fluids
6.2. Sources of Fluids Associated with Low Salinity
6.3. Migration of Fluids in the Broken Formation
7. Conclusions
- The analysis of fluid inclusions in the broken formation of the MG revealed two types: biphase (type I) and monophase (type II) aqueous fluid inclusions. These fluid inclusions primarily consisted of H2O and did not contain nonpolar gases such as CO2 or CH4.
- The characteristics of the fluid inclusions in the crack-seal veins suggest the fluids trapped in the mélange formation are pore fluids with low temperature, low salinity, and low density. The presence of a salinity anomaly suggests clay mineral dehydration, which leads to freshening of the pore fluids.
- The pore water in sediment over the oceanic crust is a major fluid source in the broken formation, flowing along the sediment layer during subduction. Compaction and dehydration expel pore fluids, relieving excess pressure and creating cracks via hydraulic fracturing. Crack-seal textures weaken interplate thrust faults, promoting décollement step-down and underthrusting. Pore fluids become trapped in veins within sandstone cracks at ~5 km depth. The décollement can subsequently break through and step-down, with veins underplating as pervasive broken formation within block-in-matrix fabrics.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hashimoto, Y.; Eida, M.; Kirikawa, T.; Iida, R.; Takagi, M.; Furuya, N.; Nikaizo, A.; Kikuchi, T.; Yoshimitsu, T. Large amount of fluid migration around shallow seismogenic depth preserved in tectonic mélange: Yokonami mélange, the Cretaceous Shimanto Belt, Kochi, Southwest Japan. Isl. Arc 2012, 21, 53–64. [Google Scholar] [CrossRef]
- Saffer, D.M. Pore Pressure within underthrust sediment in subduction zones. In The Seismogenic Zone of Subduction Thrust Faults; Columbia University Press: New York, NY, USA, 2007; pp. 171–209. ISBN 0231512015. [Google Scholar]
- Saffer, D.M.; Underwood, M.B.; McKiernan, A.W. Evaluation of factors controlling smectite transformation and fluid production in subduction zones: Application to the Nankai Trough. Isl. Arc 2008, 17, 208–230. [Google Scholar] [CrossRef]
- Spinelli, G.A.; Wang, K. Effects of fluid circulation in subducting crust on Nankai margin seismogenic zone temperatures. Geology 2008, 36, 887–890. [Google Scholar] [CrossRef]
- Tobin, H.J.; Saffer, D.M. Elevated fluid pressure and extreme mechanical weakness of a plate boundary thrust, Nankai Trough subduction zone. Geology 2009, 37, 679–682. [Google Scholar] [CrossRef]
- Matsumura, M.; Hashimoto, Y.; Kimura, G.; Ohmori-Ikehara, K.; Enjohji, M.; Ikesawa, E. Depth of oceanic-crust underplating in a subduction zone: Inferences from fluid-inclusion analyses of crack-seal veins. Geology 2003, 31, 1005–1008. [Google Scholar] [CrossRef]
- Nishimura, K.; Amita, K.; Ohsawa, S.; Kobayashi, T.; Hirajima, T. Chemical characteristics and trapping PT conditions of fluid inclusions in quartz veins from the Sanbagawa metamorphic belt, SW Japan. J. Mineral. Petrol. Sci. 2008, 103, 94–99. [Google Scholar] [CrossRef]
- Nishiyama, N.; Sumino, H.; Ujiie, K. Fluid overpressure in subduction plate boundary caused by mantle-derived fluids. Earth Planet. Sci. Lett. 2020, 538, 116199. [Google Scholar] [CrossRef]
- Peacock, S.M. Thermal and metamorphic environment of subduction zone episodic tremor and slip. J. Geophys. Res. Solid Earth 2009, 114, B00A07. [Google Scholar] [CrossRef]
- Hara, H.; Wakita, K.; Ueno, K.; Kamata, Y.; Hisada, K.-I.; Charusiri, P.; Charoentitirat, T.; Chaodumrong, P. Nature of accretion related to Paleo-Tethys subduction recorded in northern Thailand: Constraints from mélange kinematics and illite crystallinity. Gondwana Res. 2009, 16, 310–320. [Google Scholar] [CrossRef]
- Ikesawa, E.; Kimura, G.; Sato, K.; Ikehara-Ohmori, K.; Kitamura, Y.; Yamaguchi, A.; Ujiie, K.; Hashimoto, Y. Tectonic incorporation of the upper part of oceanic crust to overriding plate of a convergent margin: An example from the Cretaceous–early Tertiary Mugi Mélange, the Shimanto Belt, Japan. Tectonophysics 2005, 401, 217–230. [Google Scholar] [CrossRef]
- Rad, G.F.; Droop, G.T.; Amini, S.; Moazzen, M. Eclogites and blueschists of the Sistan Suture Zone, eastern Iran: A comparison of P–T histories from a subduction mélange. Lithos 2005, 84, 1–24. [Google Scholar] [CrossRef]
- Dragovic, B.; Angiboust, S.; Tappa, M.J. Petrochronological close-up on the thermal structure of a paleo-subduction zone (W. Alps). Earth Planet. Sci. Lett. 2020, 547, 116446. [Google Scholar] [CrossRef]
- Faryad, S.W.; Ježek, J.; Kulhánek, J. Constraining the P–T path of (U) HP rocks with reaction overstepping during subduction; example from the Western Gneiss Region (Norway). J. Metamorph. Geol. 2022, 40, 1427–1446. [Google Scholar] [CrossRef]
- Janák, M.; Froitzheim, N.; Yoshida, K.; Sasinková, V.; Nosko, M.; Kobayashi, T.; Hirajima, T.; Vrabec, M. Diamond in metasedimentary crustal rocks from Pohorje, Eastern Alps: A window to deep continental subduction. J. Metamorph. Geol. 2015, 33, 495–512. [Google Scholar] [CrossRef]
- Spandler, C.; Hermann, J.; Faure, K.; Mavrogenes, J.A.; Arculus, R.J. The importance of talc and chlorite “hybrid” rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélange of New Caledonia. Contrib. Mineral. Petrol. 2008, 155, 181–198. [Google Scholar] [CrossRef]
- Vitale Brovarone, A.; Agard, P. True metamorphic isograds or tectonically sliced metamorphic sequence? New high-spatial resolution petrological data for the New Caledonia case study. Contrib. Mineral. Petrol. 2013, 166, 451–469. [Google Scholar] [CrossRef]
- Xu, Z.; Qi, X.; Liu, F.; Yang, J.; Zeng, L.; Wu, C. A new Caledonian Khondalite series in West Kunlun, China: Age constraints and tectonic significance. Int. Geol. Rev. 2005, 47, 986–998. [Google Scholar] [CrossRef]
- Zanoni, D.; Iole Spalla, M.; Gosso, G. Structure and PT estimates across late-collisional plutons: Constraints on the exhumation of western Alpine continental HP units. Int. Geol. Rev. 2010, 52, 1244–1267. [Google Scholar] [CrossRef]
- Chi, G.; Diamond, L.W.; Lu, H.; Lai, J.; Chu, H. Common problems and pitfalls in fluid inclusion study: A review and discussion. Minerals 2020, 11, 7. [Google Scholar] [CrossRef]
- Brooks, H.L.; Dragovic, B.; Lamadrid, H.M.; Caddick, M.J.; Bodnar, R.J. Fluid capture during exhumation of subducted lithologies: A fluid inclusion study from Sifnos, Greece. Lithos 2019, 332, 120–134. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Enjoji, M.; Sakaguchi, A.; Kimura, G. In situ pressure-temperature conditions of a tectonic mélange: Constraints from fluid inclusion analysis of syn-mélange veins. Isl. Arc 2003, 12, 357–365. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Enjoji, M.; Sakaguchi, A.; Kimura, G. PT conditions of cataclastic deformation associated with underplating: An example from the Cretaceous Shimanto complex, Kii Peninsula, SW Japan. Earth Planets Space 2002, 54, 1133–1138. [Google Scholar] [CrossRef]
- Kawamoto, T.; Hertwig, A.; Schertl, H.-P.; Maresch, W.V. Fluid inclusions in jadeitite and jadeite-rich rock from serpentinite mélanges in northern Hispaniola: Trapped ambient fluids in a cold subduction channel. Lithos 2018, 308, 227–241. [Google Scholar] [CrossRef]
- Kondo, H.; Kimura, G.; Masago, H.; Ohmori-Ikehara, K.; Kitamura, Y.; Ikesawa, E.; Sakaguchi, A.; Yamaguchi, A.; Okamoto, S. Deformation and fluid flow of a major out-of-sequence thrust located at seismogenic depth in an accretionary complex: Nobeoka Thrust in the Shimanto Belt, Kyushu, Japan. Tectonics 2005, 24, TC6008. [Google Scholar] [CrossRef]
- Sachan, H.K.; Kharya, A.; Singh, P.C.; Rolfo, F.; Groppo, C.; Tiwari, S.K. A fluid inclusion study of blueschist-facies lithologies from the Indus suture zone, Ladakh (India): Implications for the exhumation of the subduction related Sapi-Shergol ophiolitic mélange. J. Asian Earth Sci. 2017, 146, 185–195. [Google Scholar] [CrossRef]
- Ujiie, K.; Yamaguchi, A.; Taguchi, S. Stretching of fluid inclusions in calcite as an indicator of frictional heating on faults. Geology 2008, 36, 111–114. [Google Scholar] [CrossRef]
- Vrolijk, P.; Myers, G.; Moore, J.C. Warm fluid migration along tectonic melanges in the Kodiak accretionary complex, Alaska. J. Geophys. Res. Solid Earth 1988, 93, 10313–10324. [Google Scholar] [CrossRef]
- Li, J.L. Basic characteristics of accretion-type orogens. Geol. Bull. China 2004, 23, 947–951. [Google Scholar]
- Yuan, S.; Pan, G.; Wang, L.; Jiang, X.; Yin, F.; Zhang, W.; Zhuo, J. Accretionary orogenesis in the active continental margins. Earth Sci. Front. 2009, 16, 31–48. [Google Scholar] [CrossRef]
- Xiao, W.; Santosh, M. The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth. Gondwana Res. 2014, 25, 1429–1444. [Google Scholar] [CrossRef]
- Zeng, M.; Chen, J.P.; Wei, C.C. The Mugagangri Group is an accretionary complex accreted onto the south margin of Qiangtang. Earth Sci. Front. 2017, 24, 207–217. [Google Scholar] [CrossRef]
- Pan, G.T.; Xiao, Q.H.; Zhang, K.X.; Yin, F.G.; Ren, F.; Peng, Z.M.; Wang, J.X. Recognition of the oceanic subduction-accretion zones from the orogenic belt in continents and its important scientific significance. Earth Sci. 2019, 44, 1544–1561. [Google Scholar]
- Žák, J.; Svojtka, M.; Hajná, J.; Ackerman, L. Detrital zircon geochronology and processes in accretionary wedges. Earth-Sci. Rev. 2020, 207, 103214. [Google Scholar] [CrossRef]
- Bangs, N.L.; Gulick, S.P.; Shipley, T.H. Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone. Geology 2006, 34, 701–704. [Google Scholar] [CrossRef]
- Brown, D.T.; Spadea, P. Processes of forearc and accretionary complex formation during arc-continent collision in the southern Ural Mountains. Geology 1999, 27, 649–652. [Google Scholar] [CrossRef]
- Cawood, P.A.; Kröner, A.; Collins, W.J.; Kusky, T.M.; Mooney, W.D.; Windley, B.F. Accretionary orogens through Earth history. Geol. Soc. Lond. Spec. Publ. 2009, 318, 1–36. [Google Scholar] [CrossRef]
- Hayman, N.W.; Toshiya, K. Structural evolution of an inner accretionary wedge and forearc basin initiation, Nankai margin, Japan. Earth Planet. Sci. Lett. 2012, 353, 163–172. [Google Scholar] [CrossRef]
- Girardeau, J.; Marcoux, J.; Allègre, C.J.; Bassoullet, J.P.; Youking, T.; Xuchang, X.; Yougong, Z.; Xibin, W. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature 1984, 307, 27–31. [Google Scholar] [CrossRef]
- Pan, G.; Zhu, D.; Wang, L. Bangong Lake-Nu River suture zone-the northern boundary of Gondwanaland: Evidence from geology and geophysics. Earth Sci. Front. 2004, 11, 371–382. [Google Scholar]
- Wang, B.-D.; Wang, L.-Q.; Chung, S.-L.; Chen, J.-L.; Yin, F.-G.; Liu, H.; Li, X.-B.; Chen, L.-K. Evolution of the Bangong–Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos 2016, 245, 18–33. [Google Scholar] [CrossRef]
- Zhu, D.-C.; Zhao, Z.-D.; Niu, Y.; Dilek, Y.; Hou, Z.-Q.; Mo, X.-X. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Nakaya, T.; Ito, M.; Kimura, G. Tectonolithification of sandstone prior to the onset of seismogenic subduction zone: Evidence from tectonic mélange of the Shimanto Belt, Japan. Geochem. Geophys. Geosyst. 2006, 7, Q06013. [Google Scholar] [CrossRef]
- Kameda, J.; Ujiie, K.; Yamaguchi, A.; Kimura, G. Smectite to chlorite conversion by frictional heating along a subduction thrust. Earth Planet. Sci. Lett. 2011, 305, 161–170. [Google Scholar] [CrossRef]
- Palazzin, G.; Raimbourg, H.; Famin, V.; Jolivet, L.; Kusaba, Y.; Yamaguchi, A. Deformation processes at the down-dip limit of the seismogenic zone: The example of Shimanto accretionary complex. Tectonophysics 2016, 687, 28–43. [Google Scholar] [CrossRef]
- Hara, H.; Hisada, K.I. Tectono-metamorphic evolution of the Cretaceous Shimanto accretionary complex, central Japan: Constraints from a fluid inclusion analysis of syn-tectonic veins. Isl. Arc 2007, 16, 57–68. [Google Scholar] [CrossRef]
- Lacroix, B.; Lahfid, A.; Ward, C.; Niemi, N.A.; Chapman, A.D.; Jarvis, W.; Kempton, P.D. Raman thermometry and (U-Th)/He thermochronometry reveal Neogene transpressional exhumation in the Nacimiento block of central California, USA. Geology 2022, 50, 1421–1426. [Google Scholar] [CrossRef]
- Cloos, M. Flow melanges: Numerical modeling and geologic constraints on their origin in the Franciscan subduction complex, California. Geol. Soc. Am. Bull. 1982, 93, 330–345. [Google Scholar] [CrossRef]
- Guynn, J.H.; Kapp, P.; Pullen, A.; Heizler, M.; Gehrels, G.; Ding, L. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology 2006, 34, 505–508. [Google Scholar] [CrossRef]
- Kapp, P.; Murphy, M.A.; Yin, A.; Harrison, T.M.; Ding, L.; Guo, J. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics 2003, 22, 1029. [Google Scholar] [CrossRef]
- Kapp, P.; Yin, A.; Harrison, T.M.; Ding, L. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geol. Soc. Am. Bull. 2005, 117, 865–878. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos 2009, 113, 1–20. [Google Scholar] [CrossRef]
- Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 2013, 66, 1–33. [Google Scholar] [CrossRef]
- Liu, D.; Shi, R.; Ding, L.; Huang, Q.; Zhang, X.; Yue, Y.; Zhang, L. Zircon U–Pb age and Hf isotopic compositions of Mesozoic granitoids in southern Qiangtang, Tibet: Implications for the subduction of the Bangong–Nujiang Tethyan Ocean. Gondwana Res. 2017, 41, 157–172. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Zhu, D.-C.; Li, S.-M.; Cawood, P.A.; Wang, Q.; Zhao, Z.-D.; Liu, S.-A.; Wang, L.-Q. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos 2016, 245, 7–17. [Google Scholar] [CrossRef]
- Li, C.; Zeng, M.; Chen, S.; Jin, X.; Cheng, W. Provenance evolution during passive-to active-margin transition unraveled from an accretionary complex from the Bangong-Nujiang suture zone: Insights into Early Mesozoic Meso-Tethys subduction and source-area tectonics. Gondwana Res. 2021, 98, 191–211. [Google Scholar] [CrossRef]
- Li, S.; Yin, C.; Guilmette, C.; Ding, L.; Zhang, J. Birth and demise of the Bangong-Nujiang Tethyan Ocean: A review from the Gerze area of central Tibet. Earth-Sci. Rev. 2019, 198, 102907. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, T.; Bian, W.; Jin, J.; Wang, Q.; Zhang, S.; Wu, H.; Li, H.; Cao, L.; Yuan, H.; et al. Paleomagnetic and geochronologic results of latest Cretaceous lava flows from the Lhasa terrane and their tectonic implications. J. Geophys. Res. Solid Earth 2017, 122, 8786–8809. [Google Scholar] [CrossRef]
- Shi, L.; Huang, J.; Chen, W. Birth and demise of the Bangong–Nujiang Tethyan Ocean: A review from the Gerze area of Central Tibet: Comment. Earth-Sci. Rev. 2020, 208, 103209. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, X.; Cao, H.; Ettensohn, F.R.; Cheng, W.; Lang, X. Late Triassic initial subduction of the Bangong-Nujiang Ocean beneath Qiangtang revealed: Stratigraphic and geochronological evidence from Gaize, Tibet. Basin Res. 2016, 28, 147–157. [Google Scholar] [CrossRef]
- Cao, S.H.; Xiao, X.L.; Ouyang, K.G. Renew-establishment of the jurassic mugagangri groups and its geological significance on the western side of the Bangong Co-Nujiang junction zone. Acta Sedimentol. Sin. 2008, 26, 559–564. [Google Scholar]
- Zhang, R.; Zeng, M. Mapping lithologic components of ophiolitic mélanges based on ASTER spectral analysis: A case study from the Bangong-Nujiang Suture Zone (Tibet, China). ISPRS Int. J. Geo-Inf. 2018, 7, 34. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, R.; Chen, S.; Liu, X.; Li, C.; Ettensohn, F.R.; Bie, L. Reconstructing Ocean-Plate Stratigraphy (OPS) to Understand Accretionary Style and Mélange Fabric: Insights From the Bangong-Nujiang Suture (Tibet, China). Geophys. Res. Lett. 2021, 48, e2021GL094457. [Google Scholar] [CrossRef]
- Festa, A.; Ogata, K.; Pini, G.A.; Dilek, Y.; Alonso, J.L. Origin and significance of olistostromes in the evolution of orogenic belts: A global synthesis. Gondwana Res. 2016, 39, 180–203. [Google Scholar] [CrossRef]
- Festa, A.; Pini, G.A.; Ogata, K.; Dilek, Y. Diagnostic features and field-criteria in recognition of tectonic, sedimentary and diapiric mélanges in orogenic belts and exhumed subduction-accretion complexes. Gondwana Res. 2019, 74, 7–30. [Google Scholar] [CrossRef]
- Zuhlsdorff, L.; Spieß, V. Three-dimensional seismic characterization of a venting site reveals compelling indications of natural hydraulic fracturing. Geology 2004, 32, 101–104. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Ujiie, K.; Nakai, S.; Kimura, G. Sources and physicochemical characteristics of fluids along a subduction-zone megathrust: A geochemical approach using syn-tectonic mineral veins in the Mugi mélange, Shimanto accretionary complex. Geochem. Geophys. Geosyst. 2012, 13, Q0AD24. [Google Scholar] [CrossRef]
- Van den Kerkhof, A.M.; Hein, U.F. Fluid inclusion petrography. Lithos 2001, 55, 27–47. [Google Scholar] [CrossRef]
- Goldstein, R.H.; Samson, I.; Anderson, A.; Marshall, D. Petrographic analysis of fluid inclusions. Fluid Incl. Anal. Interpret. 2003, 32, 9–53. [Google Scholar]
- Roedder, E. Studies of fluid inclusions; Part 1, Low temperature application of a dual-purpose freezing and heating stage. Econ. Geol. 1962, 57, 1045–1061. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Roedder, E. Volume 12: Fluid inclusions. Rev. Mineral. 1984, 12, 644. [Google Scholar]
- Huanzhang, L.U. Fluid inclusion petrography: A discussion. Geol. J. China Univ. 2014, 20, 177. [Google Scholar]
- Davis, D.W.; Lowenstein, T.K.; Spencer, R.J. Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl H2O, NaCl KCl H2O, NaCl MgCl2 H2O, and NaCl CaCl2 H2O. Geochim. Cosmochim. Acta 1990, 54, 591–601. [Google Scholar] [CrossRef]
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Hall, D.L.; Sterner, S.M.; Bodnar, R.J. Freezing point depression of NaCl-KCl-H2O solutions. Econ. Geol. 1988, 83, 197–202. [Google Scholar] [CrossRef]
- Potter, I.I. Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the system NaCl–H2O. J. Res. US Geol. Surv. 1977, 5, 603–607. [Google Scholar]
- Burke, E.A. Raman microspectrometry of fluid inclusions. Lithos 2001, 55, 139–158. [Google Scholar] [CrossRef]
- Walrafen, G.E. Raman spectral studies of the effects of temperature on water structure. J. Chem. Phys. 1967, 47, 114–126. [Google Scholar] [CrossRef]
- Bakker, R.J. Re-equilibration processes in fluid inclusion assemblages. Minerals 2017, 7, 117. [Google Scholar] [CrossRef]
- Moore, J.C.; Vrolijk, P. Fluids in accretionary prisms. Rev. Geophys. 1992, 30, 113–135. [Google Scholar] [CrossRef]
- Raimbourg, H.; Thiéry, R.; Vacelet, M.; Famin, V.; Ramboz, C.; Boussafir, M.; Disnar, J.-R.; Yamaguchi, A. Organic matter cracking; a source of fluid overpressure in subducting sediments. Tectonophysics 2017, 721, 254–274. [Google Scholar] [CrossRef]
- Peacock, S.M. Numerical simulation of subduction zone pressure-temperature-time paths: Constraints on fluid production and arc magmatism. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 1991, 335, 341–353. [Google Scholar] [CrossRef]
- Gorman, P.J.; Kerrick, D.M.; Connolly, J. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 2006, 7, Q04007. [Google Scholar] [CrossRef]
- Vrolijk, P. Tectonically driven fluid flow in the Kodiak accretionary complex, Alaska. Geology 1987, 15, 466–469. [Google Scholar] [CrossRef]
- Manning, C.E.; Frezzotti, M.L. Subduction-zone fluids. Elem. Int. Mag. Mineral. Geochem. Petrol. 2020, 16, 395–400. [Google Scholar] [CrossRef]
- Manning, C.E. Fluids of the lower crust: Deep is different. Annu. Rev. Earth Planet. Sci. 2018, 46, 67–97. [Google Scholar] [CrossRef]
- Barnes, J.D.; Manning, C.E.; Scambelluri, M.; Selverstone, J. The behavior of halogens during subduction-zone processes. In The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes; Springer: Berlin/Heidelberg, Germany, 2018; pp. 545–590. [Google Scholar]
- Saffer, D.M.; Bekins, B.A. An evaluation of factors influencing pore pressure in accretionary complexes: Implications for taper angle and wedge mechanics. J. Geophys. Res. Solid Earth 2006, 111, B04101. [Google Scholar] [CrossRef]
- Saffer, D.M.; Tobin, H.J. Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 2011, 39, 157–186. [Google Scholar] [CrossRef]
- Bekins, B.A.; Dreiss, S.J. A simplified analysis of parameters controlling dewatering in accretionary prisms. Earth Planet. Sci. Lett. 1992, 109, 275–287. [Google Scholar] [CrossRef]
- Bray, C.J.; Karig, D.E. Porosity of sediments in accretionary prisms and some implications for dewatering processes. J. Geophys. Res. Solid Earth 1985, 90, 768–778. [Google Scholar] [CrossRef]
- Jarrard, R.D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 2003, 4, 8905. [Google Scholar] [CrossRef]
- van Keken, P.E.; Hacker, B.R.; Syracuse, E.M.; Abers, G.A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. Solid Earth 2011, 116, B01401. [Google Scholar] [CrossRef]
- Peacock, S.A. Fluid processes in subduction zones. Science 1990, 248, 329–337. [Google Scholar] [CrossRef]
- Hensen, C.; Wallmann, K.; Schmidt, M.; Ranero, C.; Suess, E. Fluid expulsion related to mud extrusion off Costa Rica—A window to the subducting slab. Geology 2004, 32, 201–204. [Google Scholar] [CrossRef]
- Kastner, M.; Elderfield, H.; Martin, J.B. Fluids in convergent margins: What do we know about their composition, origin, role in diagenesis and importance for oceanic chemical fluxes? Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 1991, 335, 243–259. [Google Scholar] [CrossRef]
- Brown, K.M.; Saffer, D.M.; Bekins, B.A. Smectite diagenesis, pore-water freshening, and fluid flow at the toe of the Nankai wedge. Earth Planet. Sci. Lett. 2001, 194, 97–109. [Google Scholar] [CrossRef]
- Hüpers, A.; Kopf, A.J. Effect of smectite dehydration on pore water geochemistry in the shallow subduction zone: An experimental approach. Geochem. Geophys. Geosyst. 2012, 13, Q0AD26. [Google Scholar] [CrossRef]
- Moore, G.F.; Taira, A.; Klaus, A.; Becker, L.; Boeckel, B.; Cragg, B.A.; Dean, A.; Fergusson, C.L.; Henry, P.; Hirano, S.; et al. New insights into deformation and fluid flow processes in the Nankai Trough accretionary prism: Results of Ocean Drilling Program Leg 190. Geochem. Geophys. Geosyst. 2001, 2, 1058. [Google Scholar] [CrossRef]
- Philip, B.T.; Solomon, E.A.; Kelley, D.S.; Tréhu, A.M.; Whorley, T.L.; Roland, E.; Tominaga, M.; Collier, R.W. Fluid sources and overpressures within the central Cascadia Subduction Zone revealed by a warm, high-flux seafloor seep. Sci. Adv. 2023, 9, eadd6688. [Google Scholar] [CrossRef]
- Millero, F.J.; Feistel, R.; Wright, D.G.; McDougall, T.J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 50–72. [Google Scholar] [CrossRef]
- Manning, C.E. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 2004, 223, 1–16. [Google Scholar] [CrossRef]
- Mottl, M.J.; Wheat, C.G.; Fryer, P.; Gharib, J.; Martin, J.B. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochim. Cosmochim. Acta 2004, 68, 4915–4933. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Yamano, N. Geological evidence for shallow ductile-brittle transition zones along subduction interfaces: Example from the Shimanto Belt, SW Japan. Earth Planets Space 2014, 66, 141. [Google Scholar] [CrossRef]
- Behrmann, J.H. Conditions for hydrofracture and the fluid permeability of accretionary wedges. Earth Planet. Sci. Lett. 1991, 107, 550–558. [Google Scholar] [CrossRef]
- Brown, K.M.; Bekins, B.; Clennell, B.; Dewhurst, D.; Westbrook, G. Heterogeneous hydrofracture development and accretionary fault dynamics. Geology 1994, 22, 259–262. [Google Scholar] [CrossRef]
- Magee, M.E.; Zoback, M.D. Evidence for a weak interplate thrust fault along the northern Japan subduction zone and implications for the mechanics of thrust faulting and fluid expulsion. Geology 1993, 21, 809–812. [Google Scholar] [CrossRef]
Sample | Host Mineral | Type | Diameter | Gas–Liquid | Th | Tm | Salinity | Density |
---|---|---|---|---|---|---|---|---|
(μm) | Ratio (%) | (°C) | (°C) | (NaCl wt%) | (g/cm3) | |||
GZ-411-S1 | Quartz | I | 5.2~12.3 | 5~30 | 124.9~192.4 | −5.8~−0.2 | 0.35~8.95 | 0.88~0.97 |
GZ-411-S2 | Quartz | I | 5.5~12.7 | 5~40 | 143.8~216.3 | −5.8~−0.4 | 0.7~8.95 | 0.85~0.95 |
GZ-411-S3 | Quartz | I | 5.5~12.7 | 5~20 | 122.7~187.2 | −8.7~−0.2 | 0.35~12.51 | 0.92~1.03 |
GZ-411-S4 | Quartz | I | 5.5~10.5 | 5~20 | 142.5~220.3 | −7.1~−0.5 | 0.88~10.61 | 0.88~0.95 |
GZ-411-S5 | Quartz | I | 5.4~10.7 | 5~30 | 142.6~199.5 | −6.4~−0.5 | 0.88~9.73 | 0.88~1.00 |
GZ-411-S6 | Quartz | I | 5.4~11.2 | 5~15 | 128.7~201.5 | −4.5~−0.2 | 0.35~7.17 | 0.89~0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zeng, M.; Li, C.; Chen, S.; Li, T. Source and Migration of Fluids in a Meso-Tethyan Subduction Zone: Fluid Inclusion Study of Syn-Mélange Veins from the Mugagangri Accretionary Complex. Minerals 2023, 13, 1196. https://doi.org/10.3390/min13091196
Liu X, Zeng M, Li C, Chen S, Li T. Source and Migration of Fluids in a Meso-Tethyan Subduction Zone: Fluid Inclusion Study of Syn-Mélange Veins from the Mugagangri Accretionary Complex. Minerals. 2023; 13(9):1196. https://doi.org/10.3390/min13091196
Chicago/Turabian StyleLiu, Xinyu, Min Zeng, Chenwei Li, Si Chen, and Tianyuan Li. 2023. "Source and Migration of Fluids in a Meso-Tethyan Subduction Zone: Fluid Inclusion Study of Syn-Mélange Veins from the Mugagangri Accretionary Complex" Minerals 13, no. 9: 1196. https://doi.org/10.3390/min13091196
APA StyleLiu, X., Zeng, M., Li, C., Chen, S., & Li, T. (2023). Source and Migration of Fluids in a Meso-Tethyan Subduction Zone: Fluid Inclusion Study of Syn-Mélange Veins from the Mugagangri Accretionary Complex. Minerals, 13(9), 1196. https://doi.org/10.3390/min13091196