Origin of Himalayan Eocene Adakitic Rocks and Leucogranites: Constraints from Geochemistry, U-Pb Geochronology and Sr-Nd-Pb-Hf Isotopes
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Petrography
4. Analytical Methods
4.1. Zircon and Monazite U–Pb Geochronology Analysis
4.2. In Situ Sr–Nd–Hf Isotope Analysis
4.3. Whole-Rock Pb Isotope Analysis
4.4. Whole-Rock Major and Trace Element Analysis
5. Analytical Results
5.1. Zircon U–Pb Ages and Hf Isotopes
5.2. Monazite U–Pb Ages and Nd Isotopes
5.3. In Situ Plagioclase Sr Isotopes
5.4. Whole-Rock Pb Isotopes
5.5. Whole-Rock Major and Trace Element Geochemistry
5.5.1. Adakitic Rock
5.5.2. Leucogranite
6. Discussion: Relationship between Adakitic Rocks and Leucogranite
6.1. Chronological Characteristics
6.2. Petrogenesis
6.3. Tectonic Implications
7. Conclusions
- Liemai muscovite granites were emplaced at ca. 42 Ma and are characterized by peraluminous features, high Sr/Y and La/Yb ratios, and low Y and Yb concentrations, suggesting an adakitic affinity, similar to that of the granites formed during the same period in adjacent areas (Yalaxiangbo, Dala, Quedang, etc.).
- The Eocene adakitic rock is the result of the partial melting of metapelite dominated by amphibolite in the deep crust under high temperature and high pressure in the crustal thickening process. The leucogranite is the result of the continuous fractional crystallization of plagioclase against the same geological background in a relatively shallow low-temperature and low-pressure environment.
- Eocene adakitic rocks only developed significantly during the early Eocene (47–40 Ma) and were obviously stunted from 40 to 35 Ma, which may represent a tectonic transition period. Leucogranites were actively formed throughout the Eocene, and there was a clear episodic growth trend from 51 to 40 Ma. The peak age trough between 40 and 37 Ma may have been influenced by the same tectonic event as that impacting the adakitic rocks.
- It is proposed that the transition from a high- to low-angle subduction plate may affect deep crustal diagenesis conditions such as temperature and pressure, resulting in differences in the spatial and temporal distributions of Eocene adakitic rocks and leucogranites.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Fort, P.; Cuney, M.; Deniel, C.; Francelanord, C.; Sheppard, S.M.F.; Upreti, B.N.; Vidal, P. Crustal generation of the Himalayan leucogranites. Tectonophysics 1987, 134, 39–57. [Google Scholar] [CrossRef]
- Hodges, K.V. Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Soc. Am. Bull. 2000, 112, 324–350. [Google Scholar] [CrossRef]
- Mo, X.X.; Hou, Z.Q.; Niu, Y.L.; Dong, G.C.; Qu, X.M.; Zhao, Z.D.; Yang, Z. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos 2007, 96, 225–242. [Google Scholar] [CrossRef]
- Hou, Z.; Duan, L.; Lu, Y.; Zheng, Y.; Zhu, D.; Yang, Z.; Yang, Z.; Wang, B.; Pei, Y.; Zhao, Z.; et al. Lithospheric architecture of the Lhasa terrane and its control on ore depositsin the Hhimalayan-Tibetan orogen. Econ. Geol. 2015, 110, 1541–1575. [Google Scholar] [CrossRef]
- Wu, F.Y.; Liu, X.C.; Liu, Z.C.; Wang, R.C.; Xie, L.; Wang, J.M.; Ji, W.Q.; Yang, L.; Liu, C.; Khanal, G.P.; et al. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos 2020, 352–353, 105319. [Google Scholar] [CrossRef]
- Cao, H.W.; Pei, Q.M.; Santosh, M.; Li, G.M.; Zhang, L.K.; Zhang, X.F.; Zhang, Y.H.; Zou, H.; Dai, Z.W.; Lin, B.; et al. Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, Genesis, and rare metal mineralization. Earth-Sci. Rev. 2022, 234, 104229. [Google Scholar] [CrossRef]
- Cao, H.W.; Pei, Q.M.; Yu, X.; Santosh, M.; Li, G.M.; Zhang, L.K.; Dong, L.; Gao, K.; Dai, Z.W.; Ai, J.B.; et al. Discovery of the large-scale Eocene Xiwu Pb-Zn-Ag deposit in the Tethyan Himalaya: Geochronology, geochemistry, and C-H-O-S-Pb-Sr-Nd isotopes. Gondwana Res. 2023, 124, 165–187. [Google Scholar] [CrossRef]
- Cao, H.W.; Pei, Q.M.; Yu, X.; Cao, A.B.; Chen, Y.; Liu, H.; Zhang, K.; Liu, X.; Zhang, X.F. The long–lived partial melting of the greater Himalayas in southern Tibet, constraints from the Miocene Gyirong anatectic pegmatite and its prospecting potential for rare element minerals. China Geol. 2023, 6, 303–321. [Google Scholar]
- Cao, H.W.; Tang, L.; Yang, C.X.; Santosh, M. Advances in metallogeny and tectonics of the Eastern Tethyan Realm: Introduction. Geol. J. 2023, 58, 2859–2864. [Google Scholar] [CrossRef]
- Zeng, L.S.; Gao, L.E.; Xie, K.J.; Jing, L.Z. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth Planet. Sci. Lett. 2011, 303, 251–266. [Google Scholar] [CrossRef]
- Zeng, L.S.; Gao, L.E.; Tang, S.H.; Hou, K.J.; Guo, C.L.; Hu, G.Y. Eocene magmatism in the tethyan Himalaya, southern Tibet. Geol. Soc. Lond. Spec. Publ. 2014, 412, 287–316. [Google Scholar] [CrossRef]
- Liu, Z.C.; Wu, F.Y.; Qiu, Z.L.; Wang, J.G.; Liu, X.C.; Ji, W.Q.; Liu, C.Z. Leucogranite geochronological constraints on the termination of the South Tibetan Detachment in eastern Himalaya. Tectonophysics 2017, 721, 106–122. [Google Scholar] [CrossRef]
- Hu, F.; Ducea, M.N.; Liu, S.; Chapman, J.B. Quantifying crustal thickness in continental collisional belts: Global perspective and a geologic application. Sci. Rep. 2017, 7, 7058. [Google Scholar] [CrossRef]
- Hu, F.; Wu, F.; Chapman, J.B.; Ducea, M.N.; Ji, W.; Liu, S. Quantitatively tracking the elevation of the Tibetan Plateau since the cretaceous: Insights from whole-rock Sr/Y and La/Yb ratios. Geophys. Res. Lett. 2020, 47, e2020GL089202. [Google Scholar] [CrossRef]
- Xie, K.J.; Zeng, L.S.; Gao, L.E. Late-Eocene Dala adakitic granite, southern Tibet and geological implications. Acta Petrol. Sin. 2010, 26, 1016–1026. [Google Scholar]
- Aikman, A.B.; Harrison, T.M.; Hermann, J. Age and thermal history of Eo-and Neohimalayan granidoids, Eastern Hiamalaya. J. Asian Earth Sci. 2012, 51, 85–97. [Google Scholar] [CrossRef]
- Gao, L.E.; Zeng, L.S.; Asimow, P.D. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology 2017, 45, 39–42. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, J.; Wang, X.; Huang, T.; Zhang, B.; Fan, Y. Himalayan Miocene adakitic rocks, a case study of the Mayum pluton: Insights into geodynamic processes within the subducted indian continental lithosphere and Himalayan mid-Miocene tectonic regime transition. GSA Bull. 2021, 133, 591–611. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.F.; Mayne, M.J.; Zhao, Z.F. Miocene high-temperature leucogranite magmatism in the Himalayan orogen. GSA Bull. 2021a, 133, 679–690. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, Y.F.; Yakymchuk, C.; Zhao, Z.F.; Meng, Z.Y. The effects of source mixing and fractional crystallization on the composition of Eocene granites in the Himalayan orogen. J. Petrol. 2021b, 62, egab037. [Google Scholar] [CrossRef]
- Dai, Z.W.; Yang, Z.M.; Li, G.M.; Xie, Y.L.; Dong, L.; Gao, K.; Cao, H.W. Partial melting of amphibolitic lower crust and subsequent melt-crystal separation for generation of the Early Eocene magmatism in eastern Himalaya. Front. Earth Sci. 2023, 10, 1104197. [Google Scholar] [CrossRef]
- Dai, Z.W.; Dong, L.; Li, G.M.; Huizenga, J.M.; Ding, J.; Zhang, L.K.; Huang, Y.; Cao, H.; Lu, L.; Yan, G. Crustal thickening prior to 43 Ma in the Himalaya: Evidence from lower crust-derived adakitic magmatism in Dala, eastern tethyan Himalaya, Tibet. Geol. J. 2020, 55, 4021–4046. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Zheng, Y.C.; Zeng, L.S.; Gao, L.E.; Huang, K.X.; Li, W.; Li, Q.Y.; Fu, Q.; Liang, W.; Sun, Q.Z. Eocene–Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth Planet. Sci. Lett. 2012, 349, 38–52. [Google Scholar] [CrossRef]
- Cao, H.W.; Li, G.M.; Zhang, L.K.; Dong, L.; Gao, K.; Dai, Z.W. Monazite U-Th-Pb age of Liemai Eocene granites in the southern Tibet and its geological implications. Sediment. Geol. Tethyan Geol. 2020, 40, 31–42, (In Chinese with English Abstract). [Google Scholar]
- Tian, L.M.; Wang, L.Y.; Zheng, H.T.; Yang, B. Eocene magmatism from the Liemai intrusion in the eastern tethyan himalayan belt and tectonic implications. Geol. Mag. 2017, 156, 510–524. [Google Scholar] [CrossRef]
- He, S.X.; Liu, X.C.; Yang, L.; Wang, J.M.; Hu, F.Y.; Wu, F.Y. Multistage magmatism recorded in a single gneiss dome: Insights from the Lhagoi Kangri leucogranites, Himalayan orogen. Lithos 2021, 398–399, 106222. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, J.; Wang, X.; Putthapiban, P.; Zhang, B.; Huang, T. Oligocene initiation of the South Tibetan Detachment System: Constraints from syn-tectonic leucogranites in the Kampa Dome, Northern Himalaya. Lithos 2020, 354–355, 105332. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, L.; Gao, L.E.; Chen, Z.; Li, S. Eocene thickening without extra heat in a collisional orogenic belt: A record from Eocene metamorphism in mafic dike swarms within the Tethyan Himalaya, southern Tibet. GSA Bull. 2022, 134, 1217–1230. [Google Scholar] [CrossRef]
- Liu, X.C.; Wu, F.Y.; Yu, L.J.; Liu, Z.C.; Ji, W.Q.; Wang, J.G. Emplacement age of leucogranite in the Kampa Dome, southern Tibet. Tectonophysics 2016, 667, 163–175. [Google Scholar] [CrossRef]
- Zeng, L.S.; Liu, J.; Gao, L.E.; Xie, K.J.; Wen, L. Early Oligocene anatexis in the Yardoi gneiss dome, southern Tibet and geological implications. Chin. Sci. Bull. 2009, 54, 104–112. [Google Scholar] [CrossRef]
- Tian, S.H.; Hou, Z.Q.; Mo, X.X.; Tian, Y.H.; Zhao, Y.; Hou, K.J.; Yang, Z.S.; Hu, W.J.; Li, X.F.; Zhang, Y.J. Lithium isotopic evidence for subduction of the Indian lower crust beneath southern Tibet. Gondwana Res. 2020, 77, 168–183. [Google Scholar] [CrossRef]
- Tian, S.H.; Zhao, Y.; Hou, Z.Q.; Tian, Y.H.; Hou, K.J.; Li, X.F.; Yang, Z.S.; Hu, W.J.; Mo, X.X.; Zheng, Y.C. Lithium isotopic composition and concentration of Himalayan leucogranites and the Indian lower continental crust. Lithos 2017, 284–285, 416–428. [Google Scholar] [CrossRef]
- Kapp, P.; Decelles, P.G. Mesozoic-Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses. Am. J. Sci. 2019, 319, 159–254. [Google Scholar] [CrossRef]
- Zhang, K.J.; Zhang, Y.X.; Tang, X.C.; Xia, B. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo–Asian collision. Earth Sci. Rev. 2012, 114, 236–249. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci. Rev. 2006, 76, 1–131. [Google Scholar] [CrossRef]
- Jessup, M.J.; Langille, J.M.; Diedesch, T.F.; Cottle, J.M. Gneiss Dome Formation in the Himalaya and southern Tibet. Geol. Soc. Lond. Spec. Publ. 2019, 483, 401–422. [Google Scholar] [CrossRef]
- Cao, H.W.; Huang, Y.; Li, G.M.; Zhang, L.K.; Wu, J.Y.; Dong, L.; Dai, Z.W.; Lu, L. Late Triassic sedimentary records in the northern Tethyan Himalaya: Tectonic link with Greater India. Geosci. Front. 2018, 9, 273–291. [Google Scholar] [CrossRef]
- Kohn, M.J. Himalayan Metamorphism and its Tectonic Implications. Annu. Rev. Earth Planet. Sci. 2014, 42, 381–419. [Google Scholar] [CrossRef]
- Kumar, S.; Pundir, S. Tectono-magmatic evolution of granitoids in the Himalaya and Trans-Himalaya. Himal. Geol. 2021, 42, 213–246. [Google Scholar]
- Zong, K.Q.; Liu, Y.S.; Gao, C.G.; Hu, Z.C.; Gao, S.; Gong, H.J. In situ U-Pb dating and trace element analysis of zircons in thin sections of eclogite: Refining constraints on the ultra-high pressure metamorphism of the Sulu terrane, China. Chem. Geol. 2010, 269, 237–251. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; 39p. [Google Scholar]
- Hu, Z.C.; Zhang, W.; Liu, Y.S.; Gao, S.; Li, M.; Zong, K.Q.; Chen, H.H.; Hu, S.H. “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis. Anal. Chem. 2015, 87, 1152–1157. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, Z.; Liu, Y.; Wu, T.; Deng, X.; Guo, J.; Zhao, H. Improved in situ Sr isotopic analysis by a 257 nm femtosecond laser in combination with the addition of nitrogen for geological minerals. Chem. Geol. 2018, 479, 10–21. [Google Scholar] [CrossRef]
- Tong, X.R.; Liu, Y.S.; Hu, Z.C.; Chen, H.H.; Zhou, L.; Hu, Q.H.; Xu, R.; Deng, L.X.; Chen, C.F.; Yang, L.; et al. Accurate determination of Sr isotopic compositions in clinopyroxene and silicate glasses by LA-MC-ICP-MS. Geostand. Geoanal. Res. 2016, 40, 85–99. [Google Scholar] [CrossRef]
- Xu, L.; Hu, Z.C.; Zhang, W.; Yang, L.; Liu, Y.S.; Gao, S. In situ Nd isotope analyses in geological materials with signal enhancement and non-linear mass dependent fractionation reduction using laser ablation MC-ICP-MS. J. Anal. At. Spectrom. 2015, 30, 232–244. [Google Scholar] [CrossRef]
- Russell, W.A.; Papanastassiou, D.A.; Tombrello, T.A. Ca isotope fractionation on the earth and other solar system materials. Geochim. Cosmochim. Acta 1978, 42, 1075–1090. [Google Scholar] [CrossRef]
- Gao, J.F.; Lu, J.J.; Lai, M.Y.; Lin, Y.P.; Pu, W. Analysis of trace elements in rock samples using HR-ICPMS. J. Nanjing Univ. Nat. Sci. 2003, 39, 844–850, (In Chinese with English Abstract). [Google Scholar]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Liu, Z.C.; Wu, F.Y.; Ji, W.Q.; Wang, J.G.; Liu, C.Z. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos 2014, 208–209, 118–136. [Google Scholar] [CrossRef]
- Li, Z.L. Geochronology, Geochemistry and Geodynamic Significance of the Dala Two-Mica Granite in Tethyan Himalaya, Tibet; China University of Geosciences: Beijing, China, 2016; (In Chinese with English Abstract). [Google Scholar]
- Yang, J.Y.; Fei, G.C.; Ding, F.; Zhao, D.K.; Deng, Y.; Gao, J.G.; Shi, S. The geochemical characteristics and geological significance of the monzogranite in rongboza, nagarze, Tibet. J Mineral. Petrol. 2019, 69–77. [Google Scholar]
- Ji, W.Q.; Wu, F.Y.; Wang, J.M.; Liu, X.C.; Liu, Z.C.; Zhang, Z.; Cao, W.; Wang, J.G.; Zhang, C. Early evolution of Himalayan orogenic belt and generation of middle Eocene magmatism: Constraint from Haweng Granodiorite Porphyry in the Tethyan Himalaya. Front. Earth Sci. 2020, 8, 236. [Google Scholar] [CrossRef]
- Ji, W.Q.; Wu, F.Y.; Chung, S.L.; Wang, X.C.; Liu, C.Z.; Li, Q.L.; Liu, Z.C.; Liu, X.C.; Wang, J.G. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt–type magmatism in southern Tibet. Geology 2016, 44, 283–286. [Google Scholar] [CrossRef]
- Bian, Q.T.; Ding, L. Discovery of the Zhegucuo au (As)-bearing fine granular quartz diorite in the eastern Tethyan Himalayan Belt and its significance. Acta Petrol. Sin. 2006, 22, 977–988, (In Chinese with English Abstract). [Google Scholar]
- Larson, K.P.; Godin, L.; Davis, W.J.; Davis, D.W. Out-of-sequence deformation and expansion of the Himalayan orogenic wedge: Insight from the Changgo culmination, south central Tibet. Tectonics 2010, 29, TC4013. [Google Scholar] [CrossRef]
- Liu, Z.C.; Wu, F.Y.; Ding, L.; Liu, X.C.; Wang, J.G.; Ji, W.Q. Highly fractionated Late Eocene (~35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos 2016, 240–243, 337–354. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, W.C.; Wang, G.C.; Liu, Z.; Lai, Y.; Huang, J.H.; Yan, G.Q.; Zhang, Q.C. Chemical and boron isotopic composition of tourmaline from the Conadong leucogranite pegmatite system in South Tibet. Lithos 2019, 326–327, 529–539. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Skjerlie, K.P.; Johnston, A.D. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. J. Petrol. 1996, 37, 661–691. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, K.J.; Jin, X.; Zeng, L.; Yan, L.L.; Santosh, M. Crustal thickening of central Tibet prior to the Indo–Asian collision: Evidence from petrology, geochronology, geochemistry and Sr–Nd–Hf isotopes on K-rich charnockite–granite suite in eastern Qiangtang. J. Petrol. 2019, 60, 827–854. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Beard, J.S. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J. Petrol. 1995, 36, 707–738. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Yang, X.M. Estimation of crystallization pressure of granite intrusions. Lithos 2017, 286–287, 324–329. [Google Scholar] [CrossRef]
- Yang, L.; Calvin, F.M.; Wu, F.Y. Estimating crystallization pressure of peraluminous melts: An experimentally based empirical approach. Contrib. Mineral. Petrol. 2022, 177, 78. [Google Scholar] [CrossRef]
- Breiter, K.; Škoda, R. Zircon and whole-rock Zr/Hf ratios asmarkers of the evolution of granitic magmas: Examples from the Teplice caldera (Czech Republic/Germany). Mineral. Petrol. 2017, 111, 435–457. [Google Scholar] [CrossRef]
- Štípská, P.; Závada, P.; Collett, S.; Kylander-Clark, A.R.; Hacker, B.R.; Tabaud, A.S.; Racek, M. Eocene migmatite formation and diachronous burial revealed by petrochronology in NW Himalaya, Zanskar. J. Metamorph. Geol. 2020, 38, 655–691. [Google Scholar] [CrossRef]
- Kawabata, R.; Imayama, T.; Bose, N.; Yi, K.; Kouketsu, Y. Tectonic discontinuity, partial melting and exhumation in the Garhwal Himalaya (Northwest India): Constrains from spatial and temporal pressure-temperature conditions along the Bhagirathi valley. Lithos 2021, 404–405, 106488. [Google Scholar] [CrossRef]
- Dai, Z.W.; Li, G.M.; Ding, J.; Li, Y.X.; Dong, L.; Huang, Y.; Cao, H.W. Late Cretaceous Adakite in Nuri Area, Tibet: Products of ridge subduction. Earth Sci. 2018, 43, 2727–2741, (In Chinese with English Abstract). [Google Scholar]
- Defant, M.J.; Drummond, M.S. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology 1993, 21, 547–550. [Google Scholar] [CrossRef]
- Karsli, O.; Dokuz, A.; Uysal, İ.; Aydin, F.; Kandemir, R.; Wijbrans, J. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: Implications for crustal thickening to delamination. Lithos 2010, 114, 109–120. [Google Scholar] [CrossRef]
- Lai, S.C.; Qin, J.F. Adakitic rocks derived from the partial melting of subducted continental crust: Evidence from the Eocene volcanic rocks in the northern Qiangtang block. Gondwana Res. 2013, 23, 812–824. [Google Scholar] [CrossRef]
- Yu, H.X.; Chen, J.L.; Xu, J.F.; Wang, B.; Wu, J.B.; Liang, H.Y. Geochemistry and origin of Late Cretaceous (similar to 90Ma) ore-bearing porphyry of Balazha in mid-northern Lhasa terrane, Tibet. Acta Petrol. Sin. 2011, 27, 2011–2022, (In Chinese with English Abstract). [Google Scholar]
- Zeng, L.S.; Liu, J.; Hou, Z.Q.; Gao, L.E.; Xie, K.J. Fluxed-Melting of Shallow and Hot High-Grade Metamorphic Rocks in the Namcha Barwa Massif: A New Mechanism for the Generation of Adakitic Melts; EOS, Translator; AGU: Washington, DC, USA, 2008; Volume 89. [Google Scholar]
- Guo, Z.F.; Wilson, M.; Liu, J.Q. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos 2007, 96, 205–224. [Google Scholar] [CrossRef]
- Castillo, P.R. Adakite petrogenesis. Lithos 2012, 134–135, 304–316. [Google Scholar] [CrossRef]
- Macpherson, C.G.; Dreher, S.T.; Thirlwall, M.F. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet. Sci. Lett. 2006, 243, 581–593. [Google Scholar] [CrossRef]
- Castillo, P.R.; Janney, P.E.; Solidum, R.U. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contrib. Mineral. Petrol. 1999, 134, 33–51. [Google Scholar] [CrossRef]
- Hastie, A.R.; Kerr, A.C.; Pearce, J.A.; Mitchell, S.F. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th–Co discrimination diagram. J. Petrol. 2007, 48, 2341–2357. [Google Scholar] [CrossRef]
- Ding, H.X.; Hou, Q.Y.; Zhang, Z.M. Petrogenesis and tectonic significance of the Eocene adakite-like rocks in western Yunnan, southeastern Tibetan Plateau. Lithos 2016, 245, 161–173. [Google Scholar] [CrossRef]
- Green, H.T. Anatexis of mafic crust and high pressure crystallization of andesite. In Andesites: Orogenic Andesites and Related Rocks; Thorpe, R.S., Ed.; John Wiley and Sons: New York, NY, USA, 1982; pp. 465–487. [Google Scholar]
- Rapp, R.P.; Shimizu, N.; Norman, M.; Applegate, G. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem. Geol. 1999, 160, 335–356. [Google Scholar] [CrossRef]
- Xiong, X.L.; Liu, X.C.; Zhu, Z.M.; Li, Y.; Xiao, W.S.; Song, M.S.; Wu, J.H. Adakitic rocks and destruction of the North China Craton: Evidence from experimental petrology and geochemistry. Sci. China Earth Sci. 2011, 54, 858–870. [Google Scholar] [CrossRef]
- Chapman, J.B.; Ducea, M.N.; DeCelles, P.G.; Profeta, L. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the North American Cordillera. Geology 2015, 43, 919–922. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Li, C.D.; Jin, W.J.; Jia, X.Q. A granite classification based on pressures. Geol. Bull. China 2006, 25, 1274–1278. [Google Scholar]
- Zeng, L.S.; Asimow, P.; Saleeby, J.B. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source. Geochim. Cosmochim. Acta 2005, 69, 3671–3682. [Google Scholar] [CrossRef]
- Ayres, M.; Harris, N.; Vance, D. Possible constraints on anatectic melt residence times form accessory mineral dissolution rates: An example from Himalayan leucogranites. Mineral. Mag. 1997, 61, 29–36. [Google Scholar] [CrossRef]
- Watt, G.R.; Harley, S.L. Accessory phase controls on the geochemistry of crustal melts and restites produced during water-undersaturated partial melting. Contrib. Mineral. Petrol. 1993, 114, 550–566. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Ding, H.X.; Dong, X.; Tian, Z.L. Two contrasting eclogite types in the Himalayan Orogen and differential subduction of indian continent. Earth Sci. Rev. 2019, 44, 1602–1619, (In Chinese with English Abstract). [Google Scholar]
- Montomoli, C.; Iaccarino, S.; Antolin, B.; Appel, E.; Carosi, R.; Dunkl, I.; Lin, D.; Visonà, D. Tectonometamorphic evolution of the Tethyan Sedimentary Sequence (Himalayas, SE Tibet). Ital. J. Geosci. 2017, 136, 73–88. [Google Scholar] [CrossRef]
- Gao, L.E.; Zeng, L.S.; Xie, K.J. Eocene high grade metamorphism and crustal anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chin. Sci. Bull. 2012, 57, 639–650. [Google Scholar] [CrossRef]
- Rehman, H.U. Geochronological enigma of the HP-UHP rocks in the Himalayan orogen. Geol. Soc. Lond. Spec. Publ. 2019, 474, 183–207. [Google Scholar] [CrossRef]
- Qi, X.X.; Zeng, L.S.; Meng, X.J.; Xu, Z.Q.; Li, T.F. Zircon SHRIMP U-Pb dating for Dala granite in the Tethyan Himalaya and its geological implication. Acta Petrol. Sin. 2008, 24, 1501–1508, (In Chinese with English Abstract). [Google Scholar]
- Wu, Z.H.; Ye, P.S.; Wu, Z.H.; Zhao, Z. LA-ICP-MS zircon U-Pb ages of tectonic-thermal events in the Yalaxiangbo dome of Tethys Himalayan belt. Geol. Bull. China 2014, 33, 595–605, (In Chinese with English abstract). [Google Scholar]
- Ding, L.; Kapp, P.; Wan, X.Q. Paleocene–Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics 2005, 24, TC3001. [Google Scholar] [CrossRef]
- Liu, Z.C. Geochoronology and Petrogenesis of the Ramba Leucogranite, Tethyan Himalaya, Tibet. Ph.D. Thesis, University of China Academy of Sciences, Beijing, China, 2013. (In Chinese with English abstract). [Google Scholar]
- Aikman, A.B.; Harrison, T.M.; Lin, D. Evidence for Early (>44 Ma) Crustal Thickening, Tethyan Hiamalaya, southeastern Tibet. Earth Planet. Sci. Lett. 2008, 274, 14–23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Li, W.; Cao, H.; Zhang, X.; Li, Y.; Gao, K.; Dong, L.; Zhang, K.; Liu, X. Origin of Himalayan Eocene Adakitic Rocks and Leucogranites: Constraints from Geochemistry, U-Pb Geochronology and Sr-Nd-Pb-Hf Isotopes. Minerals 2023, 13, 1204. https://doi.org/10.3390/min13091204
Liu H, Li W, Cao H, Zhang X, Li Y, Gao K, Dong L, Zhang K, Liu X. Origin of Himalayan Eocene Adakitic Rocks and Leucogranites: Constraints from Geochemistry, U-Pb Geochronology and Sr-Nd-Pb-Hf Isotopes. Minerals. 2023; 13(9):1204. https://doi.org/10.3390/min13091204
Chicago/Turabian StyleLiu, Hang, Wenchang Li, Huawen Cao, Xiangfei Zhang, Yang Li, Ke Gao, Lei Dong, Kai Zhang, and Xin Liu. 2023. "Origin of Himalayan Eocene Adakitic Rocks and Leucogranites: Constraints from Geochemistry, U-Pb Geochronology and Sr-Nd-Pb-Hf Isotopes" Minerals 13, no. 9: 1204. https://doi.org/10.3390/min13091204
APA StyleLiu, H., Li, W., Cao, H., Zhang, X., Li, Y., Gao, K., Dong, L., Zhang, K., & Liu, X. (2023). Origin of Himalayan Eocene Adakitic Rocks and Leucogranites: Constraints from Geochemistry, U-Pb Geochronology and Sr-Nd-Pb-Hf Isotopes. Minerals, 13(9), 1204. https://doi.org/10.3390/min13091204