Editorial for Special Issue “Hydrodynamics and Gas Dispersion in Flotation”
Author Contributions
Conflicts of Interest
References
- Lepage, M.R.; Gomez, C.O.; Waters, K.E. Using Top-of-Froth Conductivity to Infer Water Overflow Rate in a Two-Phase Lab-Scale Flotation Column. Minerals 2022, 12, 454. [Google Scholar] [CrossRef]
- Femenias, F.; Maldonado, M.; Miranda, N.; Gutierrez, L. Flotation Performance and Gas Dispersion Properties in a Laboratory Flotation Cell. Minerals 2022, 12, 1351. [Google Scholar] [CrossRef]
- Gomez, C.O.; Maldonado, M. Modelling Bubble Flow Hydrodynamics: Drift-Flux and Molerus Models. Minerals 2022, 12, 1502. [Google Scholar] [CrossRef]
- Vallejos, P.; Yianatos, J.; Grau, R.; Yáñez, A. The Impact of Froth Launders Design in an Industrial Flotation Bank Using Novel Metallurgical and Hydrodynamic Models. Minerals 2023, 13, 169. [Google Scholar] [CrossRef]
- Vinnett, L.; Mesa, D. The Role of Stereological Assumptions in Bubble Size Estimations and Their Implications for Assessing Critical Coalescence Concentrations. Minerals 2023, 13, 803. [Google Scholar] [CrossRef]
- Vinnett, L.; Urriola, B.; Orellana, F.; Guajardo, C.; Esteban, A. Reducing the Presence of Clusters in Bubble Size Measurements for Gas Dispersion Characterizations. Minerals 2022, 12, 1148. [Google Scholar] [CrossRef]
- Vinnett, L.; Yianatos, J.; Acuña, C.; Cornejo, I. A Method to Detect Abnormal Gas Dispersion Conditions in Flotation Machines. Minerals 2022, 12, 125. [Google Scholar] [CrossRef]
- Nazari, S.; Hassanzadeh, A.; He, Y.; Khoshdast, H.; Kowalczuk, P.B. Recent Developments in Generation, Detection and Application of Nanobubbles in Flotation. Minerals 2022, 12, 462. [Google Scholar] [CrossRef]
- Zhou, S.; Li, Y.; Nazari, S.; Bu, X.; Hassanzadeh, A.; Ni, C.; He, Y.; Xie, G. An Assessment of the Role of Combined Bulk Micro- and Nano-Bubbles in Quartz Flotation. Minerals 2022, 12, 944. [Google Scholar] [CrossRef]
- Alvarado, O.; Quezada, G.R.; Saavedra, J.H.; Rozas, R.E.; Gutiérrez, L.; Toledo, P.G. Alkali Halide and MIBC Interaction at Typical Flotation Interfaces in Saline Water as Determined by Molecular Dynamics Simulations. Minerals 2023, 13, 665. [Google Scholar] [CrossRef]
- Chu, P.; Li, R.; Lepage, M.; Waters, K. Investigation of the Effect of Electrolytes on the Breakaway of Air Bubbles at an Underwater Capillary Using High-Speed Cinematography and Passive Acoustic Techniques. Minerals 2022, 12, 972. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinnett, L.; Gómez, C.O. Editorial for Special Issue “Hydrodynamics and Gas Dispersion in Flotation”. Minerals 2023, 13, 1219. https://doi.org/10.3390/min13091219
Vinnett L, Gómez CO. Editorial for Special Issue “Hydrodynamics and Gas Dispersion in Flotation”. Minerals. 2023; 13(9):1219. https://doi.org/10.3390/min13091219
Chicago/Turabian StyleVinnett, Luis, and César O. Gómez. 2023. "Editorial for Special Issue “Hydrodynamics and Gas Dispersion in Flotation”" Minerals 13, no. 9: 1219. https://doi.org/10.3390/min13091219
APA StyleVinnett, L., & Gómez, C. O. (2023). Editorial for Special Issue “Hydrodynamics and Gas Dispersion in Flotation”. Minerals, 13(9), 1219. https://doi.org/10.3390/min13091219