Pore Characteristics, Oil Contents and Factors Influencing Laminated Shale in the First Member of the Qingshankou Formation in the Gulong Sag, Northern Songliao Basin
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
3.1. Samples
3.2. Methods
4. Results
4.1. Shale Mineral Composition Characteristics
4.2. Organic Geochemical Characteristics of Shale
4.3. Shale Pore Types and Genesis
4.3.1. Interparticle Pores
4.3.2. Intraparticle Pores
4.3.3. Organic Matter Pores
4.3.4. Microfracture
4.4. Pore Structure Characteristics of Shale Based on the Nitrogen Adsorption Method
4.4.1. Isothermal Adsorption–Desorption Curve
4.4.2. Pore Size Distribution
5. Discussion
5.1. Factors Influencing Shale Pore Volume
5.1.1. Mineral Composition and Content
5.1.2. Organic Matter Content
5.1.3. Maturity
5.2. Occurrence Characteristics of Shale Oil
5.3. Factors Controlling Shale Oil
5.3.1. TOC Control on the Oil Content
5.3.2. Ro Control on the Oil Content
5.3.3. Relationship between Free Oil, Adsorbed Oil and Mineral Composition
5.3.4. Control of the Pore Size and Pore Volume on Shale Oil
5.4. Lower Limit of the Pore Size of Shale Oil
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zou, C.; Zhu, R.; Wu, S.; Yang, Z.; Tao, S.; Yuan, X.; Hou, L.; Yang, H.; Xu, C.; Li, D.; et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance. Shiyou Xuebao/Acta Pet. Sin. 2012, 33, 173–187. [Google Scholar]
- Soeder, D.J. The successful development of gas and oil resources from shales in North America. J. Pet. Sci. Eng. 2018, 163, 399–420. [Google Scholar] [CrossRef]
- Cardott, B.J. Thermal maturity of Woodford Shale gas and oil plays, Oklahoma, USA. Int. J. Coal Geol. 2012, 103, 109–119. [Google Scholar] [CrossRef]
- Wang, P.; Chen, Z.; Jin, Z.; Jiang, C.; Sun, M.; Guo, Y.; Chen, X.; Jia, Z. Shale oil and gas resources in organic pores of the Devonian Duvernay Shale, Western Canada Sedimentary Basin based on petroleum system modeling. J. Nat. Gas Sci. Eng. 2018, 50, 33–42. [Google Scholar] [CrossRef]
- Curiale, J.A.; Curtis, J.B. Organic geochemical applications to the exploration for source-rock reservoirs—A review. J. Unconv. Oil Gas Resour. 2016, 13, 1–31. [Google Scholar] [CrossRef]
- Zou, C.; Dong, D.; Wang, Y.; Li, X.; Huang, J.; Wang, S.; Guan, Q.; Zhang, C.; Wang, H.; Liu, H.; et al. Shale gas in China: Characteristics, challenges and prospects (I). Pet. Explor. Dev. 2015, 42, 753–767. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Dong, D.; Zhao, Q.; Chen, Z.; Feng, Y.; Li, J.; Wang, X. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Sci. 2022, 47, 1517–1533. [Google Scholar]
- You, J.; Liu, Y.; Li, Y.; Zhou, D.; Zheng, Q.; Yang, Y.; Shi, J.; Gao, H. Influencing factor of Chang 7 oil shale of Triassic Yanchang Formation in Ordos Basin: Constraint from hydrothermal fluid. J. Pet. Sci. Eng. 2021, 201, 108532. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, C.; Liang, H.; Wang, J.; Bai, J.; Yang, M.; Liu, G.; Huang, H.; Guan, Y. Paleoenvironmental conditions, organic matter accumulation, and unconventional hydrocarbon potential for the Permian Lucaogou Formation organic-rich rocks in Santanghu Basin, NW China. Int. J. Coal. Geol. 2018, 185, 44–60. [Google Scholar] [CrossRef]
- Zhao, X.; Pu, X.; Jin, F.; Han, W.; Shi, Z.; Cai, A.; Wang, A.; Guan, Q.; Jiang, W.; Zhang, W. Geological characteristics and key exploration technologies of continental shale oil sweet spots: A case study of Member 2 of Kongdian Formation in the Cangdong sag in the Huanghua depression, Bohai Bay Basin. Pet. Res. 2019, 4, 97–112. [Google Scholar] [CrossRef]
- Guowen, Z.H.U.; Xiaojun, W.A.N.G.; Jinyou, Z.; Zhao, L.; Yunfeng, B.; Ying, Z.; Xiuli, F.; Huasen, Z. Enrichment conditions and favorable zones for exploration and development of continental shale oil in Songliao Basin. Acta Pet. Sin. 2023, 44, 110–124. [Google Scholar]
- Zhu, R.; Zhang, J.; Li, M.; Cai, Y.; Wu, S.; Liu, C.; Zhang, S.; Kang, Y. Advancesand Key Issues In The Basic Research Of Non-Marine Shale Oil Enrichment. Acta Geol. Sin. 2023. [Google Scholar]
- Sun, L.; Liu, H.; He, W.; Li, G.; Zhang, S.; Zhu, R.; Jin, X.; Meng, S.; Jiang, H. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China. Pet. Explor. Dev. 2021, 48, 527–540. [Google Scholar] [CrossRef]
- Li, S.Z.; Zhou, Z.; Nie, H.K.; Zhang, L.F.; Song, T.; Liu, W.B.; Li, H.H.; Xu, Q.C.; Wei, S.Y.; Tao, S. Progress, challenges and prospects of unconventional oil and gas development of CNPC. China Pet. Explor. 2022, 27, 1–11. [Google Scholar]
- Curtis, J.B. Fractured Shale-Gas Systems. Bulletin 2002, 86, 1865. [Google Scholar] [CrossRef]
- Kuila, U.; Prasad, M.; Derkowski, A.; McCarty, D.K. Compositional Controls on Mudrock Pore-Size Distribution: An Example from Niobrara Formation. In Proceedings of the SPE All Days, Presented at the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 8–10 October 2012; p. SPE-160141-MS. [Google Scholar] [CrossRef]
- Han, H.; Ding, Z.; Dong, C.; Liu, Y.; Chen, S.; Lu, J.; Xue, Y.; Peng, S.; Gao, Y. Fractal characteristics of bulk-mudrock, washed, and kerogen samples of Chang 7 member mudrocks from the Ordos Basin, China. J. Pet. Sci. Eng. 2018, 170, 592–606. [Google Scholar] [CrossRef]
- Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Chen, Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 2013, 97, 1621–1643. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Li, J.; Shao, H.; Deng, Z.; Wu, Y. Thermal maturity: The controlling factor of wettability, pore structure, and oil content in the lacustrine Qingshankou shale, Songliao Basin. J. Pet. Sci. Eng. 2022, 215, 110618. [Google Scholar] [CrossRef]
- He, W.; Liu, B.; Zhang, J.; Bai, L.; Tian, S.; Chi, Y. Geological Characteristics and Key Scientific and Technological Problems of Gulong Shale Oil in Songliao Basin. Earth Sci. 2023, 48, 49–62. [Google Scholar]
- Feng, Z.; Liu, B.; Shao, H.M.; Wang, C.; Hong, S.X.; Wang, J.P.; Pan, H.F.; Wang, Y.C.; Zhang, A.D.; Tian, S.S. The Diagenesis Evolution and Accumulating Performance of the Mud Shale in Qingshankou Formation in Gulong Area, Songliao Basin; Petroleum Geology & Oilfield Development: Daqing, Chaina, 2020; Volume 39, pp. 72–85. [Google Scholar] [CrossRef]
- Zeng, W. Pore structure and shale oil potential of Qingshankou Formation shale in Songliao Basin. Guangzhou Institute of Geochemistry. Chin. Acad. Sci. 2020, 41, 5. [Google Scholar] [CrossRef]
- Liu, B.; Nakhaei-Kohani, R.; Bai, L.; Wen, Z.; Gao, Y.; Tian, W.; Yang, L.; Liu, K.; Hemmati-Sarapardeh, A.; Ostadhassan, M. Integrating advanced soft computing techniques with experimental studies for pore structure analysis of Qingshankou shale in Southern Songliao Basin, NE China. Int. J. Coal Geol. 2022, 257, 103998. [Google Scholar] [CrossRef]
- Reed, R.M.; Loucks, R.G.; Javie, D.M.; Ruppel, S.C. Morpholosy, Dstiution and Genceis of nanometer scale pores in the Msispp Banett Shale. In Proceedings of the AAPG Convention and Ehibition, San Antonio, TX, USA, 20–23 April 2008. [Google Scholar]
- Siever, R. Burial history and diagenetic reaction-kinetics. AAPG Bull. 1983, 67, 684–691. [Google Scholar]
- Cao, X. Pore Characteristics and It’s Evolution Law of the Late Cretaceous Qingshankou Formation Shale in the Songliao Basin; China University of Geosciences: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Chalmers, G.R.; Bustin, R.M.; Power, L. Apore by any other name Wouldbe As Smal: The Impotnce Ofmeso and microscopy in shale gas capacity. In Proceedings of the AAPG Annual Convention and Exhition, Denver, CO, USA, 7–10 June 2009. [Google Scholar]
- Bahadur, J.; Radlinski, A.P.; Melnichenko, Y.B.; Mastalerz, M.; Schimmelmann, A. Smal-agle and ultsasllngle neutron scattering (SANS/USANS) study of New Albany shale: A treatise on microporosity. Energy Fuels 2015, 29, 567–576. [Google Scholar] [CrossRef]
- Sun, M. Characteristics of Pore Structure and Its Constrainson Gas Accumulation and Migration in Marine Shaleof South China; China University of Geosciences: Beijing, China, 2017. [Google Scholar]
- Wu, S.; Zou, C.; Zhu, R.; Yuan, X.; Yao, J.; Yang, Z.; Sun, L.; Bai, B. Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin. Earth Sci. 2015, 40, 1810–1823. [Google Scholar] [CrossRef]
- Zou, C.; Yang, Z.; Cui, J.; Zhu, R.; Hou, L.; Tao, S.; Yuan, X.; Wu, S.; Lin, S.; Wang, L.; et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Pet. Explor. Dev. 2013, 40, 15–27. [Google Scholar] [CrossRef]
- Wang, X.J.; Ning, F.X.; Hao, X.F.; Wang, Y.; Yang, W.Q.; Yin, Y. Paleogene shale oil occurrence features: A case of Jiyang depression. Sci. Technol. Eng. 2017, 17, 39–48. [Google Scholar]
- Sun, C.; Yao, S.; Li, J.; Liu, B.; Liu, H.; Xie, Z. Characteristics of pore structure and effectiveness of shale oil reservoir space in Dongying Sag, Jiyang Depression, Bohai Bay Basin. J. Nanosci. Nanotechnol. 2017, 17, 6781–6790. [Google Scholar] [CrossRef]
- Bao, Y. Effective reservoir spaces of Paleogene shale oil in the Dongying Depression, Bohai Bay Basin. Pet. Geol. Exp. 2018, 40, 479–484. [Google Scholar] [CrossRef]
- Li, J.; Shi, Y.; Huang, Z.; Wang, W.; Cao, Q.; Lu, S. Pore characteristics of continental shale and its impact on storage of shale oil in northern Songliao Basin. J. China Univ. Pet. (Ed. Nat. Sci.) 2015, 39, 27–34. [Google Scholar]
- Shi, J.; Jin, Z.; Liu, Q.; Zhang, T.; Fan, T.; Gao, Z. Laminar Characteristics of Lacustrine Organic-Rich Shales and Their Significance for Shale Reservoir Formation: A Case Study of the Paleogene Shales in the Dongying Sag, Bohai Bay Basin, China. J. Asian Earth Sci. 2021, 223, 104976. [Google Scholar] [CrossRef]
- Dang, W.; Zhang, J.; Nie, H.; Wang, F.; Tang, X.; Jiang, S.; Wei, X.; Liu, Q.; Li, P.; Li, F.; et al. Microscopic occurrence characteristics of shale oil and their main controlling factors: A case study of the 3rd submember continental shale of Member 7 of Yanchang Formation in Yanan area, Ordos Basin. Acta Pet. Sin. 2022, 43, 507–523. [Google Scholar]
- Song, Z.; Qin, Y.; George, S.C.; Wang, L.; Guo, J.; Feng, Z. A biomarker study of depositional paleoenvironments and source inputs for the massive formation of Upper Cretaceous lacustrine source rocks in the Songliao Basin, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 385, 137–151. [Google Scholar] [CrossRef]
- Jia, J.; Bechtel, A.; Liu, Z.; Strobl, S.A.; Sun, P.; Sachsenhofer, R.F. Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): Implications from organic and inorganic geochemical analyses. Int. J. Coal Geol. 2013, 113, 11–26. [Google Scholar] [CrossRef]
- He, W.Y.; Meng, Q.A.; Fu, X.L.; Zheng, Q.; Su, Y.X.; Cui, K.N. Geochemical Study of the Sedimentary Eenvironment and Its Organic Matter Enrichment Mechanism in Qingshankou Formation Shale, Gulong Sag, Songliao Basin. Acta Sedimentol. Sin. 2022. Available online: https://kns.cnki.net/kcms/detail/62.1038.P.20221109.1118.001.html (accessed on 20 August 2023).
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Villarroel-Rocha, J.; Barrera, D.; Sapag, K. Introducing a self-consistent test and the corresponding modification in the Barrett, Joyner and Halenda method for pore-size determination. Microporous Mesoporous Mater. 2014, 200, 68–78. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Webb, P.A.; Orr, C. Analytical Methods in Fine Particle Technology: Norcross; Micromeritics Instrument Corp.: Norcross, GA, USA, 1997; p. 301. [Google Scholar]
- Shi, J.; Jin, Z.; Liu, Q.; Huang, Z. Lithofacies classification and origin of the Eocene lacustrine fine-grained sedimentary rocks in the Jiyang Depression, Bohai Bay Basin, Eastern China. J. Asian Earth Sci. 2020, 194, 104002. [Google Scholar] [CrossRef]
- Espitalié, J.; Marquis, F.; Barsony, I. Geochemical Logging. In Analytical Pyrolysis; Elsevier: Amsterdam, The Netherlands, 1984; pp. 276–304. [Google Scholar] [CrossRef]
- Bai, L.-H.; Liu, B.; Du, Y.-J.; Wang, B.-Y.; Tian, S.-S.; Wang, L.; Xue, Z.-Q. Distribution characteristics and oil mobility thresholds in lacustrine shale reservoir: Insights from N2 adsorption experiments on samples prior to and following hydrocarbon extraction. Pet. Sci. 2022, 19, 486–497. [Google Scholar] [CrossRef]
- Chen, Z.H.; Jiang, C.Q. A revised method for organic porosity estimation in shale reservoirs using Rock-Eval data: Example from Duvernay Formation in the Western Canada Sedimentary Basin. AAPG Bull. 2016, 100, 405–422. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y.B.; Mastalerz, M.; Bustin, R.M.; Radliński, A.P.; Blach, T.P. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel 2012, 95, 371–385. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Thommes, M. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Chem. Int. 2016, 38, 25. [Google Scholar] [CrossRef]
- Wang, M.; Ma, R.; Li, J.; Lu, S.; Li, C.; Guo, Z.; LI, Z. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China. Pet. Explor. Dev. 2019, 46, 789–802. [Google Scholar] [CrossRef]
- Fu, H.; Wang, X.; Zhang, L.; Gao, R.; Li, Z.; Xu, T.; Zhu, X.; Xu, W.; Li, Q. Investigation of the factors that control the development of pore structure in lacustrine shale: A case study of block X in the Ordos Basin, China. J. Nat. Gas Sci. Eng. 2015, 26, 1422–1432. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Marc Bustin, R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Tian, S.; Guo, Y.; Wang, L.; Yasin, Q.; Yang, J. Impact of thermal maturity on the diagenesis and porosity of lacustrine oil-prone shales: Insights from natural shale samples with thermal maturation in the oil generation window. Int. J. Coal Geol. 2022, 261, 104079. [Google Scholar] [CrossRef]
- Shao, H.; Gao, B.; Pan, H.; Chen, G.; Li, L. Diagenesis-pore evolution for Gulong shale in Songliao Basin. Pet. Geol. Oilfield Dev. Daqing. 2021, 40, 56–67. [Google Scholar]
- Huang, X.; Duan, D.; Liu, B.; Li, B.; Ding, F. Origin Mechanism of Chlorite and Its Impact on Reservoir Properties in Huagang Formation, Xihu Depression. J. Jilin Univ. (Earth Sci. Ed.) 2021, 51, 669–679. [Google Scholar] [CrossRef]
- He, W.; Wang, M.; Wang, X.; Meng, Q.; Wu, Y.; Lin, T.; Li, J.; Zhang, J. Pore Structure Characteristics and Affecting Factors of Shale in the First Member of the Qingshankou Formation in the Gulong Sag, Songliao Basin. ACS Omega 2022, 7, 35755–35773. [Google Scholar] [CrossRef]
- Guo, H.; Jia, W.; Peng, P.; Zeng, J.; He, R. Evolution of organic matter and nanometer-scale pores in an artificially matured shale undergoing two distinct types of pyrolysis: A study of the Yanchang Shale with Type II kerogen. Org. Geochem. 2017, 105, 56–66. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X. Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel 2014, 129, 173–181. [Google Scholar] [CrossRef]
- Zhong, L.W.; Zhang, H.; Yuan, Z.R.; Lei, C.L. Influence of specific pore area and 1 pore volume of coal on adsorption capacity. Coal Geol. Explor. 2002, 30, 26–28. [Google Scholar]
- Huo, Q.; Zeng, H.; Fu, L. Accumulating characteristics and pore evolution for Member Qing-1 mud shale in North Songliao Basin. Pet. Geol. Oilfield Dev. Daqing 2019, 38, 1–8. [Google Scholar]
- Huang, W.; Zhou, X.P.; Liu, J.Y.; He, T.T. Characteristics and controlling factors of pore structure of shale in the seventh member of Yanchang Formation in Huachi area, Ordos Basin. Nat. Gas Geosci. 2022, 33, 1951–1968. [Google Scholar] [CrossRef]
- Li, J.; Jiang, C.; Wang, M.; Lu, S.; Chen, Z.; Chen, G.; Li, J.; Li, Z.; Lu, S. Adsorbed and free hydrocarbons in unconventional shale reservoir: A new insight from NMR T1–T2 maps. Mar. Pet. Geol. 2020, 116, 104311. [Google Scholar] [CrossRef]
- Qian, M.; Jiang, Q.; Li, M.; Li, Z.; Liu, P.; Ma, Y.; Cao, T. Quantitative characterization of extractable organic matter in lacustrine shale with different occurrences. Pet. Geol. Exp. 2017, 39, 278–286. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, M.; Qian, M.; Li, Z.; Li, Z.; Huang, Z.; Zhang, C.; Ma, Y. Quantitative characterization of shale oil in different occurrence states and its application. Pet. Geol. Exp. 2016, 38, 842–849. [Google Scholar] [CrossRef]
- Tingting, C.; Qigui, J.; Menhui, Q.; Peng, L.; Zhiming, L.; Guoliang, T.; Maowen, L. Key technologies for pyrolysis analysis of shale oil contentLJD. Acta Pet. Sin. 2023, 4442, 329–3384. [Google Scholar]
- Wang, M.; Li, M.; Li, J.; Xu, L.; Shao, H.; Yu, C. Ll Tingting. Comparative anlysis of test methods for shale oil content. Acta Pet. Sinica 2022, 43, 1758–1769. [Google Scholar]
- Jarvie, D.M. Shale Resource Systems for Oil and GasPart 2-Shale-oil Resource Systems. In Shale Reservoirs—Giant Resources for the 21st Century; American Association of Petroleum Geologists: Tulsa, OK, USA, 2012. [Google Scholar] [CrossRef]
- Zeng, H.; Huo, Q.; Zhang, X. Quantitative analysis on occurrence evolution of Gulong shale oil in Songliao Basin. Pet. Geol. Oilfield Dev. Daqing 2022, 41, 80–90. [Google Scholar]
- Tian, S.; Erastova, V.; Lu, S.; Greenwell, H.C.; Underwood, T.R.; Xue, H.; Zeng, F.; Chen, G.; Wu, C.; Zhao, R. Understanding Model Crude Oil Component Interactions on Kaolinite Silicate and Aluminol Surfaces: Toward Improved Understanding of Shale Oil Recovery. Energy Fuels 2018, 32, 1155–1165. [Google Scholar] [CrossRef]
- Barclay, S.A.; Worden, R.H. Effects of Reservoir Wettability on Quartz Cementation in Oil Fields. In Quartz Cementation in Sandstones; Worden, R.H., Morad, S., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2000; pp. 103–117. [Google Scholar] [CrossRef]
- Zeng, W.; Song, Z.; Zhou, G. Pore structure of Qingshankou Formation shales in Songliao Basin and its geological sgnificance. J. China Univ. Pet. (Ed. Nat. Sci.) 2021, 45, 35–41. [Google Scholar]
- Wang, M.; Yang, J.; Wang, Z.; Lu, S. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China. PLoS ONE 2015, 10, e0135252. [Google Scholar] [CrossRef] [PubMed]
Sample | Depth (m) | Relative Percent of Minerals (wt.%) | Relative Percent of Clay (wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Calcite | Dolomite | Siderite | Pyrite | Clay | Illite | Kaolinite | Chlorite | I/S | ||
M1 | 2198.21 | 24.5 | 18.2 | 0.0 | 6.1 | 0.6 | 2.9 | 47.7 | 74 | 3 | 2 | 21 |
M2 | 2262.63 | 29.1 | 9.9 | 0.0 | 0.4 | 4.7 | 3.6 | 52.3 | 73 | 2 | 3 | 21 |
N2 | 2347.24 | 28.2 | 13.3 | 0.0 | 2.8 | 0.0 | 2.7 | 53 | 90 | 1 | 9 | 0 |
S1 | 2503.6 | 21.7 | 10.5 | 1.1 | 2.8 | 0.0 | 21.8 | 42.1 | 95 | 1 | 4 | 0 |
S2 | 2518.6 | 25.2 | 25.3 | 17.3 | 3.0 | 0.0 | 4.1 | 25.1 | 84 | 1 | 6 | 9 |
X1 | 2175.14 | 29.9 | 26.7 | 0.0 | 4.6 | 3.6 | 2.2 | 33.0 | 94 | 0 | 0 | 6 |
N1 | 2335.62 | 26.8 | 25.5 | 0.8 | 5.1 | 0.0 | 1.4 | 40.4 | 90 | 1 | 5 | 4 |
Y1 | 2325.1 | 29.3 | 21.8 | 1.6 | 0.2 | 1.7 | 2.8 | 42.6 | 65 | 1 | 2 | 32 |
Y2 | 2375.61 | 23.9 | 25.6 | 2.6 | 1.1 | 0.9 | 2.3 | 43.6 | 85 | 1 | 4 | 11 |
Sample | Depth (m) | Ro (%) | Rock-Eval (Original) | Rock-Eval (Extracted) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TOC (wt.%) | Tmax (°C) | S1 (mg HC/g) | S2 (mg HC/g) | HI (mg HC/g) | TOC (wt.%) | Tmax (°C) | S1 (mg HC/g) | S2 (mg HC/g) | HI (mg HC/g) | |||
M1 | 2198.21 | 1.23 | 1.93 | 447 | 1.67 | 5.13 | 266 | 1.55 | 452 | 0.06 | 2.12 | 137 |
M2 | 2262.63 | 1.29 | 1.73 | 391 | 2.48 | 5.74 | 332 | 1.17 | 444 | 0.05 | 1.03 | 88 |
N2 | 2347.24 | 1.33 | 1.88 | 404 | 2.7 | 4.15 | 221 | 1.5 | 446 | 0.03 | 0.57 | 38 |
S1 | 2503.6 | 1.5 | 1.26 | 297 | 1.55 | 0.59 | 47 | 1.02 | 426 | 0.11 | 0.18 | 18 |
S2 | 2518.6 | 1.51 | 2.01 | 396 | 2.96 | 4.59 | 240 | 1.55 | 451 | 0.04 | 0.51 | 33 |
X1 | 2175.14 | 0.87 | 2.24 | 445 | 1.18 | 18.44 | 823 | 1.99 | 447 | 0.01 | 15.35 | 771 |
N1 | 2335.62 | 1.35 | 2.52 | 383 | 3.14 | 4.28 | 170 | 2.09 | 460 | 0.03 | 0.71 | 34 |
Y1 | 2325.1 | 1.05 | 2.06 | 444 | 1.69 | 10.37 | 503 | 1.61 | 444 | 0.1 | 6.48 | 402 |
Y2 | 2375.61 | 1.06 | 2.29 | 417 | 3.26 | 5.85 | 255 | 1.71 | 458 | 0.05 | 0.98 | 57 |
Method of This Paper | Method of Wang Min | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | TOC | Ro | S1o | S2o − S2e | OSI | Free Oil | Adsorbed Oil | Total Oil Content | Free Oil | Adsorbed Oil |
M1 | 1.93 | 1.23 | 1.67 | 3.01 | 155.96 | 7.45 | 1.93 | 9.17 | 6.37 | 2.80 |
M2 | 1.73 | 1.29 | 2.48 | 4.71 | 272.25 | 14.13 | 1.73 | 14.76 | 11.15 | 3.60 |
N2 | 1.88 | 1.33 | 2.70 | 3.58 | 190.43 | 15.68 | 1.88 | 17.84 | 13.98 | 3.86 |
S1 | 1.26 | 1.50 | 1.55 | 0.41 | 32.54 | 6.46 | 1.26 | 8.83 | 6.46 | 2.37 |
S2 | 2.01 | 1.51 | 2.96 | 4.08 | 213.61 | 13.52 | 1.91 | 15.91 | 11.35 | 4.56 |
X1 | 2.24 | 0.87 | 1.18 | 3.09 | 137.95 | 2.57 | 2.24 | 4.88 | 1.72 | 3.16 |
N1 | 2.52 | 1.35 | 3.14 | 3.57 | 141.67 | 18.75 | 2.52 | 21.79 | 17.70 | 4.09 |
Y1 | 2.06 | 1.05 | 1.69 | 3.89 | 188.83 | 5.91 | 2.06 | 7.97 | 4.08 | 3.89 |
Y2 | 2.29 | 1.06 | 3.26 | 4.87 | 212.66 | 10.76 | 2.29 | 15.45 | 8.18 | 7.27 |
Volume of Pores with Diameters > Pore Size (nm) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Free Oil (mg/g) | Movable Oil (mg/g) | 0 | 2 | 4 | 6 | 8 | 10 | 15 | 20 | 40 | 80 | 110 |
M1 | 7.451 | 5.913 | 0.032 | 0.029 | 0.022 | 0.019 | 0.016 | 0.014 | 0.011 | 0.009 | 0.005 | 0.002 | 0.002 |
M2 | 14.134 | 13.313 | 0.028 | 0.027 | 0.023 | 0.021 | 0.019 | 0.017 | 0.014 | 0.013 | 0.008 | 0.004 | 0.003 |
N2 | 15.676 | 6.108 | 0.038 | 0.036 | 0.028 | 0.025 | 0.021 | 0.018 | 0.015 | 0.013 | 0.008 | 0.003 | 0.002 |
S1 | 6.464 | 7.048 | 0.024 | 0.023 | 0.020 | 0.018 | 0.015 | 0.014 | 0.011 | 0.010 | 0.007 | 0.004 | 0.003 |
S2 | 13.524 | 12.505 | 0.029 | 0.028 | 0.023 | 0.021 | 0.019 | 0.017 | 0.014 | 0.013 | 0.009 | 0.005 | 0.004 |
X1 | 2.570 | 2.435 | 0.014 | 0.014 | 0.013 | 0.012 | 0.011 | 0.010 | 0.009 | 0.008 | 0.006 | 0.004 | 0.003 |
N1 | 18.752 | 17.702 | 0.040 | 0.038 | 0.033 | 0.028 | 0.024 | 0.022 | 0.018 | 0.016 | 0.010 | 0.003 | 0.002 |
Y1 | 5.907 | 5.982 | 0.009 | 0.009 | 0.008 | 0.008 | 0.008 | 0.008 | 0.007 | 0.006 | 0.005 | 0.003 | 0.002 |
Y2 | 10.763 | 6.777 | 0.036 | 0.035 | 0.030 | 0.028 | 0.024 | 0.022 | 0.019 | 0.017 | 0.012 | 0.006 | 0.004 |
Correlation coefficients (R2) | Free oil | 0.626 | 0.6511 | 0.671 | 0.6662 | 0.6603 | 0.6555 | 0.6332 | 0.5675 | 0.4524 | 0.0205 | 0.0008 | |
Movable oil | 0.2478 | 0.2696 | 0.3323 | 0.3263 | 0.3402 | 0.3573 | 0.3555 | 0.3228 | 0.2429 | 0.0233 | 0.0133 | ||
Average proportion (%) | 100 | 95 | 81 | 74 | 65 | 60 | 50 | 46 | 30 | 16 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Pan, H.; Bai, Y.; Chen, G.; Luo, J.; Zhang, Y. Pore Characteristics, Oil Contents and Factors Influencing Laminated Shale in the First Member of the Qingshankou Formation in the Gulong Sag, Northern Songliao Basin. Minerals 2023, 13, 1220. https://doi.org/10.3390/min13091220
Zhang Y, Pan H, Bai Y, Chen G, Luo J, Zhang Y. Pore Characteristics, Oil Contents and Factors Influencing Laminated Shale in the First Member of the Qingshankou Formation in the Gulong Sag, Northern Songliao Basin. Minerals. 2023; 13(9):1220. https://doi.org/10.3390/min13091220
Chicago/Turabian StyleZhang, Yuxuan, Huifang Pan, Yubin Bai, Guolong Chen, Jinglan Luo, and Yang Zhang. 2023. "Pore Characteristics, Oil Contents and Factors Influencing Laminated Shale in the First Member of the Qingshankou Formation in the Gulong Sag, Northern Songliao Basin" Minerals 13, no. 9: 1220. https://doi.org/10.3390/min13091220
APA StyleZhang, Y., Pan, H., Bai, Y., Chen, G., Luo, J., & Zhang, Y. (2023). Pore Characteristics, Oil Contents and Factors Influencing Laminated Shale in the First Member of the Qingshankou Formation in the Gulong Sag, Northern Songliao Basin. Minerals, 13(9), 1220. https://doi.org/10.3390/min13091220