Effects of Size and Mechanical Pre-Treatment on Aluminium Recovery from Municipal Solid Waste Incineration Bottom Ash
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Remelting
2.3. Characterization
2.4. Analytical Modeling
- Bottom ash particles are spherical;
- Oxide and metal phases have the same porosity value;
- Oxide thickness is the same throughout the entire surface;
- The density of the metal alloy is 2.7 g/cm3;
- The density of the oxide layer is 3.99 g/cm3.
3. Results and Discussion
Analytical Modeling
4. Conclusions
- The particle length and surface area have a linear correlation with recoverable aluminium content for bottom ash particles between a 2 and 30 mm fraction.
- Mechanical pre-treatment decreased the oxide content by cracking the oxides, which increased the aluminium yield. However, this effect became less significant with increasing particle size due to a decrease in oxide/metal ratio.
- The analytical model showed a 5% to 15% higher yield for particles with an average size of 28 to 5 mm, respectively. The difference between the model and experiments originated due to the specific surface area difference in spherical to irregular particles.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- Kumar, S.; Singh, D. Municipal solid waste incineration bottom ash: A competent raw material with new possibilities. Innov. Infrastruct. Solut. 2021, 6, 201. [Google Scholar] [CrossRef]
- Joseph, A.M.; Snellings, R.; Nielsen, P.; Matthys, S.; De Belie, N. Pre-treatment and utilisation of municipal solid waste incineration bottom ashes towards a circular economy. Constr. Build. Mater. 2020, 260, 120485. [Google Scholar] [CrossRef]
- Eurostat. Municipal Waste by Waste Management Operations. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_wasmun/default/table?lang=en (accessed on 16 August 2024).
- Leckner, B.; Lind, F. Combustion of municipal solid waste in fluidized bed or on grate—A comparison. Waste Manag. 2020, 109, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Bunge, R. Recovery of Metals from Waste Incinerator Bottom Ash. 2016. Available online: www.vbsa.ch (accessed on 4 October 2024).
- Chimenos, J.M.; Segarra, M.; Fernandez, M.A.; Espiell, F. Characterization of the bottom ash in municipal solid waste incinerator. J. Hazard. Mater. A 1999, 64, 211–222. [Google Scholar] [CrossRef]
- Wu, H.Y.; Ting, Y.P. Metal extraction from municipal solid waste (MSW) incinerator fly ash—Chemical leaching and fungal bioleaching. Enzyme Microb. Technol. 2006, 38, 839–847. [Google Scholar] [CrossRef]
- Stabile, P.; Bello, M.; Petrelli, M.; Paris, E.; Carroll, M.R. Vitrification treatment of municipal solid waste bottom ash. Waste Manag. 2019, 95, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Verbinnen, B.; Billen, P.; Van Caneghem, J.; Vandecasteele, C. Recycling of MSWI Bottom Ash: A Review of Chemical Barriers, Engineering Applications and Treatment Technologies. Waste Biomass Valorization 2017, 8, 1453–1466. [Google Scholar] [CrossRef]
- Muchová, L. Wet Physical Separation of MSWI Bottom Ash. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 2010. [Google Scholar]
- Warrings, R.; Fellner, J. Current status of circularity for aluminum from household waste in Austria. Waste Manag. 2018, 76, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Chen, J.; de Mendonça Filho, F.F.; Sun, Y.; van Zijl, M.B.; Copuroglu, O.; Ye, G. Characterization and mechanical removal of metallic aluminum (Al) embedded in weathered municipal solid waste incineration (MSWI) bottom ash for application as supplementary cementitious material. Waste Manag. 2024, 176, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Gökelma, M.; Vallejo-Olivares, A.; Tranell, G. Characteristic properties and recyclability of the aluminium fraction of MSWI bottom ash. Waste Manag. 2021, 130, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Olivares, A.V.; Pastor-Vallés, E.; Pettersen, J.B.; Tranell, G. LCA of recycling aluminium incineration bottom ash, dross and shavings in a rotary furnace and environmental benefits of salt-slag valorisation. Waste Manag. 2024, 182, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Syvertsen, M.; Ludwig, T.; Rist, S.; Ellingsen, K. Use of Incinerator Bottom Ash (IBA) in Aluminium Recycling. In Light Metals 2022; Eskin, D., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1051–1055. [Google Scholar]
- Marthinsen, A.; Graff, J.S.; Syvertsen, M.; Ellingsen, K.; M’Hamdi, M. Towards Formulation of AlSi10Mg Alloy from Incinerator Bottom Ash. In Light Metals 2022; Eskin, D., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1056–1065. [Google Scholar]
- Gökelma, M.; Meling, I.; Soylu, E.; Kvithyld, A.; Tranell, G. A method for assessment of recyclability of aluminum from incinerated household waste. In Light Metals 2019; Minerals, Metals and Materials Series; Springer International Publishing: Cham, Switzerland, 2019; pp. 1359–1365. [Google Scholar] [CrossRef]
- Ma, W.; Wenga, T.; Frandsen, F.J.; Yan, B.; Chen, G. The Fate of Chlorine during MSW Incineration: Vaporization, Transformation, Deposition, Corrosion and Remedies. Prog. Energy Combust. Sci. 2020, 76, 100789. [Google Scholar] [CrossRef]
- Frandsen, F.J.; Frandsen, F.J.; van Lith, S.C.; Korbee, R.; Yrjas, P.; Backman, R.; Obernberger, I.; Brunner, T.; Jöller, M. Quantification of the release of inorganic elements from biofuels. Fuel Process. Technol. 2007, 88, 1118–1128. [Google Scholar] [CrossRef]
- Chandler, A.J.; Eighmy, T.T.; Hjelmar, O.; Kosson, D.S.; Sawell, S.E.; Vehlow, J.; van der Sloot, H.A.; Hartlén, J. Municipal Solid Waste Incinerator Residues; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Yang, S.; Saffarzadeh, A.; Shimaoka, T.; Kawano, T. Existence of Cl in municipal solid waste incineration bottom ash and dechlorination effect of thermal treatment. J. Hazard. Mater. 2014, 267, 214–220. [Google Scholar] [CrossRef] [PubMed]
Av. Axis Length (mm) | Std of Length (%) | Av. 2D Area (mm2) | Std of Area (%) | Al Yield (%) | Al Yield after Compaction (%) | |
---|---|---|---|---|---|---|
USA 1 | 5 | 2.82 | 77 | 58.31 | 71.91 | 77.6 |
UK 1 | 5.6 | 2.29 | 76 | 62.37 | 77.15 | 80.1 |
USA 2 | 8.6 | 2.57 | 164 | 43.60 | 81.30 | 83.8 |
UK 2 | 9.3 | 2.66 | 155 | 44.32 | 82.96 | 83.2 |
USA 3 | 14.3 | 1.68 | 277 | 32.56 | 86.59 | - |
UK 3 | 15.9 | 1.55 | 217 | 26.04 | 83.53 | - |
USA 4 | 27.9 | 2.93 | 357 | 35.57 | 95.67 | - |
UK 4 | 28 | 2.76 | 353 | 29.18 | 91.84 | - |
Oxide Thickness (µm) | UK (% of Samples) | USA (% of Samples) | Average, All Samples (%) |
---|---|---|---|
<40 | 53.6 | 51.9 | 52.1 |
<50 | 64.6 | 62.3 | 63.5 |
50–100 | 23.4 | 28.7 | 25.9 |
>100 | 12.0 | 9.0 | 10.6 |
Average Particle Size (mm) | Formula | R2 | Equation |
---|---|---|---|
9 | y = −2 × 10−8 × 3 + 5 × 10−5x2 − 0.0982x + 99.992 | 1 | (5) |
15 | y = −0.0505x + 99.281 | 0.9984 | (6) |
28 | y = −0.029x + 99.778 | 0.9995 | (7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gökelma, M.; Hatipoğlu, U.; Vallejo-Olivares, A.; Önen Tüzgel, R.; Kıvrak, O.; Bazoğlu, E.; Çizen, Z.S.; Tranell, G. Effects of Size and Mechanical Pre-Treatment on Aluminium Recovery from Municipal Solid Waste Incineration Bottom Ash. Minerals 2024, 14, 1006. https://doi.org/10.3390/min14101006
Gökelma M, Hatipoğlu U, Vallejo-Olivares A, Önen Tüzgel R, Kıvrak O, Bazoğlu E, Çizen ZS, Tranell G. Effects of Size and Mechanical Pre-Treatment on Aluminium Recovery from Municipal Solid Waste Incineration Bottom Ash. Minerals. 2024; 14(10):1006. https://doi.org/10.3390/min14101006
Chicago/Turabian StyleGökelma, Mertol, Utku Hatipoğlu, Alicia Vallejo-Olivares, Rabia Önen Tüzgel, Olcay Kıvrak, Elif Bazoğlu, Zeynep Su Çizen, and Gabriella Tranell. 2024. "Effects of Size and Mechanical Pre-Treatment on Aluminium Recovery from Municipal Solid Waste Incineration Bottom Ash" Minerals 14, no. 10: 1006. https://doi.org/10.3390/min14101006
APA StyleGökelma, M., Hatipoğlu, U., Vallejo-Olivares, A., Önen Tüzgel, R., Kıvrak, O., Bazoğlu, E., Çizen, Z. S., & Tranell, G. (2024). Effects of Size and Mechanical Pre-Treatment on Aluminium Recovery from Municipal Solid Waste Incineration Bottom Ash. Minerals, 14(10), 1006. https://doi.org/10.3390/min14101006