Evaluation of Deep Isolation Forest (DIF) Algorithm for Mineral Prospectivity Mapping of Polymetallic Deposits
Abstract
:1. Introduction
2. Geology of the Study Area
3. Conceptual Model
- Hydrothermal copper mineralization, such as Cu–Au porphyry, in the Feizabad area shows a significant spatial correlation with intrusive rocks, such as diorite and granodiorite from the Eocene–Oligocene transition [34,36]. Therefore, the proximity to these units, which serve as a primary heat source, is an important indicator for the identification of new exploration targets in the region;
- The formation of hydrothermal deposits, such as Cu–Au mineralization, is associated with the movement of metal-rich fluids through fractures and faults [37]. These geological factors, especially their intersections, act as conduits for fluid movement. In the studied area, faults have played a crucial role in mineralization. Therefore, the proximity to fault intersections can be considered as a key factor and important layer in the MPM analysis;
- Geochemical exploration is a key method for the exploration of hydrothermal copper deposits. Previous studies conducted in the study area have demonstrated a strong association between elements such as Cu, Au, Hg, Pb, Zn, Sn, As, and Sb [6]. In addition, the results show that the geochemical maps of these elements closely match the known hydrothermal copper mineralization in the region [6]. Therefore, these eight elements were selected for this study;
- In general, hydrothermal and iron oxide alteration have been shown to be the main features of hydrothermal deposits, such as porphyry copper mineralization [38]. Alteration halos, such as potassic, phyllic, argillic, and propylitic zones, as well as iron oxide alteration, are typically found in the vicinity of hydrothermal copper deposits and have a considerable spatial extent. Therefore, ASTER remote sensing image processing was used in this study to identify areas that exhibit these alterations.
4. Materials and Methods
4.1. Data Used
4.1.1. Regional-Scale Geochemical Sampling
4.1.2. Remote Sensing Data and Preprocessing
4.1.3. Geological Data
4.2. Methodological Flowchart
4.3. Logistic Function
4.4. Isolation Forest
4.5. Deep Isolation Forest
5. Production of Continuous Evidence Layers
5.1. Geochemical Evidence Layers
5.2. Proximity to the Hydrothermal Alteration Zones
5.3. Proximity to Intrusive Rocks
5.4. Proximity to the Intersection of Faults
6. Results and Analysis
6.1. Optimization of Unsupervised Anomaly Detection Algorithms
6.2. Integration of Continuous Evidence Layers
6.2.1. IForest Prospectivity Model
6.2.2. Deep Isolation Forest Prospectivity Model
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yousefi, M.; Carranza, E.J.M.; Kreuzer, O.P.; Nykänen, V.; Hronsky, J.M.; Mihalasky, M.J. Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. J. Geochem. Explor. 2021, 229, 106839. [Google Scholar] [CrossRef]
- Nykänen, V.; Groves, D.; Ojala, V.; Eilu, P.; Gardoll, S. Reconnaissance-scale conceptual fuzzy-logic prospectivity modelling for iron oxide copper–gold deposits in the northern Fennoscandian Shield, Finland. Aust. J. Earth Sci. 2008, 55, 25–38. [Google Scholar] [CrossRef]
- Abedi, M.; Kashani, S.B.M.; Norouzi, G.-H.; Yousefi, M. A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. J. Afr. Earth Sci. 2017, 128, 127–146. [Google Scholar] [CrossRef]
- Parsa, M.; Pour, A.B. A simulation-based framework for modulating the effects of subjectivity in greenfield mineral prospectivity mapping with geochemical and geological data. J. Geochem. Explor. 2021, 229, 106838. [Google Scholar] [CrossRef]
- Behera, S.; Panigrahi, M.K. Gold prospectivity mapping in the Sonakhan Greenstone Belt, Central India: A knowledge-driven guide for target delineation in a region of low exploration maturity. Natural Resources Research 2021, 30, 4009–4045. [Google Scholar] [CrossRef]
- Saremi, M.; Yousefi, S.; Yousefi, M. Combination of geochemical and structural data to determine the exploration target of copper hydrothermal deposits in the Feizabad district. J. Min. Environ. 2024, 15, 1089–1101. [Google Scholar]
- Sun, T.; Li, H.; Wu, K.; Chen, F.; Zhu, Z.; Hu, Z. Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi Province, China. Minerals 2020, 10, 102. [Google Scholar] [CrossRef]
- Lou, Y.; Liu, Y. Mineral prospectivity mapping of tungsten polymetallic deposits using machine learning algorithms and comparison of their performance in the Gannan region, China. Earth Space Sci. 2023, 10, e2022EA002596. [Google Scholar] [CrossRef]
- Hajihosseinlou, M.; Maghsoudi, A.; Ghezelbash, R. Stacking: A novel data-driven ensemble machine learning strategy for prediction and mapping of Pb-Zn prospectivity in Varcheh district, west Iran. Expert Syst. Appl. 2024, 237, 121668. [Google Scholar] [CrossRef]
- Xiong, Y.; Zuo, R.; Carranza, E.J.M. Mapping mineral prospectivity through big data analytics and a deep learning algorithm. Ore Geol. Rev. 2018, 102, 811–817. [Google Scholar] [CrossRef]
- Yin, B.; Zuo, R.; Sun, S. Mineral Prospectivity Mapping Using Deep Self-Attention Model. Nat. Resour. Res. 2023, 32, 37–56. [Google Scholar] [CrossRef]
- Mirzabozorg, S.A.A.S.; Abedi, M. Recognition of mineralization-related anomaly patterns through an autoencoder neural network for mineral exploration targeting. Appl. Geochem. 2023, 158, 105807. [Google Scholar] [CrossRef]
- Zhang, S.; Carranza, E.J.M.; Xiao, K.; Wei, H.; Yang, F.; Chen, Z.; Li, N.; Xiang, J. Mineral prospectivity mapping based on isolation forest and random forest: Implication for the existence of spatial signature of mineralization in outliers. Nat. Resour. Res. 2022, 31, 1981–1999. [Google Scholar] [CrossRef]
- Abedi, M.; Norouzi, G.-H.; Bahroudi, A. Support vector machine for multi-classification of mineral prospectivity areas. Comput. Geosci. 2012, 46, 272–283. [Google Scholar] [CrossRef]
- Saljoughi, B.S.; Hezarkhani, A. A comparative analysis of artificial neural network (ANN), wavelet neural network (WNN), and support vector machine (SVM) data-driven models to mineral potential mapping for copper mineralizations in the Shahr-e-Babak region, Kerman, Iran. Appl. Geomat. 2018, 10, 229–256. [Google Scholar] [CrossRef]
- Ghasemzadeh, S.; Maghsoudi, A.; Yousefi, M.; Kreuzer, O. Spatially weighted singularity mapping in conjunction with random forest algorithm for mineral prospectivity modeling. Int. J. Min. Geo-Eng. 2023, 57, 455–460. [Google Scholar]
- Ghezelbash, R.; Maghsoudi, A.; Carranza, E.J.M. Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm. Comput. Geosci. 2020, 134, 104335. [Google Scholar] [CrossRef]
- Agha Seyyed Mirzabozorg, S.; Abedi, M.; Ahmadi, F. Clustering of Areas Prone to Iron Mineralization in Esfordi Range based on a Hybrid Method of Knowledge-and Data-Driven Approaches. J. Miner. Resour. Eng. 2023, 8, 1–26. [Google Scholar]
- Yousefi, M.; Kreuzer, O.P.; Nykänen, V.; Hronsky, J.M. Exploration information systems—A proposal for the future use of GIS in mineral exploration targeting. Ore Geol. Rev. 2019, 111, 103005. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, W. Mapping mineral prospectivity by using one-class support vector machine to identify multivariate geological anomalies from digital geological survey data. Aust. J. Earth Sci. 2017, 64, 639–651. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Zhao, Q.; Sun, G. Detection of multivariate geochemical anomalies using the bat-optimized isolation forest and bat-optimized elliptic envelope models. J. Earth Sci. 2021, 32, 415–426. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, W.; Zhao, Q. A bat-optimized one-class support vector machine for mineral prospectivity mapping. Minerals 2019, 9, 317. [Google Scholar] [CrossRef]
- Xiong, Y.; Zuo, R. Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine. Comput. Geosci. 2020, 140, 104484. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Xiao, F. Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: A case study from Ag–Pb–Zn deposits in north-western Zhejiang, China. Appl. Geochem. 2020, 120, 104679. [Google Scholar] [CrossRef]
- Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 413–422. [Google Scholar]
- Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 2012, 6, 1–39. [Google Scholar] [CrossRef]
- Lesouple, J.; Baudoin, C.; Spigai, M.; Tourneret, J.-Y. Generalized isolation forest for anomaly detection. Pattern Recognit. Lett. 2021, 149, 109–119. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, W. Isolation forest as an alternative data-driven mineral prospectivity mapping method with a higher data-processing efficiency. Nat. Resour. Res. 2019, 28, 31–46. [Google Scholar] [CrossRef]
- Tchaghe, V.Y. Contribution to Anomaly Detection and Explanation; Université de Rennes: Rennes, France, 2023. [Google Scholar]
- Xu, H.; Pang, G.; Wang, Y.; Wang, Y. Deep isolation forest for anomaly detection. IEEE Trans. Knowl. Data Eng. 2023, 35, 12591–12604. [Google Scholar] [CrossRef]
- Epsteins, M.; Forsström, F. Finding Known and Novel Errors in Heat Pumps Using Unsupervised ML. Master’s Thesis, Lund University, Lund, Sweden, 2024. [Google Scholar]
- Barrish, D.; van Vuuren, J. A taxonomy of univariate anomaly detection algorithms for predictive maintenance. S. Afr. J. Ind. Eng. 2023, 34, 28–42. [Google Scholar] [CrossRef]
- Behroozi, A. Geological Map of Iran 1: 100,000 Series, Feizabad; Geological Survey of Iran: Tehran, Iran, 1987. [Google Scholar]
- Daviran, M.; Maghsoudi, A.; Cohen, D.R.; Ghezelbash, R.; Yilmaz, H. Assessment of various fuzzy c-mean clustering validation indices for mapping mineral prospectivity: Combination of multifractal geochemical model and mineralization processes. Nat. Resour. Res. 2020, 29, 229–246. [Google Scholar] [CrossRef]
- Hu, D.; Liu, D.; Xue, S. Explanatory Text of Geochemical Map of Feizabad (7760); Geological Survey of Iran: Tehran, Iran, 1995. [Google Scholar]
- Daviran, M.; Maghsoudi, A.; Ghezelbash, R.; Pradhan, B. A new strategy for spatial predictive mapping of mineral prospectivity: Automated hyperparameter tuning of random forest approach. Comput. Geosci. 2021, 148, 104688. [Google Scholar] [CrossRef]
- Yousefi, M.; Hronsky, J.M. Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Appl. Geochem. 2023, 149, 105561. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J. Asian Earth Sci. 2011, 42, 1309–1323. [Google Scholar] [CrossRef]
- Saremi, M.; Maghsoudi, A.; Ghezelbash, R.; Yousefi, M.; Hezarkhani, A. Targeting of porphyry copper mineralization using a continuous-based logistic function approach in the Varzaghan district, north of Urumieh-Dokhtar magmatic arc. J. Min. Environ. 2024. [Google Scholar] [CrossRef]
- Yousefi, M.; Kamkar-Rouhani, A.; Carranza, E.J.M. Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. J. Geochem. Explor. 2012, 115, 24–35. [Google Scholar] [CrossRef]
- Elhussein, M.; Shokry, M. Use of the airborne magnetic data for edge basalt detection in Qaret Had El Bahr area, Northeastern Bahariya Oasis, Egypt. Bull. Eng. Geol. Environ. 2020, 79, 4483–4499. [Google Scholar] [CrossRef]
- Elhussein, M. A novel approach to self-potential data interpretation in support of mineral resource development. Nat. Resour. Res. 2021, 30, 97–127. [Google Scholar] [CrossRef]
- Aali, A.A.; Shirazy, A.; Shirazi, A.; Pour, A.B.; Hezarkhani, A.; Maghsoudi, A.; Hashim, M.; Khakmardan, S. Fusion of remote sensing, magnetometric, and geological data to identify polymetallic mineral potential zones in Chakchak Region, Yazd, Iran. Remote Sens. 2022, 14, 6018. [Google Scholar] [CrossRef]
- Saremi, M.; Hoseinzade, Z.; Mirzabozorg, S.A.A.S.; Pour, A.B.; Zoheir, B.; Almasi, A. Integrated remote sensing and geochemical studies for enhanced prospectivity mapping of porphyry copper deposits: A case study from the Pariz district, Urmia-Dokhtar metallogenic belt, southern Iran. Remote Sens. Appl. Soc. Environ. 2024, 36, 101343. [Google Scholar] [CrossRef]
- Shirazi, A.; Hezarkhani, A.; Beiranvand Pour, A.; Shirazy, A.; Hashim, M. Neuro-Fuzzy-AHP (NFAHP) technique for copper exploration using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and geological datasets in the Sahlabad mining area, east Iran. Remote Sens. 2022, 14, 5562. [Google Scholar] [CrossRef]
- Yousefi, M.; Nykänen, V.; Harris, J.; Hronsky, J.M.; Kreuzer, O.P.; Bertrand, G.; Lindsay, M. Overcoming survival bias in targeting mineral deposits of the future: Towards null and negative tests of the exploration search space, accounting for lack of visibility. Ore Geol. Rev. 2024, 172, 106214. [Google Scholar] [CrossRef]
- Saremi, M.; Yousefi, M.; Yousefi, S. Separation of geochemical anomalies related to hydrothermal copper mineralization using staged factor analysis in Feyzabad geological map. J. Anal. Numer. Methods Min. Eng. 2023, 14, 35–44. (In Persian) [Google Scholar]
- Pour, A.B.; Hashim, M. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol. Rev. 2012, 44, 1–9. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Marghany, M. Characterization of ASTER Data for Mineral Exploration. In Proceedings of the MRSS 6th International Remote Sensing & GIS Conference and Exhibition, Kuala Lumpur, Malaysia, 28–29 April 2010; pp. 28–29. [Google Scholar]
- Atif, Y.; Soulaimani, A.; Ait lamqadem, A.; Pour, A.B.; Pradhan, B.; Nouamane, E.A.; Abdelali, K.; Muslim, A.M.; Hossain, M.S. Identifying hydrothermally altered rocks using ASTER satellite imageries in Eastern Anti-Atlas of Morocco: A case study from Imiter silver mine. Int. J. Image Data Fusion 2022, 13, 337–361. [Google Scholar] [CrossRef]
- Yousefi, M.; Nykänen, V. Data-driven logistic-based weighting of geochemical and geological evidence layers in mineral prospectivity mapping. J. Geochem. Explor. 2016, 164, 94–106. [Google Scholar] [CrossRef]
- Bauw, M.; Velasco-Forero, S.; Angulo, J.; Adnet, C.; Airiau, O. From unsupervised to semi-supervised anomaly detection methods for HRRP targets. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6. [Google Scholar]
- Zheng, C.; Zhao, Q.; Fan, G.; Zhao, K.; Piao, T. Comparative study on isolation forest, extended isolation forest and generalized isolation forest in detection of multivariate geochemical anomalies. Glob. Geol. 2023, 26, 167–176. [Google Scholar]
- Stradiotti, L.; Perini, L.; Davis, J. Semi-Supervised Isolation Forest for Anomaly Detection. In Proceedings of the 2024 SIAM International Conference on Data Mining (SDM), Houston, TX, USA, 18–20 April 2024; pp. 670–678. [Google Scholar]
- Kittidachanan, K.; Minsan, W.; Pornnopparath, D.; Taninpong, P. Anomaly detection based on GS-OCSVM classification. In Proceedings of the 2020 12th International Conference on Knowledge and Smart Technology (KST), Pattaya, Thailand, 29 January–1 February 2020; pp. 64–69. [Google Scholar]
- Fadul, A.M.A. Anomaly Detection based on Isolation Forest and Local Outlier Factor. Master’s Thesis, Africa University, Mutare, Zimbabwe, 2023. [Google Scholar]
- Ma, M.Q.; Zhao, Y.; Zhang, X.; Akoglu, L. The need for unsupervised outlier model selection: A review and evaluation of internal evaluation strategies. ACM SIGKDD Explor. Newsl. 2023, 25, 19–35. [Google Scholar] [CrossRef]
- Chen, H.; Ma, H.; Chu, X.; Xue, D. Anomaly detection and critical attributes identification for products with multiple operating conditions based on isolation forest. Adv. Eng. Inform. 2020, 46, 101139. [Google Scholar] [CrossRef]
- Cao, Y.; Xiang, H.; Zhang, H.; Zhu, Y.; Ting, K.M. Anomaly Detection Based on Isolation Mechanisms: A Survey. arXiv 2024, arXiv:2403.10802. [Google Scholar]
- Govett, G. The development of geochemical exploration methods and techniques. In Developments in Economic Geology; Elsevier: Amsterdam, The Netherlands, 1976; Volume 3, pp. 343–376. [Google Scholar]
- Ghasemzadeh, S.; Maghsoudi, A.; Yousefi, M.; Mihalasky, M.J. Stream sediment geochemical data analysis for district-scale mineral exploration targeting: Measuring the performance of the spatial U-statistic and CA fractal modeling. Ore Geol. Rev. 2019, 113, 103115. [Google Scholar] [CrossRef]
- Yousefi, M.; Kamkar-Rouhani, A.; Carranza, E.J.M. Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochem. Explor. Environ. Anal. 2014, 14, 45–58. [Google Scholar] [CrossRef]
- Habashi, J.; Jamshid Moghadam, H.; Mohammady Oskouei, M.; Pour, A.B.; Hashim, M. PRISMA Hyperspectral Remote Sensing Data for Mapping Alteration Minerals in Sar-e-Châh-e-Shur Region, Birjand, Iran. Remote Sens. 2024, 16, 1277. [Google Scholar] [CrossRef]
- Hajaj, S.; El Harti, A.; Jellouli, A.; Pour, A.B.; Himyari, S.M.; Hamzaoui, A.; Hashim, M. ASTER data processing and fusion for alteration minerals and silicification detection: Implications for cupriferous mineralization exploration in the western Anti-Atlas, Morocco. Artif. Intell. Geosci. 2024, 5, 100077. [Google Scholar] [CrossRef]
- Sheikhrahimi, A.; Pour, A.B.; Pradhan, B.; Zoheir, B. Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER data: A case study from the Sanandaj-Sirjan Zone, Iran. Adv. Space Res. 2019, 63, 3315–3332. [Google Scholar] [CrossRef]
- Ghasemzadeh, S.; Maghsoudi, A.; Yousefi, M.; Mihalasky, M.J. Recognition and incorporation of mineralization-efficient fault systems to produce a strengthened anisotropic geochemical singularity. J. Geochem. Explor. 2022, 235, 106967. [Google Scholar] [CrossRef]
- Nykänen, V.; Lahti, I.; Niiranen, T.; Korhonen, K. Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geol. Rev. 2015, 71, 853–860. [Google Scholar] [CrossRef]
- Zuo, R.; Wang, Z. Effects of random negative training samples on mineral prospectivity mapping. Nat. Resour. Res. 2020, 29, 3443–3455. [Google Scholar] [CrossRef]
- Pedregosa, F. Scikit-learn: Machine learning in python Fabian. J. Mach. Learn. Res. 2011, 12, 2825. [Google Scholar]
- Zhao, Y.; Nasrullah, Z.; Li, Z. Pyod: A python toolbox for scalable outlier detection. J. Mach. Learn. Res. 2019, 20, 1–7. [Google Scholar]
- Bigdeli, A.; Maghsoudi, A.; Ghezelbash, R. Recognizing geochemical anomalies associated with mineral resources using singularity analysis and random forest models in the Torud-Chahshirin Belt, Northeast Iran. Minerals 2023, 13, 1399. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saremi, M.; Bagheri, M.; Agha Seyyed Mirzabozorg, S.A.; Hassan, N.E.; Hoseinzade, Z.; Maghsoudi, A.; Rezania, S.; Ranjbar, H.; Zoheir, B.; Beiranvand Pour, A. Evaluation of Deep Isolation Forest (DIF) Algorithm for Mineral Prospectivity Mapping of Polymetallic Deposits. Minerals 2024, 14, 1015. https://doi.org/10.3390/min14101015
Saremi M, Bagheri M, Agha Seyyed Mirzabozorg SA, Hassan NE, Hoseinzade Z, Maghsoudi A, Rezania S, Ranjbar H, Zoheir B, Beiranvand Pour A. Evaluation of Deep Isolation Forest (DIF) Algorithm for Mineral Prospectivity Mapping of Polymetallic Deposits. Minerals. 2024; 14(10):1015. https://doi.org/10.3390/min14101015
Chicago/Turabian StyleSaremi, Mobin, Milad Bagheri, Seyyed Ataollah Agha Seyyed Mirzabozorg, Najmaldin Ezaldin Hassan, Zohre Hoseinzade, Abbas Maghsoudi, Shahabaldin Rezania, Hojjatollah Ranjbar, Basem Zoheir, and Amin Beiranvand Pour. 2024. "Evaluation of Deep Isolation Forest (DIF) Algorithm for Mineral Prospectivity Mapping of Polymetallic Deposits" Minerals 14, no. 10: 1015. https://doi.org/10.3390/min14101015
APA StyleSaremi, M., Bagheri, M., Agha Seyyed Mirzabozorg, S. A., Hassan, N. E., Hoseinzade, Z., Maghsoudi, A., Rezania, S., Ranjbar, H., Zoheir, B., & Beiranvand Pour, A. (2024). Evaluation of Deep Isolation Forest (DIF) Algorithm for Mineral Prospectivity Mapping of Polymetallic Deposits. Minerals, 14(10), 1015. https://doi.org/10.3390/min14101015