Genesis of the Sanhetun Tellurium–Gold Deposit, Northeast China: Constraints from In Situ Elemental and Sulfur Isotopic Compositions of Pyrite
Abstract
:1. Introduction
2. Geological Settting
2.1. Reginal Geology
2.2. Deposit Geology
3. Materials and Methods
3.1. TIMA Analyses
3.2. SEM Analyses
3.3. EPMA Analyses
3.4. LA-ICP-MS Analyses
3.5. In Situ Sulfur Isotope Analyses
4. Results
4.1. Mineral Paragenetic Assemblages
4.2. Telluride Mineralogy
4.3. Pyrite Composition
4.4. In Situ Sulfur Isotopic Composition
5. Discussion
5.1. Trace Element Distribution in Pyrite
5.2. Genesis of Pyrite
5.3. Enrichment Mechanism of Au
6. Concluding Remarks
- (1)
- Five species of telluride were recognized in the Sanhetun Te–Au deposit: native Te, tetradymite, tsumoite, hessite, and petzite. Tetradymite commonly has a close relationship with native gold.
- (2)
- Four stages of pyrite are identified by their morphology, mineral assemblage, and elemental and sulfur isotopic compositions. The in situ trace elements show that the ore-forming fluids underwent an increase of fTe2 and fTe2/fS2, which gave rise to the precipitation of telluride.
- (3)
- Tellurium occurs as a lattice-bond in Py1 and Py2 and Te–Bi–Au submicroscopic inclusions concealing in Py3 and Py4. Gold is mainly present as visible gold and, subordinately, as invisible gold, which occurs as Te–Bi–Au submicroscopic inclusions.
- (4)
- Gold enrichment of the Sanhetun Te–Au deposit might be attributed to the existence of Te–Bi–S melts, which can act as an important gold scavenger in the Au-undersaturated ore-forming fluids.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, R.; Xue, C.; Lü, X.; Zhao, X.; Yang, Y.; Li, C. Genesis of the Zhengguang gold deposit in the Duobaoshan ore field, Heilongjiang Province, NE China: Constraints from geology, geochronology and S-Pb isotopic compositions. Ore Geol. Rev. 2017, 84, 202–217. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhou, Z.; OuYang, H. The Ordovician igneous rocks with high Sr/Y at the Tongshan porphyry copper deposit, satellite of the Duobaoshan deposit, and their metallogenic role. Ore Geol. Rev. 2017, 86, 600–614. [Google Scholar] [CrossRef]
- Suo, Q.; Shen, P.; Li, C.; Feng, H.; Chu, X. Mineral chemistry and apatite Sr isotope signatures record overprinting mineralization in the Duobaoshan porphyry Cu deposit, Heilongjiang Province, NE China. Ore Geol. Rev. 2023, 162, 105718. [Google Scholar] [CrossRef]
- Chen, J.; Wang, K.; Cai, W.; Geng, J.; Xue, H.; Wang, X. Fluid evolution and genesis of the Sankuanggou Fe -Cu skarn deposit, Duobaoshan ore field, Northeast China: Evidence from fluid inclusions and H-O-S-Pb isotopes. J. Geochem. Explor. 2023, 252, 107251. [Google Scholar] [CrossRef]
- Yang, H.; Ma, W.L.; Cai, W.Y.; Wang, K.Y.; Sun, F.Y.; Wang, J.H.; Zhou, H.Y.; Kou, B.Y. Metallogenic epoch and tectonic setting of the Xiaoduobaoshan Fe-Cu deposit in Heilongjiang Province, China: Evidence from petrogeochemistry, zircon U-Pb geochronology and Hf isotopic compositions (in Chinese with English abstract). Acta Petrol. Sin. 2020, 36, 856–870. [Google Scholar]
- Zhai, D.G.; Williams-Jones, A.E.; Liu, J.J.; Tombros, S.F.; Cook, N.J. Mineralogical, Fluid Inclusion, and Multiple Isotope (H-O-S-Pb) Constraints on the Genesis of the Sandaowanzi Epithermal Au-Ag-Te Deposit, NE China. Econ. Geol. 2018, 113, 1359–1382. [Google Scholar] [CrossRef]
- Zhang, M.; Shen, J.; Santosh, M.; Li, C.; Liu, H.; Yu, H.; Kamoto, M.; Du, B.; Liu, J. Tellurium and Gold enrichment aided by melts and pyrite crystallization kinetics: Insights from the Yongxin gold deposit, Northeast China. Ore Geol. Rev. 2023, 156, 105370. [Google Scholar] [CrossRef]
- Li, C.L.; Li, L.; Yuan, M.W.; Alam, M.; Li, S.R.; Santosh, M.; Deng, C.Z.; Liu, H.; Xu, G.Z. Study on pyrite thermoelectricity, ore-forming fluids and H-O-Rb-Sr isotopes of the Yongxin gold deposit, Central Asian Orogenic Belt: Implications for ore genesis and exploration. Ore Geol. Rev. 2020, 121, 103568. [Google Scholar] [CrossRef]
- Yuan, M.W.; Li, S.R.; Li, C.L.; Santosh, M.; Alam, M.; Zeng, Y.J. Geochemical and isotopic composition of auriferous pyrite from the Yongxin gold deposit, Central Asian Orogenic Belt: Implication for ore genesis. Ore Geol. Rev. 2018, 93, 255–267. [Google Scholar] [CrossRef]
- Li, C.; Deng, C.; Li, S.; Yuan, M.; Alam, M.; Liu, B.; Zhao, Z.; Li, W.; Yang, Y. Geochronology and genesis of the newly discovered Mengdehe orogenic-type Au deposit in the Xing’an-Mongolia orogenic Belt, NE China. Ore Geol. Rev. 2021, 133, 104083. [Google Scholar] [CrossRef]
- Gao, S.; Xu, H.; Zang, Y.Q.; Wang, T. Mineralogy, ore-forming fluids and geochronology of the Shangmachang and Beidagou gold deposits, Heilongjiang province, NE China. J. Geochem. Explor. 2018, 188, 137–155. [Google Scholar] [CrossRef]
- McNulty, B.A.; Jowitt, S.M. Byproduct critical metal supply and demand and implications for the energy transition: A case study of tellurium supply and CdTe PV demand. Renew. Sustain. Energy Rev. 2022, 168, 112838. [Google Scholar] [CrossRef]
- Zweibel, K. The impact of Tellurium supply on Cadmium Telluride photovoltaics. Science 2010, 328, 699–701. [Google Scholar] [CrossRef] [PubMed]
- Fornari, C.I.; Bentmann, H.; Morelhão, S.L.; Peixoto, T.R.F.; Rappl, P.H.O.; Tcakaev, A.; Zabolotnyy, V.; Kamp, M.; Lee, T.; Min, C.; et al. Incorporation of Europium in Bi2Te3 topological insulator epitaxial films. J. Phys. Chem. C 2020, 124, 16048–16057. [Google Scholar] [CrossRef]
- Steven, B.; William, M.; Jinxue, W.; Michael, J.; Farzin, A. Advances in HgCdTe APDs and LADAR receivers. In Proceedings of the Infrared Technology and Applications XXXVI, Orlando, FL, USA, 5–9 April 2010; SPIE: Bellingham, WA, USA, 2010; Volume 7660. [Google Scholar]
- Gu, H.J.; Li, B.W.; Li, C.L.; Yang, W.P.; Yang, Y.J.; Shi, H.L.; Zhang, M.M. The Discovery and Significance of Tellurideinthe Sanhetun Gold Deposit inthe Northeastern Great Xing’an Range. Mineral. Petrol. 2023, 43, 94–104, (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.; Li, W.; Feng, Z.; Wen, Q.; Neubauer, F.; Liang, C. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res. 2017, 43, 123–148. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, K.; Khan, U.; Li, X.; Du, L.; Xu, Z. A lightweight convolutional neural network with end-to-end learning for three-dimensional mineral prospectivity modeling: A case study of the Sanhetun Area, Heilongjiang Province, Northeastern China. Ore Geol. Rev. 2023, 163, 105788. [Google Scholar] [CrossRef]
- Liu, B.S.; Kou, L.L.; Zhang, C.P.; Li, C.L.; Luo, J.; Han, R.P.; Li, B.W. Research on the relationship between mineralization and zircon LA-ICP-MS U-Pb dating of the mylonite from the Sanhetun gold deposit in Nenjiang region, Heilongjiang Province (in Chinese with English abstract). Acta Geol. Sin. 2022, 96, 954–970. [Google Scholar]
- Zhou, J.; Wilde, S.A.; Zhao, G.; Han, J. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Sci. Rev. 2018, 186, 76–93. [Google Scholar] [CrossRef]
- Miao, L.C.; Fan, W.M.; Zhang, F.Q.; Liu, D.Y.; Jian, P.; Shi, G.H.; Tao, H.; Shi, Y.R. Zircon SHRIMP geochronology of the Xinkailing-Keluo complex in the northwestern Lesser Xing’an Range, and its geological implications. Chin. Sci. Bull. 2003, 48, 2315–2323. [Google Scholar]
- Li, B.W.; Gu, H.J.; Li, C.L.; Liu, B.S.; Yang, X.P. Geological Characteristics and Prospecting Potential of Sanhetun Gold Deposit in Heilongjiang Province. Gold Sci. Technol. 2022, 30, 508–517, (In Chinese with English Abstract). [Google Scholar]
- Wang, F.Y.; Ge, C.; Ning, S.Y.; Nie, L.Q.; Zhong, G.X.; White, N.C. A new approach to LA-ICP-MS mapping and application in geology. Acta Petrol. Sin. 2017, 33, 3422–3436, (In Chinese with English Abstract). [Google Scholar]
- Deditius, A.P.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C.; Hough, R.; Walshe, J. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 2011, 42, 32–46. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Utsunomiya, S.; Kogagwa, M.; Green, L.; Gilbert, S.; Wade, B. Gold-telluride nanoparticles revealed in arsenic-free pyrite. Am. Miner. 2012, 97, 1515–1518. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Baturina, E.L.; Lyons, T.W.; Wu, S.; Danyushevsky, L.; Sack, P.J.; Chappaz, A.; Maslennikov, V.V.; et al. Trace Element Content of Sedimentary Pyrite in Black Shales. Econ. Geol. 2015, 110, 1389–1410. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, J.; Chen, H.; Yang, L.; Cooke, D.; Danyushevsky, L.; Gong, Q. LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit, Sanjiang region, China: Implication for ore-forming process. Gondwana Res. 2014, 26, 557–575. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Ewing, R.C.; Kesler, S.E. Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite. Am. Miner. 2009, 94, 391–394. [Google Scholar] [CrossRef]
- Fleet, M.E.; Mumin, A.H. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. Am. Miner. 1997, 82, 182–193. [Google Scholar] [CrossRef]
- Keith, M.; Smith, D.J.; Jenkin, G.R.T.; Holwell, D.A.; Dye, M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits; insights into ore-forming processes. Ore Geol. Rev. 2018, 96, 269–282. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Renock, D.; Ewing, R.C.; Ramana, C.V.; Becker, U.; Kesler, S.E. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochim. Cosmochim. Acta 2008, 72, 2919–2933. [Google Scholar] [CrossRef]
- Qian, G.; Brugger, J.; Testemale, D.; Skinner, W.; Pring, A. Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions. Geochim. Cosmochim. Acta 2013, 100, 1–10. [Google Scholar] [CrossRef]
- Deditius, A.P.; Reich, M.; Kesler, S.E.; Utsunomiya, S.; Chryssoulis, S.L.; Walshe, J.; Ewing, R.C. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Barker, S.L.L.; Hickey, K.A.; Cline, J.S.; Dipple, G.M.; Kilburn, M.R.; Vaughan, J.R.; Longo, A.A. Uncloaking invisible gold: Use of nanoSIMS to evaluate gold, trace elements, and sulfur isotopes in pyrite from Carlin-type gold deposits. Econ. Geol. 2009, 104, 897–904. [Google Scholar] [CrossRef]
- Tanner, D.; Henley, R.W.; Mavrogenes, J.A.; Holden, P. Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au–Cu–Ag deposit, Chile. Contrib. Mineral. Petrol. 2016, 171, 33. [Google Scholar] [CrossRef]
- Du, B.; Shen, J.; Santosh, M.; Liu, H.; Liu, J.; Wang, Y.; Xu, K. Textural, compositional and isotopic characteristics of pyrite from the Zaozigou gold deposit in West Qinling, China: Implications for gold metallogeny. Ore Geol. Rev. 2021, 130, 103917. [Google Scholar] [CrossRef]
- Li, C. Characteristics of Structural Superimposed Halo and Deep Prospecting Prediction of Yongxin Gold Deposit, Duobaoshan Area, Heilongjiang Province. Geoscience 2023, 37, 674–689, (In Chinese with English Abstract). [Google Scholar]
- Ohmoto, H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Chaussidon, M.; Lorand, J. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France): An ion microprobe study. Geochim. Cosmochim. Acta 1990, 54, 2835–2846. [Google Scholar] [CrossRef]
- Cooke, D.R.; McPhail, D.C. Epithermal Au-Ag-Te Mineralization, Acupan, Baguio District, Philippines: Numerical Simulations of Mineral Deposition. Econ. Geol. 2001, 96, 109–131. [Google Scholar]
- Grundler, P.V.; Brugger, J.; Etschmann, B.E.; Helm, L.; Liu, W.; Spry, P.G.; Tian, Y.; Testemale, D.; Pring, A. Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition. Geochim. Cosmochim. Acta 2013, 120, 298–325. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Birch, W.D.; Cook, N.J.; Pring, A.; Grundler, P.V. Petrogenetic significance of Au–Bi–Te–S associations: The example of Maldon, Central Victorian gold province, Australia. Lithos 2010, 116, 1–17. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Wagner, T.; Stanley, C.J. Minerals of the system Bi–Te–Se–S related to the tetradymite archetype: Review of classification and compositional variation. Can. Mineral. 2007, 45, 665–708. [Google Scholar] [CrossRef]
- Rye, R.O. A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chem. Geol. 2005, 215, 5–36. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Bowell, R.J.; Migdisov, A.A. Gold in Solution. Elements 2009, 5, 281–287. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Mao, J.W. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chem. Geol. 2009, 264, 101–121. [Google Scholar] [CrossRef]
- Möller, P.; Kersten, G. Electrochemical accumulation of visible gold on pyrite and arsenopyrite surfaces. Miner. Depos. 1994, 29, 404–413. [Google Scholar] [CrossRef]
- Laird, J.S.; Halfpenny, A.; Ryan, C.G.; Liu, W. Evidence supporting micro-galvanic coupling in sulphides leads to gold deposition. Contrib. Mineral. Petrol. 2021, 176, 1–19. [Google Scholar] [CrossRef]
- Peterson, E.C.; Mavrogenes, J.A. Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea. Geology 2014, 42, 383–386. [Google Scholar] [CrossRef]
- Douglas, N.; Mavrogenes, J.; Hack, A.; England, R. The liquid bismuth collector model: An alternative gold deposition mechanism. In Understanding Planet Earth; Skilbeck, C.G., Hubble, T.C.T., Eds.; Searching for a Sustainable Future; on the Starting Blocks of the Third Millennium: Australian Geological Convention, 15th, Sydney, Abstracts: Sydney; Geological Society of Australia: Sydney, Australia, 2000; 135p. [Google Scholar]
- Tooth, B.; Brugger, J.; Ciobanu, C.; Liu, W. Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids: An experimental study. Geology 2008, 36, 815–818. [Google Scholar] [CrossRef]
- Tooth, B.; Ciobanu, C.L.; Green, L.; O Neill, B.; Brugger, J. Bi-melt formation and gold scavenging from hydrothermal fluids: An experimental study. Geochim. Cosmochim. Acta 2011, 75, 5423–5443. [Google Scholar] [CrossRef]
- Jian, W.; Mao, J.W.; Lehmann, B.; Cook, N.J.; Xie, G.Q.; Liu, P.; Duan, C.; Alles, J.; Niu, Z.J. Au-Ag-Te-rich melt inclusions in hydrothermal gold-quartz veins, Xiaoqinling Lode Gold District, central China. Econ. Geol. 2021, 116, 1239–1248. [Google Scholar] [CrossRef]
- Jian, W.; Mao, J.; Lehmann, B.; Cook, N.J.; Li, J.; Song, S.; Zhu, L. Hyper-enrichment of gold via quartz fracturing and growth of polymetallic melt droplets. Geology 2024, 52, 411–416. [Google Scholar] [CrossRef]
- Frost, B.R.; Mavrogenes, J.A.; Tomkins, A.G. Partial melting of sulfide ore deposits during medium- and high-grade metamorphism. Can. Mineral. 2002, 40, 1–18. [Google Scholar] [CrossRef]
- Cockerton, A.B.D.; Tomkins, A.G. Insights into the Liquid Bismuth Collector Model through Analysis of the Bi-Au Stormont Skarn Prospect, Northwest Tasmania. Econ. Geol. 2012, 107, 667–682. [Google Scholar] [CrossRef]
- Oberthur, T.; Weiser, T.W. Gold-bismuth-telluride-sulphide assemblages at the Viceroy Mine, Harare-Bindura-Shamva greenstone belt, Zimbabwe. Mineral. Mag. 2008, 72, 953–970. [Google Scholar] [CrossRef]
- Pals, D.W.; Spry, P.G. Telluride mineralogy of the low-sulfidation epithermal Emperor gold deposit, Vatukoula, Fiji. Mineral. Petrol. 2003, 79, 285–307. [Google Scholar] [CrossRef]
- Bi, S.J.; Li, J.W.; Zhou, M.F.; Li, Z.K. Gold distribution in As-deficient pyrite and telluride mineralogy of the Yangzhaiyu gold deposit, Xiaoqinling district, southern North China craton. Miner. Depos. 2011, 46, 925–941. [Google Scholar] [CrossRef]
Py1 | Py2 | Py3 | Py4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N = 19 | N = 23 | N = 14 | N = 14 | |||||||||
Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | |
S | 52.64 | 53.19 | 53.45 | 53.46 | 53.65 | 53.93 | 52.54 | 53.39 | 53.98 | 52.76 | 53.55 | 53.91 |
Fe | 46.03 | 46.64 | 47.14 | 46.29 | 46.75 | 47.14 | 46.37 | 46.69 | 47.31 | 46.15 | 46.56 | 47.05 |
Au | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 | 0.03 | 0.08 | 0.03 | 0.06 | 0.13 |
Ag | 0.00 | 0.02 | 0.06 | 0.00 | 0.01 | 0.07 | 0.00 | 0.01 | 0.07 | 0.00 | 0.04 | 0.17 |
Te | 0.00 | 0.02 | 0.10 | 0.00 | 0.01 | 0.05 | 0.00 | 0.02 | 0.08 | 0.00 | 0.03 | 0.10 |
Se | 0.00 | 0.01 | 0.08 | 0.00 | 0.01 | 0.05 | 0.00 | 0.01 | 0.05 | 0.00 | 0.01 | 0.03 |
As | 0.00 | 0.01 | 0.03 | 0.00 | 0.00 | 0.04 | 0.00 | 0.01 | 0.04 | 0.00 | 0.01 | 0.05 |
Cu | 0.00 | 0.01 | 0.04 | 0.00 | 0.02 | 0.08 | 0.00 | 0.00 | 0.03 | 0.00 | 0.01 | 0.03 |
Pb | 0.00 | 0.04 | 0.20 | 0.00 | 0.03 | 0.14 | 0.00 | 0.03 | 0.10 | 0.00 | 0.05 | 0.14 |
Zn | 0.00 | 0.03 | 0.13 | 0.00 | 0.02 | 0.08 | 0.00 | 0.05 | 0.08 | 0.00 | 0.03 | 0.08 |
Co | 0.00 | 0.04 | 0.09 | 0.00 | 0.03 | 0.08 | 0.01 | 0.05 | 0.15 | 0.00 | 0.04 | 0.08 |
Ni | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.08 | 0.00 | 0.02 | 0.07 | 0.00 | 0.00 | 0.03 |
Total | 98.67 | 100.01 | 101.35 | 99.75 | 100.54 | 101.76 | 98.92 | 100.31 | 102.04 | 98.94 | 100.39 | 101.80 |
S(apfu) | 2.03 | 2.01 | 1.98 | 2.02 | 2.00 | 1.98 | 2.02 | 2.00 | 1.98 | 2.03 | 2.01 | 1.99 |
Fe(apfu) | 1.00 | 1.00 | 1.01 | 0.99 | 1.00 | 1.00 | 1.01 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 |
Py1 | Py2 | Py3 | Py4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N = 9 | N = 10 | N = 7 | N = 5 | |||||||||
Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | |
Ti | 0.93 | 2.98 | 6.17 | 4.66 | 164.80 | 691.12 | 1.06 | 2.36 | 5.88 | 1.15 | 1.80 | 2.25 |
Mn | 0.00 | 0.18 | 0.85 | 6.60 | 38.77 | 152.54 | 0.00 | 0.29 | 0.95 | 0.00 | 0.14 | 0.28 |
Co | 0.21 | 96.24 | 380.43 | 3.55 | 20.87 | 54.32 | 0.07 | 10.56 | 46.61 | 3.67 | 10.97 | 21.68 |
Ni | 0.00 | 47.63 | 176.43 | 6.65 | 22.19 | 40.89 | 7.35 | 44.72 | 87.78 | 2.25 | 3.82 | 5.11 |
Cu | 0.00 | 2.24 | 7.12 | 36.67 | 72.80 | 111.99 | 7.54 | 118.12 | 414.41 | 5.98 | 12.41 | 22.39 |
Zn | 0.14 | 0.49 | 0.77 | 2.83 | 4.24 | 6.12 | 0.22 | 0.59 | 1.07 | 0.43 | 0.55 | 0.68 |
Ge | 4.23 | 4.67 | 5.16 | 4.33 | 4.70 | 5.17 | 4.13 | 4.80 | 5.72 | 4.09 | 4.61 | 5.09 |
As | 0.00 | 3.59 | 12.85 | 59.24 | 627.81 | 1784.14 | 0.00 | 1058.53 | 4752.33 | 3.33 | 5.39 | 7.44 |
Se | 0.00 | 1.42 | 3.34 | 0.00 | 1.82 | 4.02 | 0.19 | 1.08 | 4.21 | 2.00 | 3.12 | 4.39 |
Mo | 0.04 | 0.08 | 0.16 | 163.94 | 368.91 | 625.39 | 0.00 | 0.07 | 0.18 | 0.00 | 0.03 | 0.06 |
Ag | 0.00 | 1.46 | 5.08 | 4.87 | 15.99 | 30.27 | 1.93 | 689.57 | 1758.18 | 1.16 | 26.13 | 87.08 |
Cd | 0.00 | 0.05 | 0.19 | 0.26 | 1.48 | 3.33 | 0.00 | 1.45 | 4.83 | 0.00 | 0.04 | 0.11 |
Sb | 0.00 | 0.19 | 0.85 | 4.65 | 21.70 | 53.07 | 0.20 | 4.31 | 18.00 | 0.00 | 0.06 | 0.12 |
Te | 0.02 | 6.66 | 21.36 | 11.43 | 68.38 | 142.43 | 17.60 | 1115.65 | 2801.51 | 15.23 | 62.32 | 166.87 |
Au | 0.01 | 4.98 | 25.49 | 2.03 | 4.92 | 8.59 | 0.36 | 159.01 | 440.79 | 0.24 | 3.39 | 10.62 |
Tl | 0.00 | 0.01 | 0.05 | 0.28 | 1.39 | 3.29 | 0.00 | 0.03 | 0.08 | 0.00 | 0.01 | 0.02 |
Bi | 0.00 | 0.72 | 2.53 | 10.15 | 58.08 | 128.55 | 0.61 | 70.43 | 196.02 | 10.73 | 53.43 | 139.45 |
Pb | 0.02 | 4.78 | 18.90 | 40.36 | 201.98 | 369.50 | 15.79 | 2489.75 | 8651.72 | 13.66 | 26.75 | 40.93 |
Stage | Sample No. | δ34SV-CDT (‰) |
---|---|---|
Py1 | ZK2904g7-1-1 | −0.85 |
Py1 | ZK2904g7-1-2 | −0.66 |
Py1 | ZK2904g7-1-3 | −1.20 |
Py1 | ZK2904g7-1-4 | −0.65 |
Py1 | ZK2904g7-1-5 | −0.57 |
Py1 | ZK2904g7-1-6 | −0.69 |
Py1 | ZK2904g7-1-7 | −0.95 |
Py2 | ZK2905g5-1-1 | 14.43 |
Py2 | ZK2905g5-1-2 | 11.09 |
Py2 | ZK2905g5-1-3 | 5.33 |
Py2 | ZK2905g5-1-4 | 6.59 |
Py2 | ZK2905g5-1-5 | 6.88 |
Py2 | ZK2905g5-1-6 | 11.03 |
Py2 | ZK2905g5-1-7 | 6.78 |
Py2 | ZK2905g5-1-8 | 4.75 |
Py2 | ZK2905g5-1-9 | 4.67 |
Py2 | ZK2905g5-1-10 | 10.78 |
Py3 | ZK2905g3-1 | −0.74 |
Py3 | ZK2905g3-2 | −5.69 |
Py3 | ZK2905g3-3 | −4.38 |
Py3 | ZK2905g3-4 | −5.44 |
Py3 | ZK2905g3-5 | −5.16 |
Py3 | ZK2905g3-6 | −4.69 |
Py3 | ZK2905g3-7 | −0.89 |
Py3 | ZK2905g3-8 | −1.09 |
Py3 | ZK2905g3-9 | 0.19 |
Py3 | ZK2905g3-10 | −1.03 |
Py4 | ZK1001g2-1-1 | 2.90 |
Py4 | ZK1001g2-1-2 | 2.66 |
Py4 | ZK1001g2-1-3 | 3.05 |
Py4 | ZK2905g5-1 | 3.62 |
Py4 | ZK2905g5-2 | 3.65 |
Py4 | ZK2905g5-3 | 3.86 |
Py4 | ZK2905g5-4 | 3.76 |
Py4 | ZK2905g5-5 | 3.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Shen, J.; Li, C.; Santosh, M.; Xu, K.; Zhao, G.; Gu, H. Genesis of the Sanhetun Tellurium–Gold Deposit, Northeast China: Constraints from In Situ Elemental and Sulfur Isotopic Compositions of Pyrite. Minerals 2024, 14, 1014. https://doi.org/10.3390/min14101014
Zhang M, Shen J, Li C, Santosh M, Xu K, Zhao G, Gu H. Genesis of the Sanhetun Tellurium–Gold Deposit, Northeast China: Constraints from In Situ Elemental and Sulfur Isotopic Compositions of Pyrite. Minerals. 2024; 14(10):1014. https://doi.org/10.3390/min14101014
Chicago/Turabian StyleZhang, Mengmeng, Junfeng Shen, Chenglu Li, M. Santosh, Kexin Xu, Gexue Zhao, and Huajuan Gu. 2024. "Genesis of the Sanhetun Tellurium–Gold Deposit, Northeast China: Constraints from In Situ Elemental and Sulfur Isotopic Compositions of Pyrite" Minerals 14, no. 10: 1014. https://doi.org/10.3390/min14101014
APA StyleZhang, M., Shen, J., Li, C., Santosh, M., Xu, K., Zhao, G., & Gu, H. (2024). Genesis of the Sanhetun Tellurium–Gold Deposit, Northeast China: Constraints from In Situ Elemental and Sulfur Isotopic Compositions of Pyrite. Minerals, 14(10), 1014. https://doi.org/10.3390/min14101014