Experimental vs. Natural Mineral Precipitation in Modern Microbialites: The Case Study of the Alkaline Bagno Dell’acqua Lake (Pantelleria Island, Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Hydrogeochemical Analyses
2.2. XRD and SEM-EDS
2.3. Bacterial Isolation and Identification
3. Results
3.1. Microbialite Fabric
3.2. X-ray Diffraction of Microbialites
3.3. SEM-EDS Analyses of Microbialites
3.4. Laboratory Experiments
3.5. Water Chemistry
4. Discussion
Biogenic Origin of the Mg-Clay Minerals Forming the Bagno Dell’acqua Microbialites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burne, R.V.; Moore, L.S. Microbialites: Organosedimentary Deposits of Benthic Microbial Communities. Palaios 1987, 2, 241. [Google Scholar] [CrossRef]
- Foster, J.S.; Green, S.J. Microbial diversity in modern stromatolites. In STROMATOLITES: Interaction of Microbes with Sediments. Cellular Origin, Life in Extreme Habitats and Astrobiology; Tewari, V., Seckbach, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 18, pp. 383–405. [Google Scholar]
- Reid, R.P.; Macintyre, I.G.; Browne, K.M.; Steneck, R.S.; Miller, T. Modern marine stromatolites in the Exuma Cays, Bahamas: Uncommonly common. Facies 1995, 33, 1–17. [Google Scholar] [CrossRef]
- Chagas, A.A.; Webb, G.E.; Burne, R.V.; Southam, G. Modern lacustrine microbialites: Towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth-Sci. Rev. 2016, 162, 338–363. [Google Scholar] [CrossRef]
- Rishworth, G.M.; Dodd, C.; Perissinotto, R.; Bornman, T.G.; Adams, J.B.; Anderson, C.R.; Cawthra, H.C.; Dorrington, R.A.; du Toit, H.; Edworthy, C.; et al. Modern supratidal microbialites fed by groundwater: Functional drivers, value and trajectories. Earth-Sci. Rev. 2020, 210, 103364. [Google Scholar] [CrossRef]
- Suarez-Gonzalez, P.; Benito, M.; Quijada, I.; Mas, R.; Campos-Soto, S. ‘Trapping and binding’: A review of the factors controlling the development of fossil agglutinated microbialites and their distribution in space and time. Earth-Sci. Rev. 2019, 194, 182–215. [Google Scholar] [CrossRef]
- Hoffmann, T.D.; Reeksting, B.J.; Gebhard, S. Bacteria-induced mineral precipitation: A mechanistic review. Microbiology 2021, 167, 001049. [Google Scholar] [CrossRef]
- Braissant, O.; Decho, A.W.; Przekop, K.M.; Gallagher, K.L.; Glunk, C.; Dupraz, C.; Visscher, P.T. Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol. Ecol. 2009, 67, 293–307. [Google Scholar] [CrossRef]
- Dupraz, C.; Visscher, P.T. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 2005, 13, 429–438. [Google Scholar] [CrossRef]
- Reid, R.P.; Visscher, P.T.; Decho, A.W.; Stolz, J.F.; Bebout, B.M.; Dupraz, C.; Macintyre, I.G.; Paerl, H.W.; Pinckney, J.L.; Prufert-Bebout, L.; et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 2000, 406, 989–992. [Google Scholar] [CrossRef]
- Visscher, P.T.; Stolz, J.F. Microbial mats as bioreactors: Populations, processes, and products. Palaeogeogr. Palaeoclim. Palaeoecol. 2005, 219, 87–100. [Google Scholar] [CrossRef]
- Dupraz, C.; Reid, R.P.; Braissant, O.; Decho, A.W.; Norman, R.S.; Visscher, P.T. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 2009, 96, 141–162. [Google Scholar] [CrossRef]
- Visscher, P.T.; Reid, R.P.; Bebout, B.M.; Hoeft, S.E.; Macintyre, I.G.; Thompson, J.A. Formation of lithified micritic laminae in modern marine stromatolites (Bahamas); the role of sulfur cycling. Am. Mineral. 1998, 83 Pt 2, 1482–1493. [Google Scholar] [CrossRef]
- Visscher, P.T.; Reid, R.P.; Bebout, B.M. Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 2000, 28, 919–922. [Google Scholar] [CrossRef]
- Dupraz, C.; Visscher, P.T.; Baumgartner, L.K.; Reid, R.P. Microbe–mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 2004, 51, 745–765. [Google Scholar] [CrossRef]
- Braissant, O.; Decho, A.W.; Dupraz, C.; Glunk, C.; Przekop, K.M.; Visscher, P.T. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 2007, 5, 401–411. [Google Scholar] [CrossRef]
- Pace, A.; Bourillot, R.; Bouton, A.; Vennin, E.; Braissant, O.; Dupraz, C.; Duteil, T.; Bundeleva, I.; Patrier, P.; Galaup, S.; et al. Formation of stromatolite lamina at the interface of oxygenic–anoxygenic photosynthesis. Geobiology 2018, 16, 378–398. [Google Scholar] [CrossRef]
- Cabestrero, Ó.; Sanz-Montero, M.E. Brine evolution in two inland evaporative environments: Influence of microbial mats in mineral precipitation. J. Paleolimnol. 2018, 59, 139–157. [Google Scholar] [CrossRef]
- Sanz-Montero, M.E.; Cabestrero, Ó.; Sánchez-Román, M. Microbial Mg-rich Carbonates in an Extreme Alkaline Lake (Las Eras, Central Spain). Front. Microbiol. 2019, 10, 148. [Google Scholar] [CrossRef]
- Souza-Egipsy, V.; Wierzchos, J.; Ascaso, C.; Nealson, K.H. Mg–silica precipitation in fossilization mechanisms of sand tufa endolithic microbial community, Mono Lake (California). Chem. Geol. 2005, 217, 77–87. [Google Scholar] [CrossRef]
- Bontognali, T.R.; Martinez-Ruiz, F.; McKenzie, J.A.; Bahniuk, A.; Anjos, S.; Vasconcelos, C. Smectite synthesis at low temperature and neutral pH in the presence of succinic acid. Appl. Clay Sci. 2014, 101, 553–557. [Google Scholar] [CrossRef]
- Burne, R.V.; Moore, L.S.; Christy, A.G.; Troitzsch, U.; King, P.L.; Carnerup, A.M.; Hamilton, P.J. Stevensite in the modern thrombolites of Lake Clifton, Western Australia: A missing link in microbialite mineralization? Geology 2014, 42, 575–578. [Google Scholar] [CrossRef]
- Pace, A.; Bourillot, R.; Bouton, A.; Vennin, E.; Galaup, S.; Bundeleva, I.; Patrier, P.; Dupraz, C.; Thomazo, C.; Sansjofre, P.; et al. Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites. Sci. Rep. 2016, 6, 31495. [Google Scholar] [CrossRef] [PubMed]
- Perri, E.; Tucker, M.E.; Słowakiewicz, M.; Whitaker, F.; Bowen, L.; Perrotta, I.D. Carbonate and silicate biominer-alization in a hypersaline microbial mat (Mesaieed sabkha, Qatar): Roles of bacteria, extracellular polymeric substances and viruses. Sedimentology 2018, 65, 1213–1245. [Google Scholar] [CrossRef]
- del Buey, P.; Cabestrero, Ó.; Arroyo, X.; Sanz-Montero, M.E. Microbially induced palygorskite-sepiolite authigenesis in modern hypersaline lakes (Central Spain). Appl. Clay Sci. 2018, 160, 9–21. [Google Scholar] [CrossRef]
- Cuadros, J. Clay minerals interaction with microorganisms: A review. Clay Miner. 2017, 52, 235–261. [Google Scholar] [CrossRef]
- del Buey, P.; Sanz-Montero, M.; Sánchez-Román, M. Bioinduced precipitation of smectites and carbonates in photosynthetic diatom-rich microbial mats: Effect of culture medium. Appl. Clay Sci. 2023, 238, 106932. [Google Scholar] [CrossRef]
- Mueller, B. Experimental Interactions Between Clay Minerals and Bacteria: A Review. Pedosphere 2015, 25, 799–810. [Google Scholar] [CrossRef]
- Tazaki, K. Microbial Formation of a Halloysite-Like Mineral. Clays Clay Miner. 2005, 53, 224–233. [Google Scholar] [CrossRef]
- Cuadros, J.; Afsin, B.; Jadubansa, P.; Ardakani, M.; Ascaso, C.; Wierzchos, J. Pathways of volcanic glass alteration in laboratory experiments through inorganic and microbially-mediated processes. Clay Miner. 2013, 48, 423–445. [Google Scholar] [CrossRef]
- Suosaari, E.P.; Lascu, I.; Oehlert, A.M.; Parlanti, P.; Mugnaioli, E.; Gemmi, M.; Machabee, P.F.; Piggot, A.M.; Palma, A.T.; Reid, R.P. Authigenic clays as precursors to carbonate precipitation in saline lakes of Salar de Llamara, Northern Chile. Commun. Earth Environ. 2022, 3, 325. [Google Scholar] [CrossRef]
- Mather, C.C.; Lampinen, H.M.; Tucker, M.; Leopold, M.; Dogramaci, S.; Raven, M.; Gilkes, R.J. Microbial influence on dolomite and authigenic clay mineralisation in dolocrete profiles of NW Australia. Geobiology 2023, 21, 644–670. [Google Scholar] [CrossRef]
- McCutcheon, J.; Power, I.M.; Shuster, J.; Harrison, A.L.; Dipple, G.M.; Southam, G. Carbon Sequestration in Biogenic Magnesite and Other Magnesium Carbonate Minerals. Environ. Sci. Technol. 2019, 53, 3225–3237. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.H.; Keeling, J. Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Appl. Clay Sci. 2013, 74, 3–9. [Google Scholar] [CrossRef]
- Bischoff, K.; Sirantoine, E.; Wilson, M.E.J.; George, A.D.; Monteiro, J.M.; Saunders, M. Spherulitic microbialites from modern hypersaline lakes, Rottnest Island, Western Australia. Geobiology 2020, 18, 725–741. [Google Scholar] [CrossRef] [PubMed]
- Zeyen, N.; Benzerara, K.; Li, J.; Groleau, A.; Balan, E.; Robert, J.-L.; Estève, I.; Tavera, R.; Moreira, D.; López-García, P. Formation of low-T hydrated silicates in modern microbialites from Mexico and implications for microbial fossilization. Front. Earth Sci. 2015, 1–23. [Google Scholar] [CrossRef]
- Zeyen, N.; Benzerara, K.; Beyssac, O.; Daval, D.; Muller, E.; Thomazo, C.; Tavera, R.; López-García, P.; Moreira, D.; Duprat, E. Integrative analysis of the mineralogical and chemical composition of modern microbialites from ten Mexican lakes: What do we learn about their for-mation? Geochim. Cosmochim. Acta 2021, 305, 148–184. [Google Scholar] [CrossRef]
- Kaźmierczak, J.; Kempe, S.; Kremer, B.; López-García, P.; Moreira, D.; Tavera, R. Hydrochemistry and microbialites of the alkaline crater lake Alchichica, Mexico. Facies 2011, 57, 543–570. [Google Scholar] [CrossRef]
- Arp, G.; Reimer, A.; Reitner, J. Microbialite Formation in Seawater of Increased Alkalinity, Satonda Crater Lake, Indonesia. J. Sediment. Res. 2003, 73, 105–127. [Google Scholar] [CrossRef]
- Arp, G.; Reimer, A.; Reitner, J. Microbialite Formation in Seawater of Increased Alkalinity, Satonda Crater Lake, Indonesia: Reply. J. Sediment. Res. 2004, 74, 318–325. [Google Scholar] [CrossRef]
- Kazmierczak, J.; Kempe, S. Modern terrestrial analogues for the carbonate globules in Martian meteorite ALH84001. Sci. Nat. 2003, 90, 167–172. [Google Scholar] [CrossRef]
- DiLoreto, Z.A.; Bontognali, T.R.R.; Al Disi, Z.A.; Al-Kuwari, H.A.S.; Williford, K.H.; Strohmenger, C.J.; Sadooni, F.; Palermo, C.; Rivers, J.M.; McKenzie, J.A.; et al. Microbial community composition and dolomite formation in the hypersaline microbial mats of the Khor Al-Adaid sabkhas, Qatar. Extremophiles 2019, 23, 201–218. [Google Scholar] [CrossRef] [PubMed]
- Bontognali, T.R.R.; Vasconcelos, C.; Warthmann, R.J.; Bernasconi, S.M.; Dupraz, C.; Strohmenger, C.J.; Mckenzie, J.A. Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates). Sedimentology 2010, 57, 824–844. [Google Scholar] [CrossRef]
- D’Alessandro, W.; Dongarrà, G.; Gurrieri, S.; Parello, F.; Valenza, M. Geochemical characterization of naturally occurring fluids on the Island of Pantelleria (Italy). Mineral. Petrogr. Acta 1994, 37, 91–102. [Google Scholar]
- Parello, F.; Allard, P.; D’alessandro, W.; Federico, C.; Jean-Baptiste, P.; Catani, O. Isotope geochemistry of Pantelleria volcanic fluids, Sicily Channel rift: A mantle volatile end-member for volcanism in southern Europe. Earth Planet. Sci. Lett. 2000, 180, 325–339. [Google Scholar] [CrossRef]
- Aiuppa, A.; D’Alessandro, W.; Gurrieri, S.; Madonia, P.; Parello, F. Hydrologic and geochemical survey of the lake “Specchio di Venere” (Pantelleria island, Southern Italy). Environ. Geol. 2007, 53, 903–913. [Google Scholar] [CrossRef]
- Pecoraino, G.; D’Alessandro, W.; Inguaggiato, S. The Other Side of the Coin: Geochemistry of Alkaline Lakes in Volcanic Areas; Springer: Berlin/Heidelberg, Germany, 2015; pp. 219–237. [Google Scholar]
- Cangemi, M.; Madonia, P.; Speziale, S. Geochemistry and mineralogy of a complex sedimentary deposit in the alkaline volcanic Lake Specchio di Venere (Pantelleria Island, south Mediterranean). J. Limnol. 2018, 77, 220–231. [Google Scholar] [CrossRef]
- Cangemi, M.; Bellanca, A.; Borin, S.; Hopkinson, L.; Mapelli, F.; Neri, R. The genesis of actively growing siliceous stromatolites: Evidence from Lake Specchio di Venere, Pantelleria Island, Italy. Chem. Geol. 2010, 276, 318–330. [Google Scholar] [CrossRef]
- Cangemi, M.; Censi, P.; Reimer, A.; D’Alessandro, W.; Hause-Reitner, D.; Madonia, P.; Oliveri, Y.; Pecoraino, G.; Reitner, J. Carbonate precipitation in the alkaline lake Specchio di Venere (Pantelleria Island, Italy) and the possible role of microbial mats. Appl. Geochem. 2016, 67, 168–176. [Google Scholar] [CrossRef]
- Bruschini, E.; Ferrari, M.; Mazzoni, C.; Fazi, S.; Chiocci, F.L.; Mazzini, I.; Costanzo, G.; De Angelis, S.; De Sanctis, M.C.; Altieri, F.; et al. Preliminary spectroscopic investigation of a potential Mars analog site: Lake Bagno dell’Acqua, Pantelleria, Italy. Planet. Space Sci. 2024, 245, 105893. [Google Scholar] [CrossRef]
- Azzaro, E.; Badalamenti, F.; Dongarrà, G.; Hauser, S. Geochemical and mineralogical studies of Lake Specchio di Venere, Pantelleria Island, Italy. Chem. Geol. 1983, 40, 149–165. [Google Scholar] [CrossRef]
- Civetta, L.; Cornette, Y.; Gillot, P.Y.; Orsi, G. The eruptive history of Pantelleria (Sicily channel) in the last 50 ka. Bull. Volcanol. 1988, 50, 47–57. [Google Scholar] [CrossRef]
- Civetta, L.; Cornette, Y.; Crisci, G.; Gillot, P.Y.; Orsi, G.; Requejo, C.S. Geology, geochronology and chemical evolution of the island of Pantelleria. Geol. Mag. 1984, 121, 541–562. [Google Scholar] [CrossRef]
- Censi, P.; Cangemi, M.; Brusca, L.; Madonia, P.; Saiano, F.; Zuddas, P. The behavior of rare-earth elements, Zr and Hf during biologically-mediated deposition of silica-stromatolites and carbonate-rich microbial mats. Gondwana Res. 2015, 27, 209–215. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: Oxford, UK, 1997; 378p. [Google Scholar]
- Marvasi, M.; Gallagher, K.L.; Martinez, L.C.; Pagan, W.C.M.; Santiago, R.E.R.; Vega, G.C.; Visscher, P.T. Importance of B4 Medium in Determining Organomineralization Potential of Bacterial Environmental Isolates. Geomicrobiol. J. 2012, 29, 916–924. [Google Scholar] [CrossRef]
- Mazzoni, C.; Piacentini, A.; Di Bella, L.; Aldega, L.; Perinelli, C.; Conte, A.M.; Ingrassia, M.; Ruspandini, T.; Bonfanti, A.; Caraba, B.; et al. Carbonate precipitation and phosphate trapping by microbialite isolates from an alkaline insular lake (Bagno dell’Acqua, Pantelleria Island, Italy). Front. Microbiol. 2024, 15, 1391968. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tomassetti, M.C.; Cirigliano, A.; Arrighi, C.; Negri, R.; Mura, F.; Maneschi, M.L.; Gentili, M.D.; Stirpe, M.; Mazzoni, C.; Rinaldi, T. A role for microbial selection in frescoes’ deterioration in Tomba degli Scudi in Tarquinia, Italy. Sci. Rep. 2017, 7, 6027. [Google Scholar] [CrossRef]
- Ventura, M.; Casas, I.A.; Morelli, L.; Callegari, M.L. Rapid Amplified Ribosomal DNA Restriction Analysis (ARDRA) Identification of Lactobacillus spp. Isolated from Fecal and Vaginal Samples. Syst. Appl. Microbiol. 2000, 23, 504–509. [Google Scholar] [CrossRef]
- Lupini, G.; Proia, L.; Di Maio, M.; Amalfitano, S.; Fazi, S. CARD–FISH and confocal laser scanner microscopy to assess successional changes of the bacterial community in freshwater biofilms. J. Microbiol. Methods 2011, 86, 248–251. [Google Scholar] [CrossRef]
- Fazi, S.; Amalfitano, S.; Venturi, S.; Pacini, N.; Vazquez, E.; Olaka, L.A.; Tassi, F.; Crognale, S.; Herzsprung, P.; Lechtenfeld, O.J.; et al. High concentrations of dissolved biogenic methane associated with cyanobacterial blooms in East African lake surface water. Commun. Biol. 2021, 4, 1–12. [Google Scholar] [CrossRef]
- Meier, H.; Amann, R.; Ludwig, W.; Schleifer, K.H. Specific Oligonucleotide Probes for in situ Detection of a Major Group of Gram-positive Bacteria with low DNA G+C Content. Syst. Appl. Microbiol. 1999, 22, 186–196. [Google Scholar] [CrossRef]
- Fazi, S.; Amalfitano, S.; Piccini, C.; Zoppini, A.; Puddu, A.; Pernthaler, J. Colonization of overlaying water by bacteria from dry river sediments. Environ. Microbiol. 2008, 10, 2760–2772. [Google Scholar] [CrossRef]
- Venturi, S.; Crognale, S.; Di Benedetto, F.; Montegrossi, G.; Casentini, B.; Amalfitano, S.; Baroni, T.; Rossetti, S.; Tassi, F.; Capecchiacci, F.; et al. Interplay between abiotic and microbial biofilm-mediated processes for travertine formation: Insights from a thermal spring (Piscine Carletti, Viterbo, Italy). Geobiology 2022, 20, 837–856. [Google Scholar] [CrossRef] [PubMed]
- Chamley, H. Clay Sedimentology; Springer: Berlin/Heidelberg, Germany, 1989; p. 623. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey Techniques and Methods, 2013; Hydrochemical Consultant Valeriusstraat 11 1071 MB Amsterdam, NL; Book 6, Chapter A43; 497p. Available online: http://pubs.usgs.gov/tm/06/a43/ (accessed on 6 November 2023).
- Wright, V.P. Lacustrine carbonates in rift settings: The interaction of volcanic and microbial processes on carbonate deposition. Geol. Soc. Lond. Spéc. Publ. 2012, 370, 39–47. [Google Scholar] [CrossRef]
- Di Figlia, M.G.; Bellanca, A.; Neri, R.; Stefansson, A. Chemical weathering of volcanic rocks at the island of Pantelleria, Italy: Information from soil profile and soil solution investigations. Chem. Geol. 2007, 246, 1–18. [Google Scholar] [CrossRef]
- Jones, B.F.; Mumpton, F.A. Clay mineral diagenesis in lacustrine sediments. US Geol. Surv. Bull. 1986, 1578, 291–300. [Google Scholar]
- Deocampo, D.M. Evaporative evolution of surface waters and the role of aqueous CO2 in magnesium silicate precipi-tation: Lake Eyasi and Ngorongoro crater, northern Tanzania. S. Afr. J. Geol. 2005, 108, 493–504. [Google Scholar] [CrossRef]
- Tosca, N.J.; Wright, V.P. The formation and diagenesis of Mg-clay minerals in lacustrine carbonate reservoirs. In Proceedings of the 2014 AAPG Annual Convention and Exhibition, Houston, TX, USA, 6–9 April 2014. [Google Scholar]
- Lamérand, C.; Shirokova, L.S.; Bénézeth, P.; Rols, J.L.; Pokrovsky, O.S. Olivine dissolution and hydrous Mg car-bonate and silicate precipitation in the presence of microbial consortium of photo-autotrophic and heterotrophic bacteria. Geochim. Cosmochim. Acta 2020, 268, 123–141. [Google Scholar] [CrossRef]
- Duchi, V.; Campana, M.E.; Minissale, A.; Thompson, M. Geochemistry of thermal fluids on the volcanic isle of Pantelleria, southern Italy. Appl. Geochem. 1994, 9, 147–160. [Google Scholar] [CrossRef]
- Moore, K.R.; Pajusalu, M.; Gong, J.; Sojo, V.; Matreux, T.; Braun, D.; Bosak, T. Biologically mediated silicification of marine cyanobacteria and implications for the Proterozoic fossil record. Geology 2020, 48, 862–866. [Google Scholar] [CrossRef]
- Perri, E.; Manzo, E.; Tucker, M.E. Multi-scale study of the role of the biofilm in the formation of minerals and fabrics in calcareous tufa. Sediment. Geol. 2012, 263–264, 16–29. [Google Scholar] [CrossRef]
- Perri, E.; Słowakiewicz, M.; Perrotta, I.D.; Tucker, M.E. Biomineralization processes in modern calcareous tufa: Possible roles of viruses, vesicles and extracellular polymeric substances (Corvino Valley–Southern Italy). Sedimentology 2022, 69, 399–422. [Google Scholar] [CrossRef]
- López-García, P.; Kazmierczak, J.; Benzerara, K.; Kempe, S.; Guyot, F.; Moreira, D. Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles 2005, 9, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Decho, A.W. Microbial biofilms in intertidal systems: An overview. Cont. Shelf Res. 2000, 20, 1257–1273. [Google Scholar] [CrossRef]
- Lamérand, C.; Shirokova, L.S.; Bénézeth, P.; Rols, J.-L.; Pokrovsky, O.S. Carbon sequestration potential of Mg carbonate and silicate biomineralization in the presence of cyanobacterium Synechococcus. Chem. Geol. 2022, 599, 120854. [Google Scholar] [CrossRef]
- Lamérand, C.; Shirokova, L.S.; Petit, M.; Bénézeth, P.; Rols, J.; Pokrovsky, O.S. Kinetics and mechanisms of cyanobacterially induced precipitation of magnesium silicate. Geobiology 2022, 20, 560–574. [Google Scholar] [CrossRef]
- Leguey, S.; De León, D.R.; Ruiz, A.I.; Cuevas, J. The role of biomineralization in the origin of sepiolite and dolomite. Am. J. Sci. 2010, 310, 165–193. [Google Scholar] [CrossRef]
- Leveille, R.J.; Juniper, S.K. Microbial colonization and weathering of sulphide minerals at deep-sea hydrothermal vents: In situ exposure experiments. Cah. De Biol. Mar. 2002, 43, 285–288. [Google Scholar]
Sample ID | Sector | Depth (cm) | Qz | Cal | Arg | Hmg | Sm | Pl | Kfs | Mi | Aug | Hl | Py |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C2b | E | 40 | 2 | 1 | 74 | - | 2 | - | 21 | - | - | - | - |
C3b | E | 40 | 2 | 1 | 80 | 13 | 4 | - | tr | - | - | - | - |
C1 | NE | 0 | 2 | 1 | 65 | - | 3 | 8 | 6 | - | - | 15 | - |
C5b sup | NE | 0 | 1 | - | 81 | - | 5 | - | 13 | - | - | - | - |
C5b | NE | 0 | 2 | - | 17 | - | 5 | 5 | 71 | - | - | - | - |
C6 | NE | 2 | 2 | 1 | 78 | - | 9 | - | 10 | - | - | - | - |
C8 a | NE | 0 | 3 | - | 19 | 3 | 16 | - | 59 | - | - | - | - |
C8bis | NE | 80 | 3 | - | 23 | 12 | 12 | - | 50 | - | - | - | - |
C8bis a | NE | 0 | 4 | 1 | 24 | 12 | 6 | - | 52 | - | 1 | - | - |
C10 | SW | 70 | 9 | - | - | - | - | - | 88 | - | 2 | - | 1 |
C12a | SW | 0 | 4 | 2 | 67 | 6 | 8 | 12 | - | 1 | - | - | - |
C12b | SW | 50 | 2 | 2 | 43 | - | 42 | 10 | - | 1 | - | - | - |
Date | Temperature (°C) | Electrical Conductivity (mS/cm) | pH | Lat | Long | Ca (mg/L) | Mg (mg/L) | Na (mg/L) | K (mg/L) | Cl (mg/L) | SO4 (mg/L) | HCO3 (mg/L) | Si (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21 February 2023 | 14.6 | 36.5 | 9.07 | 36.81692 | 11.98705 | 7 | 186 | 10,489 | 462 | 13,644 | 1111 | 3280 | 11 |
27 May 2022 | 24 | 37.5 | 9.20 | 36.81692 | 77.98705 | 12 | 170 | 9153 | 502 | 13,194 | 1197 | 3509 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ingrassia, M.; Conte, A.M.; Perinelli, C.; Aldega, L.; Di Bella, L.; Mazzoni, C.; Fazi, S.; Falese, F.G.; Ruspandini, T.; Piacentini, A.; et al. Experimental vs. Natural Mineral Precipitation in Modern Microbialites: The Case Study of the Alkaline Bagno Dell’acqua Lake (Pantelleria Island, Italy). Minerals 2024, 14, 1013. https://doi.org/10.3390/min14101013
Ingrassia M, Conte AM, Perinelli C, Aldega L, Di Bella L, Mazzoni C, Fazi S, Falese FG, Ruspandini T, Piacentini A, et al. Experimental vs. Natural Mineral Precipitation in Modern Microbialites: The Case Study of the Alkaline Bagno Dell’acqua Lake (Pantelleria Island, Italy). Minerals. 2024; 14(10):1013. https://doi.org/10.3390/min14101013
Chicago/Turabian StyleIngrassia, Michela, Aida Maria Conte, Cristina Perinelli, Luca Aldega, Letizia Di Bella, Cristina Mazzoni, Stefano Fazi, Francesco Giuseppe Falese, Tania Ruspandini, Agnese Piacentini, and et al. 2024. "Experimental vs. Natural Mineral Precipitation in Modern Microbialites: The Case Study of the Alkaline Bagno Dell’acqua Lake (Pantelleria Island, Italy)" Minerals 14, no. 10: 1013. https://doi.org/10.3390/min14101013
APA StyleIngrassia, M., Conte, A. M., Perinelli, C., Aldega, L., Di Bella, L., Mazzoni, C., Fazi, S., Falese, F. G., Ruspandini, T., Piacentini, A., Caraba, B., Bonfanti, A., Gori, F., Barberio, M. D., & Chiocci, F. L. (2024). Experimental vs. Natural Mineral Precipitation in Modern Microbialites: The Case Study of the Alkaline Bagno Dell’acqua Lake (Pantelleria Island, Italy). Minerals, 14(10), 1013. https://doi.org/10.3390/min14101013