The Development of Dolomite Within a Sequence Stratigraphic Framework: Cambrian Series 2 Changping Formation, Xiaweidian, China
Abstract
:1. Introduction
2. Geological Setting
3. Methods and Materials
4. Results
4.1. Petrography
4.1.1. Microcrystalline and Finely Crystalline Dolomite (D1)
4.1.2. Fine-Mesocrystalline Dolomite (D2)
4.2. Geochemical Characteristics
4.2.1. Mineralogy and Crystallography
4.2.2. Carbon and Oxygen Isotopic Analyses
5. Discussion
5.1. The Sequence Stratigraphy of the Changping Formation
5.2. The Origin of Dolomite in the Changping Formation
5.3. A Conceptual Model of Dolomite Formation During the Transgressive System Tract, and the Early Highstand System Tract
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roehl, P.O.; Choquette, P.W. Carbonate Petroleum Reservoirs; Springer: New York, NY, USA, 1985. [Google Scholar]
- Zenger, D.H.; Dunham, J.B.; Ethington, R.L. Concepts and Models of Dolomitization; SEPM Society for Sedimentary Geology: Broken Arrow, OK, USA, 1980. [Google Scholar]
- Sun, S. Dolomite Reservoirs: Porosity Evolution and Reservoir Characteristics. AAPG Bull. 1995, 79, 186–204. [Google Scholar]
- Davies, G.R.; Smith, L.B., Jr. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bull. 2006, 90, 1641–1690. [Google Scholar] [CrossRef]
- Zhu, D.; Meng, Q.; Jin, Z.; Liu, Q.; Hu, W. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim Basin, northwestern China. Mar. Pet. Geol. 2015, 59, 232–244. [Google Scholar] [CrossRef]
- Su, A.; Chen, H.; Feng, Y.; Wang, Z.; Jiang, H.; Zhao, J. Tracking multiple paleo oil charges in the Precambrian dolomite reservoirs of the central Sichuan Basin, China. Mar. Pet. Geol. 2023, 156, 106423. [Google Scholar] [CrossRef]
- Pichler, T.; Humphrey, J.D. Formation of Dolomite in Recent Island-Arc Sediments Due to Gas-Seawater-Sediment Interaction. J. Sediment. Res. 2001, 71, 394–399. [Google Scholar] [CrossRef]
- Mehmood, M.; Yaseen, M.; Khan, E.U.; Khan, M.J. Dolomite and dolomitization model-a short review. Int. J. Hydrol. 2018, 2, 549–553. [Google Scholar] [CrossRef]
- Roberts, J.A.; Kenward, P.A.; Fowle, D.A.; Goldstein, R.H.; González, L.A.; Moore, D.S. Low-temperature dolomite formation: Microbes and other mechanisms. In Proceedings of the AAPG Hedberg Conference Microbial Carbonate Reservoir Characterization, Houston, TX, USA, 3–8 June 2012; pp. 1–3. [Google Scholar]
- Yang, Z.; Whitaker, F.F.; Liu, R.; Phillips, J.C.; Zhong, D. A new model for formation of lacustrine primary dolomite by subaqueous hydrothermal venting. Geophys. Res. Lett. 2021, 48, e2020GL091335. [Google Scholar] [CrossRef]
- Adams, J.E.; Rhodes, M.L. Dolomitization by seepage refluxion. AAPG Bull. 1960, 44, 1912–1920. [Google Scholar]
- Adams, A.; Diamond, L.W.; Aschwanden, L. Dolomitization by hypersaline reflux into dense groundwaters as revealed by vertical trends in strontium and oxygen isotopes: Upper Muschelkalk, Switzerland. Sedimentology 2019, 66, 362–390. [Google Scholar] [CrossRef]
- Lu, P.; Cantrell, D. Reactive transport modelling of reflux dolomitization in the Arab-D reservoir, Ghawar field, Saudi Arabia. Sedimentology 2016, 63, 865–892. [Google Scholar] [CrossRef]
- Rivers, J.M.; Kurt Kyser, T.; James, N.P. Salinity reflux and dolomitization of southern Australian slope sediments: The importance of low carbonate saturation levels. Sedimentology 2012, 59, 445–465. [Google Scholar] [CrossRef]
- Illing, L.V.; Wells, A.J. Penecontemporary Dolomite in the Persian Gulf: ABSTRACT. AAPG Bull. 1964, 48, 532–533. [Google Scholar] [CrossRef]
- Müller, D.W.; McKenzie, J.A.; Mueller, P.A. Abu Dhabi sabkha, Persian Gulf, revisited: Application of strontium isotopes to test an early dolomitization model. Geology 1990, 18, 618–621. [Google Scholar] [CrossRef]
- Brauchli, M.; McKenzie, J.A.; Strohmenger, C.J.; Sadooni, F.; Vasconcelos, C.; Bontognali, T.R.R. The importance of microbial mats for dolomite formation in the Dohat Faishakh sabkha, Qatar. Carbonates Evaporites 2016, 31, 339–345. [Google Scholar] [CrossRef]
- Humphrey, J.D.; Quinn, T.M. Coastal mixing zone dolomite, forward modeling, and massive dolomitization of platform-margin carbonates. J. Sediment. Res. 1989, 59, 438–454. [Google Scholar] [CrossRef]
- Humphrey, J.D. New geochemical support for mixing-zone dolomitization at Golden Grove, Barbados. J. Sediment. Res. 2000, 70, 1160–1170. [Google Scholar] [CrossRef]
- Gaswirth, S.B.; Budd, D.A.; Lang Farmer, G. The role and impact of freshwater–seawater mixing zones in the maturation of regional dolomite bodies within the proto Floridan Aquifer, USA. Sedimentology 2007, 54, 1065–1092. [Google Scholar] [CrossRef]
- Enayati-Bidgoli, A.; Navidtalab, A. Effects of progressive dolomitization on reservoir evolution: A case from the Permian–Triassic gas reservoirs of the Persian Gulf, offshore Iran. Mar. Pet. Geol. 2020, 119, 104480. [Google Scholar] [CrossRef]
- Fanning, K.A.; Byrne, R.H.; Breland, J.A.; Betzer, P.R.; Moore, W.S.; Elsinger, R.J.; Pyle, T.E. Geothermal springs of the West Florida continental shelf: Evidence for dolomitization and radionuclide enrichment. Earth Planet. Sci. Lett. 1981, 52, 345–354. [Google Scholar] [CrossRef]
- Gawthorpe, R.L. Burial dolomitization and porosity development in a mixed carbonate-clastic sequence: An example from the Bowland Basin, northern England. Sedimentology 1987, 34, 533–558. [Google Scholar] [CrossRef]
- Smith, L.B., Jr.; Davies, G.R. Structurally controlled hydrothermal alteration of carbonate reservoirs: Introduction. AAPG Bull. 2006, 90, 1635–1640. [Google Scholar] [CrossRef]
- Lavoie, D.; Chi, G.; Brennan-Alpert, P.; Desrochers, A.; Bertrand, R. Hydrothermal dolomitization in the Lower Ordovician Romaine Formation of the Anticosti Basin: Significance for hydrocarbon exploration. Bull. Can. Pet. Geol. 2005, 53, 454–471. [Google Scholar] [CrossRef]
- Machel, H.G.; Lonnee, J. Hydrothermal dolomite—A product of poor definition and imagination. Sediment. Geol. 2002, 152, 163–171. [Google Scholar] [CrossRef]
- Mansurbeg, H.; Alsuwaidi, M.; Salih, N.; Shahrokhi, S.; Morad, S. Integration of stable isotopes, radiometric dating and microthermometry of saddle dolomite and host dolostones (Cretaceous carbonates, Kurdistan, Iraq): New insights into hydrothermal dolomitization. Mar. Pet. Geol. 2021, 127, 104989. [Google Scholar] [CrossRef]
- Ronchi, P.; Masetti, D.; Tassan, S.; Camocino, D. Hydrothermal dolomitization in platform and basin carbonate successions during thrusting: A hydrocarbon reservoir analogue (Mesozoic of Venetian Southern Alps, Italy). Mar. Pet. Geol. 2012, 29, 68–89. [Google Scholar] [CrossRef]
- Gingras, M.K.; Pemberton, S.G.; Muelenbachs, K.; Machel, H. Conceptual models for burrow-related, selective dolomitization with textural and isotopic evidence from the Tyndall Stone, Canada. Geobiology 2004, 2, 21–30. [Google Scholar] [CrossRef]
- Petrash, D.A.; Bialik, O.M.; Bontognali, T.R.R.; Vasconcelos, C.; Roberts, J.A.; McKenzie, J.A.; Konhauser, K.O. Microbially catalyzed dolomite formation: From near-surface to burial. Earth-Sci. Rev. 2017, 171, 558–582. [Google Scholar] [CrossRef]
- Wright, D.T. The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment. Geol. 1999, 126, 147–157. [Google Scholar] [CrossRef]
- Ayyildiz, T.; Tekin, E.; Satir, M. Water circulation near the mixed-water and microbiologic activity of the Mesozoic dolomite sequence, and example from the Central Taurus, Turkey. Carbonates Evaporites 2004, 19, 107–117. [Google Scholar] [CrossRef]
- Gregg, J.M.; Bish, D.L.; Kaczmarek, S.E.; Machel, H.G. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review. Sedimentology 2015, 62, 1749–1769. [Google Scholar] [CrossRef]
- Warren, J. Dolomite: Occurrence, evolution and economically important associations. Earth-Sci. Rev. 2000, 52, 1–81. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, Z.; Zhao, Z.; Gao, J. Multiphase dolomitization mechanisms of the Cambrian upper Changping Formation, North China Platform, China. Front. Earth Sci. 2023, 11, 1091424. [Google Scholar] [CrossRef]
- Kordi, M.; Morad, S.; Turner, B.; Salem, A.M.K. Sequence stratigraphic controls on formation of dolomite: Insights from the Carboniferous Um Bogma Formation, Sinai-Egypt. J. Pet. Sci. Eng. 2017, 149, 531–539. [Google Scholar] [CrossRef]
- Smith, L.B.J.; Eberli, G.P.; Sonnenfeld, M. Sequence-stratigraphic and paleogeographic distribution of reservoir-quality dolomite, Madison Formation, Wyoming and Montana. In Integration of Outcrop and Modern Analogs in Reservoir Modeling; Grammer, G.M., Harris, P.M.M., Eberli, G.P., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2004; Volume 80, pp. 67–92. [Google Scholar]
- Taghavi, A.A.; Mørk, A.; Emadi, M.A. Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehluran Field, southwest Iran. Pet. Geosci. 2006, 12, 115–126. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, R.; Wu, Y.; Liu, T.; Cui, X.; Guo, K. The origin and distribution of Ordovician Yingshan dolomite on the northern slope of Tazhong area in Tarim Basin. Carbonates Evaporites 2019, 34, 507–523. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, S.; Song, X.; Wang, X.; Shi, J.; Tian, X.; Yao, Q.; Wang, H. Main controlling factors of the Middle Permian dolomite reservoir and prediction of exploration zone in Tongnan-Hechuan block, Sichuan Basin. China Pet. Explor. 2022, 27, 149. [Google Scholar]
- Hardie, L.A. Dolomitization; a critical view of some current views. J. Sediment. Res. 1987, 57, 166–183. [Google Scholar] [CrossRef]
- Land, L.S. The Origin of Massive Dolomite. J. Geol. Educ. 1985, 33, 112–125. [Google Scholar] [CrossRef]
- Morad, S.; Farooq, U.; Mansurbeg, H.; Alsuwaidi, M.; Morad, D.; Al-Aasm, I.S.; Shahrokhi, S.; Hozayen, M.; Koyi, H. Variations in extent, distribution and impact of dolomitization on reservoir quality of Upper Cretaceous foreland-basin carbonates, Abu Dhabi, United Arab Emirates. Mar. Pet. Geol. 2023, 155, 106357. [Google Scholar] [CrossRef]
- Mei, M.; Ma, Y.; Mei, S.; Hu, J. Framework of Cambrian sedimentary sequence and evolution of carbonate platform in North China. Geoscience 1997, 3, 16–23. [Google Scholar]
- Mei, M. Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform: A case study of the Xiaweidian section in the western suburb of Beijing. Geol. China 2011, 38, 317–337. [Google Scholar]
- Zhang, X.; Zhang, N.; Yang, Z.; Bao, Z.; Xia, W. Carbonate microfacies and sedimentary facies of Middle Cambrian Formation at Xiaweidian profile in Western Hills, Beijing, China. Geol. Sci. Technol. Inf. 2009, 28, 25–30. [Google Scholar]
- Zhu, C.; Luo, Y.; Yang, S.; Li, J.; Chen, J. Sequence stratigraphy of Cambrian in Western Hills, Beijing. Geol. China 2009, 36, 120–130. [Google Scholar]
- Kang, S.; Shao, L.; Yi, Q. Study on Cambrian petrology and sedimentary environments at Xiaweidian Area, Western Beijing. Coal Geol. China 2016, 28, 1–8. [Google Scholar]
- Jin, L.; Shan, X.; Wang, Z.; Wang, R. Progress on sequence stratigraphy of the middle Cambrian in Beijing Western Mountain. Mar. Geol. Front. 2016, 32, 1–9. [Google Scholar] [CrossRef]
- Qiao, X.; Gao, L. On study of the sequence stratigraphy of Cambrian, Western Hills, Beijing. Bull. Inst. Geol. Chin. Acad. Geol. Sci. 1990, 22, 1. [Google Scholar]
- Xiao, F.; Wang, J.; Wu, H.; Wang, P.; Zhao, Z.; Tian, J.; Jiang, Z.; Song, C.; Tian, R.; Guo, Z. Cambrian sequence stratigraphic framework in the middle-northern North China. Acta Pet. Sin. 2017, 38, 1144. [Google Scholar]
- Zhu, Y.; Ma, L. Division and correlation of Lower Cambrian and its sedimentary evolution in North China. Geol. Rev. 2008, 54, 731–740. [Google Scholar]
- Wu, H.; Zhao, Z.; Wang, J. Cambrian sequence stratigraphic framework in northern margin of North China Craton. J. Jilin Univ. (Earth Sci. Ed.) 2018, 48, 1609–1624. [Google Scholar]
- Bissell, H.J.; Chilingar, G.V. Chapter 4 Classification of Sedimentary Carbonate Rocks. In Developments in Sedimentology; Chilingar, G.V., Bissell, H.J., Fairbridge, R.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1967; Volume 9, pp. 87–168. [Google Scholar]
- Tucker, M.E. Techniques in sedimentology. Blackwell Sci. Publ. Oxf. 1988, 394. [Google Scholar]
- Lumsden, D.N. Discrepancy between thin-section and X-ray estimates of dolomite in limestone. J. Sediment. Res. 1979, 49, 429–435. [Google Scholar] [CrossRef]
- Keith, M.; Weber, J. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim. Cosmochim. Acta 1964, 28, 1787–1816. [Google Scholar] [CrossRef]
- Gregg, J.M.; Sibley, D.F. Epigenetic dolomitization and the origin of xenotopic dolomite texture. J. Sediment. Res. 1984, 54, 908–931. [Google Scholar] [CrossRef]
- Sibley, D.F.; Gregg, J.M. Classification of dolomite rock textures. J. Sediment. Res. 1987, 57, 967–975. [Google Scholar] [CrossRef]
- Sabbagh Bajestani, M.; Mahboubi, A.; Al-Aasm, I.; Moussavi-Harami, R.; Nadjafi, M. Multistage dolomitization in the Qal’eh Dokhtar Formation (Middle-Upper Jurassic), Central Iran: Petrographic and geochemical evidence. Geol. J. 2018, 53, 22–44. [Google Scholar] [CrossRef]
- Yang, X.; Tang, H.; Wang, X.; Wang, Y.; Yang, Y. Dolomitization by penesaline sea water in Early Cambrian Longwangmiao Formation, central Sichuan Basin, China. J. Earth Sci. 2017, 28, 305–314. [Google Scholar] [CrossRef]
- Huang, S. Diagenesis of Carbonate Rocks; Geological Publishing House: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Zhong, Q.; Huang, S.; Zou, M.; Tong, H.; Huang, K.; Zhang, X. Controlling factors of order degree of dolomite in carbonate rocks: A case study from Lower Paleozoic in Tahe Oilfield and Triassic in northeastern Sichuan Basin. Lithol. Reserv 2009, 21, 50–55. [Google Scholar]
- Yang, W.; Wang, Q.; Liu, X. Dolomite origin of lower Ordovician in Hetian River gas field, Tarim Basin. Acta Sedimentol. Sin. 2000, 18, 544–548. [Google Scholar]
- Zvir, Y.; Pimentel, C.; Pina, C.M. The Effect of Stoichiometry, Mg-Ca Distribution, and Iron, Manganese, and Zinc Impurities on the Dolomite Order Degree: A Theoretical Study. Minerals 2021, 11, 702. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, X.; Yang, H. Geochemical research and genesis of dolostones with different crystal characteristics occurring in the Upper Cambrian, central area of Tarim Basin. Acta Sedimentol Sin 2010, 28, 209–218. [Google Scholar]
- Pina, C.M.; Pimentel, C.; Crespo, Á. The Dolomite Problem: A Matter of Time. ACS Earth Space Chem. 2022, 6, 1468–1471. [Google Scholar] [CrossRef]
- Kell-Duivestein, I.J.; Baldermann, A.; Mavromatis, V.; Dietzel, M. Controls of temperature, alkalinity and calcium carbonate reactant on the evolution of dolomite and magnesite stoichiometry and dolomite cation ordering degree—An experimental approach. Chem. Geol. 2019, 529, 119292. [Google Scholar] [CrossRef]
- Veizer, J.; Bruckschen, P.; Pawellek, F.; Diener, A.; Podlaha, O.G.; Carden, G.A.F.; Jasper, T.; Korte, C.; Strauss, H.; Azmy, K.; et al. Oxygen isotope evolution of Phanerozoic seawater. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 132, 159–172. [Google Scholar] [CrossRef]
- Major, R.P.; Lloyd, R.M.; Lucia, F.J. Oxygen isotope composition of Holocene dolomite formed in a humid hypersaline setting. Geology 1992, 20, 586–588. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, J. Stable Isotope Geochemistry; Science Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Jones, G.D.; Smart, P.L.; Whitaker, F.F.; Rostron, B.J.; Machel, H.G. Numerical modeling of reflux dolomitization in the Grosmont platform complex (Upper Devonian), Western Canada sedimentary basin. AAPG Bull. 2003, 87, 1273–1298. [Google Scholar] [CrossRef]
Rock Type | Sample | Height (m) | Degree of Cation Order (δ) | FWHM104 | Mole % CaCO3 from NCaCO3 (%) |
---|---|---|---|---|---|
Microcrystalline and finely crystalline dolomite (D1) | Є1c-1 | 4.41 | 0.50 | nd | 49.6 |
Є1c-2 | 11.51 | 0.57 | nd | 50.4 | |
Є1c-5 | 23.11 | 0.71 | 0.162 | 51.3 | |
Є1c-6 | 28.21 | 0.67 | 0.165 | 51.4 | |
Є1c-7 | 29.81 | 0.66 | nd | 50.0 | |
Є1c-11 | 37.34 | 0.76 | 0.170 | 51.4 | |
Є1c-28-1 | 56.18 | 0.63 | 0.167 | 50.2 | |
Є1c-29 | 56.28 | 0.61 | nd | 49.9 | |
Є1c-29-1 | 56.28 | 0.74 | nd | 49.7 | |
Є1c-29-2 | 56.28 | 0.65 | 0.189 | 51.2 | |
Є1c-32 | 58.28 | 0.61 | nd | 49.8 | |
Є1c-33-1 | 59.55 | 0.63 | nd | 51.8 | |
Є1c-33-2 | 60.55 | 0.72 | 0.164 | 49.0 | |
Є1c-33-3 | 61.55 | 0.60 | nd | 49.9 | |
Є1c-35 | 66.08 | 0.70 | 0.171 | 51.2 | |
Average for D1 | 0.65 | 0.170 | 50.5 | ||
Fine-mesocrystalline dolomite (D2) | Є1c-37 | 68.28 | 0.87 | 0.155 | 48.8 |
Є1c-38-2 | 73.18 | 0.89 | 0.153 | 50.2 | |
Є1c-38-3 | 73.18 | 0.91 | 0.156 | 48.7 | |
Є1c-39-1 | 74.68 | 0.84 | nd | 48.9 | |
Є1c-39-2 | 77.68 | 0.86 | 0.158 | 48.1 | |
Є1c-39-3 | 79.68 | 0.84 | 0.154 | 50.0 | |
Є1c-39-4 | 88.68 | 0.83 | 0.165 | 48.8 | |
Є1c-39-5 | 91.68 | 0.96 | 0.150 | 49.0 | |
Є1c-39-6 | 93.58 | 0.89 | 0.156 | 48.9 | |
Average for D2 | 0.88 | 0.156 | 49.0 |
Dolomite Type | Sample | δ13CVPDB (‰) | δ18OVPDB (‰) | Paleo-Salinity (Z Value) |
---|---|---|---|---|
Microcrystalline dolomite and finely crystalline (D1) | Є1c-3 | −1.28 | −7 | 121.19 |
Є1c-9 | −3.28 | −7.2 | 117.00 | |
Є1c-11 | −0.08 | −3.92 | 125.18 | |
Є1c-28-1 | −0.88 | −7.68 | 121.67 | |
Є1c-29 | −0.73 | −7.96 | 121.84 | |
Є1c-29-1 | −0.46 | −7.70 | 122.52 | |
Є1c-29-2 | 2.02 | −7.06 | 127.92 | |
Є1c-33-1 | −0.42 | −6.68 | 123.11 | |
Є1c-33-2 | 2.46 | −6.17 | 129.27 | |
Є1c-33-3 | 1.19 | −3.62 | 127.94 | |
Average for D1 | −0.15 | −6.5 | 123.76 | |
Fine-mesocrystalline dolomite (D2) | Є1c-37 | 0.34 | −7.89 | 124.07 |
Є1c-38-2 | 0.04 | −7.21 | 123.79 | |
Є1c-38-3 | −0.07 | −8.40 | 122.97 | |
Є1c-39-1 | −2.60 | −9.45 | 117.27 | |
Є1c-39-2 | −0.35 | −7.75 | 122.72 | |
Є1c-39-3 | −0.71 | −4.70 | 123.51 | |
Є1c-39-4 | 0.17 | −6.69 | 124.32 | |
Є1c-39-5 | 0.28 | −7.62 | 124.08 | |
Є1c-39-6 | 0.35 | −7.23 | 124.42 | |
Average for D2 | −0.28 | −7.44 | 123.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, S.; Liu, Z.; Jin, Z.; Tian, H.; Istifanus, M.A.; George, S.C. The Development of Dolomite Within a Sequence Stratigraphic Framework: Cambrian Series 2 Changping Formation, Xiaweidian, China. Minerals 2024, 14, 1189. https://doi.org/10.3390/min14121189
Zhong S, Liu Z, Jin Z, Tian H, Istifanus MA, George SC. The Development of Dolomite Within a Sequence Stratigraphic Framework: Cambrian Series 2 Changping Formation, Xiaweidian, China. Minerals. 2024; 14(12):1189. https://doi.org/10.3390/min14121189
Chicago/Turabian StyleZhong, Shan, Zhaoqian Liu, Zhenkui Jin, Hongyu Tian, Madaki Agwom Istifanus, and Simon C. George. 2024. "The Development of Dolomite Within a Sequence Stratigraphic Framework: Cambrian Series 2 Changping Formation, Xiaweidian, China" Minerals 14, no. 12: 1189. https://doi.org/10.3390/min14121189
APA StyleZhong, S., Liu, Z., Jin, Z., Tian, H., Istifanus, M. A., & George, S. C. (2024). The Development of Dolomite Within a Sequence Stratigraphic Framework: Cambrian Series 2 Changping Formation, Xiaweidian, China. Minerals, 14(12), 1189. https://doi.org/10.3390/min14121189