Quantifying the Impurity Distribution in Spherical Graphite: The Limitation of Flotation for Graphite Purification Explained
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Flotation Tests
2.3. Characterizations
3. Results and Discussion
3.1. Identifying the Impurity by Microscopy Techniques
3.2. Quantifying the Impurity Distribution by Flotation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chelgani, S.C.; Rudolph, M.; Kratzsch, R.; Sandmann, D.; Gutzmer, J. A Review of Graphite Beneficiation Techniques. Miner. Process. Extr. Metall. Rev. 2016, 37, 58–68. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Lin, S.; Chen, M.; Tang, C.; Liu, X. Promising energy-storage applications by flotation of graphite ores: A review. Chem. Eng. J. 2023, 454, 139994. [Google Scholar] [CrossRef]
- Crossley, P. Graphite—High-tech supply sharpens up. Ind. Miner. 2000, 398, 31–47. [Google Scholar]
- Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material—Fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 2020, 4, 5387–5416. [Google Scholar] [CrossRef]
- Gottschalk, L.; Müller, J.; Schoo, A.; Baasch, E.; Kwade, A. Spherical Graphite Anodes: Influence of Particle Size Distribution and Multilayer Structuring in Lithium-Ion Battery Cells. Batteries 2024, 10, 40. [Google Scholar] [CrossRef]
- Vu, T.T.; La, D.D.; Le, L.V.; Pham, T.K.; Nguyen, M.A.; Nguyen, T.H.; Dang, T.D.; Um, M.-J.; Chung, W.; Nguyen, D.D. Purification of Spherical Graphite as Anode for Li-Ion Battery: A Comparative Study on the Purifying Approaches. Micromachines 2024, 15, 827. [Google Scholar] [CrossRef]
- Biber, B.; Sander, S.; Martin, J.; Wohlfahrt-Mehrens, M.; Mancini, M. Improved production process with new spheroidization machine with high efficiency and low energy consumption for rounding natural graphite for Li-ion battery applications. Carbon 2023, 201, 847–855. [Google Scholar] [CrossRef]
- Huang, S.; Wang, W.; Cui, Q.; Song, W.-L.; Jiao, S. Assessment of Spherical Graphite for Lithium-Ion Batteries: Techniques, China’s Status, Production Market, and Recommended Policies for Sustainable Development. Adv. Sustain. Syst. 2022, 6, 2200243. [Google Scholar] [CrossRef]
- Kwon, H.-J.; Woo, S.-W.; Lee, Y.-J.; Kim, J.-Y.; Lee, S.-M. Achieving High-Performance Spherical Natural Graphite Anode through a Modified Carbon Coating for Lithium-Ion Batteries. Energies 2021, 14, 1946. [Google Scholar] [CrossRef]
- Gao, J.; Bu, X.; Dong, L.; Qiu, Y.; Xie, G.; Chehreh Chelgani, S. Natural Graphite Froth Flotation-An Overview. Miner. Process. Extr. Metall. Rev. 2024, 1–18. [Google Scholar] [CrossRef]
- Mweene, L.; Khanal, G.P.; Nambaje, C. Experimental study on the separation of quartz from pyrite using alginate as a selective depressant substantiated by theoretical analysis on intermolecular bonding. Sep. Purif. Technol. 2021, 276, 119251. [Google Scholar] [CrossRef]
- Mweene, L.; Prasad Khanal, G. Insights into the separation of chalcopyrite from pyrite in Mg and Ca using gum acacia, xanthomonas campestris and guar gum: An experimental study validated by theoretical investigations. Miner. Eng. 2024, 218, 109047. [Google Scholar] [CrossRef]
- Hong, G.; Park, H.; Gomez-Flores, A.; Kim, H.; Mi Lee, J.; Lee, J. Direct flotation separation of active materials from the black mass of lithium nickel cobalt manganese oxides-type spent lithium-ion batteries. Sep. Purif. Technol. 2024, 336, 126327. [Google Scholar] [CrossRef]
- Peng, Z.; Li, D.; Fang, W.; Zhang, J.; Zhang, R.; Qiu, Y.; Sun, K. Improved Flotation of Fine Flake Graphite Using a Modified Thickening Process. Separations 2023, 10, 275. [Google Scholar] [CrossRef]
- Sun, K.; Yin, W.; Dong, H.; Jiao, X.; You, D.; Wang, B.; Wang, J.; Qiu, Y. Freeze-thaw weathering assisted beneficiation of graphite from natural ore resources in cold regions. Miner. Eng. 2024, 209, 108609. [Google Scholar] [CrossRef]
- Qiu, Y.; Mao, Z.; Sun, K.; Zhang, L.; Qian, Y.; Lei, T.; Liang, W.; An, Y. Understanding the Entrainment Behavior of Gangue Minerals in Flake Graphite Flotation. Minerals 2022, 12, 1068. [Google Scholar] [CrossRef]
- Al-Sairafi, F.A.; Jiang, C.; Zhong, Z.; Saleh, B. Study on purification of flake graphite by heat activation and hydrofluoric acid. Adv. Mater. Process. Technol. 2022, 8, 4564–4578. [Google Scholar] [CrossRef]
- Feng, L.; Zou, Y.; Zhao, Y.; Wang, Z.; Liu, J.; Gong, X. Hydroxyl Removal in Muscovite by Heating for Low-Fluoride Purification of Natural Flake Graphite. Energy Fuels 2024, 38, 2436–2446. [Google Scholar] [CrossRef]
- Ri, H.; Ri, K.; Kim, K.; Ri, K.; Yu, J.; Pak, K.; Choe, D.; Kang, S.; Hong, S. Effective purification of graphite via low pulp density flotation-low temperature alkali roasting-acid leaching route: From laboratory-scale to pilot-scale. Miner. Eng. 2022, 188, 107852. [Google Scholar] [CrossRef]
- Zhao, S.; Cheng, S.; Xing, B.; Ma, M.; Shi, C.; Cheng, G.; Meng, W.; Zhang, C. High efficiency purification of natural flake graphite by flotation combined with alkali-melting acid leaching: Application in energy storage. J. Mater. Res. Technol. 2022, 21, 4212–4223. [Google Scholar] [CrossRef]
- Jara, A.D.; Kim, J.Y. Chemical purification processes of the natural crystalline flake graphite for Li-ion Battery anodes. Mater. Today Commun. 2020, 25, 101437. [Google Scholar] [CrossRef]
- Wang, H.; Feng, Q.; Liu, K.; Zuo, K.; Tang, X. A novel technique for microcrystalline graphite beneficiation based on alkali-acid leaching process. Sep. Sci. Technol. 2018, 53, 982–989. [Google Scholar] [CrossRef]
- Shen, K.; Chen, X.; Shen, W.; Huang, Z.-H.; Liu, B.; Kang, F. Thermal and gas purification of natural graphite for nuclear applications. Carbon 2021, 173, 769–781. [Google Scholar] [CrossRef]
- Bao, C.; Shi, K.; Xu, P.; Yang, L.; Chen, H.; Dai, Y.; Liu, H. Purification effect of the methods used for the preparation of the ultra-high purity graphite. Diam. Relat. Mater. 2021, 120, 108704. [Google Scholar] [CrossRef]
- Li, J.-h.; Hou, S.-y.; Su, J.-r.; Li, K.; Wei, L.-b.; Ma, L.-q.; Shen, W.-c.; Kang, F.-y.; Huang, Z.-h. Beneficiation of ultra-large flake graphite and the preparation of flexible graphite sheets from it. New Carbon Mater. 2019, 34, 205–210. [Google Scholar] [CrossRef]
- Jara, A.D.; Betemariam, A.; Woldetinsae, G.; Kim, J.Y. Purification, application and current market trend of natural graphite: A review. Int. J. Min. Sci. Technol. 2019, 29, 671–689. [Google Scholar] [CrossRef]
- GB/T 3521-2008; Method for Chemical Analysis of Graphite. Standardization Administration of the P.R.C.: Beijing, China, 2008.
- Wang, L.; Peng, Y.; Runge, K.; Bradshaw, D. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner. Eng. 2015, 70, 77–91. [Google Scholar] [CrossRef]
- Qiu, Y.S.; Zhang, L.Y.; Sun, K.K.; Li, Y.; Qian, Y.P. Reducing entrainment of sericite in fine flaky graphite flotation using polyalurninum chloride. Physicochem. Probl. Miner. Process. 2019, 55, 1108–1119. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Wang, X.X.; Bu, X.N.; Shao, H.Z.; Hu, Y.; Alheshibri, M.; Li, B.; Ni, C.; Peng, Y.L.; Xie, G.Y. Effects of emulsified kerosene nanodroplets on the entrainment of gangue materials and selectivity index in aphanitic graphite flotation. Miner. Eng. 2020, 158, 106592. [Google Scholar] [CrossRef]
- Liang, L.; Tan, J.; Li, B.; Xie, G. Reducing quartz entrainment in fine coal flotation by polyaluminum chloride. Fuel 2019, 235, 150–157. [Google Scholar] [CrossRef]
Composition | SiO2 | Al2O3 | Fe2O3 | K2O | Cl | CaO | Other | LOI | FC |
---|---|---|---|---|---|---|---|---|---|
FG | 1.78 | 0.54 | 0.83 | 0.21 | 0.011 | 0.014 | 0.015 | 96.60 | 95.13 |
SG | 1.46 | 0.63 | 0.74 | 0.16 | 0.009 | 0.026 | 0.012 | 96.95 | 95.35 |
Element | C | Si | Al | Fe | Ca | O | Mg |
---|---|---|---|---|---|---|---|
Map sum spectrum | 87.77 | 2.20 | 1.88 | 1.95 | 0.05 | 6.13 | 0.01 |
Spectrum 1 | 97.25 | 0.22 | 0.16 | 0.20 | 0.06 | 2.07 | 0.04 |
Spectrum 2 | 26.61 | 18.30 | 16.69 | 12.51 | 0.28 | 25.51 | 0.09 |
Element | C | Si | Al | Fe | Ca | O | Mg |
---|---|---|---|---|---|---|---|
Map sum spectrum | 95.35 | 1.29 | 0.47 | 0.87 | 0.17 | 1.80 | 0.02 |
Spectrum 1 | 83.56 | 4.55 | 2.00 | 2.63 | 0.47 | 6.69 | 0.10 |
Spectrum 2 | 85.86 | 3.71 | 1.37 | 2.35 | 0.34 | 6.08 | 0.38 |
Products | Before Flotation | After Flotation | Impurity Distribution | |||
---|---|---|---|---|---|---|
FC, % | Ash Content, % | FC, % | Ash Content, % | In Interlayer, % | By Entrainment, % | |
FG | 95.13 | 4.02 | 95.82 | 3.38 | 84.08 | 15.92 |
SG | 95.35 | 3.85 | 96.41 | 2.84 | 73.77 | 26.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Qiu, Y.; Mai, Y.; Liu, J.; You, D.; Sun, K. Quantifying the Impurity Distribution in Spherical Graphite: The Limitation of Flotation for Graphite Purification Explained. Minerals 2024, 14, 1187. https://doi.org/10.3390/min14121187
Dong H, Qiu Y, Mai Y, Liu J, You D, Sun K. Quantifying the Impurity Distribution in Spherical Graphite: The Limitation of Flotation for Graphite Purification Explained. Minerals. 2024; 14(12):1187. https://doi.org/10.3390/min14121187
Chicago/Turabian StyleDong, Huazhong, Yangshuai Qiu, Yigan Mai, Jilin Liu, Dahai You, and Kangkang Sun. 2024. "Quantifying the Impurity Distribution in Spherical Graphite: The Limitation of Flotation for Graphite Purification Explained" Minerals 14, no. 12: 1187. https://doi.org/10.3390/min14121187
APA StyleDong, H., Qiu, Y., Mai, Y., Liu, J., You, D., & Sun, K. (2024). Quantifying the Impurity Distribution in Spherical Graphite: The Limitation of Flotation for Graphite Purification Explained. Minerals, 14(12), 1187. https://doi.org/10.3390/min14121187