Study on Reaction Behavior and Phase Transformation Regularity of Montmorillonite in High-Calcium Sodium Aluminate Solution System
Abstract
:1. Introduction
2. Experimental Material and Method
2.1. Material and Instrument
2.2. Configuration of Sodium Aluminate Solution
2.3. Experiment
3. Results and Discussions
3.1. Effect of Temperature on the Reaction Degree of Montmorillonite
3.2. Effect of Nk on the Reaction Degree of Montmorillonite
3.3. Effect of C/S on the Reaction Degree of Montmorillonite
3.4. The Process of Physical Phase Change of Montmorillonite
3.4.1. XRD Analysis of Montmorillonite
3.4.2. Morphological Analysis of Montmorillonite
3.4.3. Morphological Analysis of Montmorillonite
3.4.4. FTIR Analysis of Montmorillonite
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Djurić, I.; Mihajlović, I.; Živković, Ž. Kinetic modeling of different bauxite types in the bayer leaching process. Can. Metall. Q. 2010, 49, 209–218. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Algeo, T.J.; Yu, W.; He, X.F. Critical metal enrichment in upper carboniferous karst bauxite of north China craton. Miner. Depos. 2023, 59, 237–254. [Google Scholar] [CrossRef]
- Le, T.; Ju, S.; Lu, L.; Peng, J.; Zhou, L.; Wang, S. A novel process and its mechanism for recovering alumina from diasporic bauxite. Hydrometallurgy 2016, 169, 124–134. [Google Scholar] [CrossRef]
- Han, D.; Peng, Z.; Song, E.; Shen, L. Leaching behavior of lithium-bearing bauxite with high-temperature bayer digestion process in K2O-Al2O3-H2O System. Metals 2021, 11, 1148. [Google Scholar] [CrossRef]
- Mishra, B.; Bora, D.K.; Gajera, P.; Sethia, G. Exploratory study for the utilization of low-grade kachchh bauxite and Its prospects for rare-earth elements. J. Sustain. Metall. 2022, 8, 321–332. [Google Scholar] [CrossRef]
- Meyer, F.M. Availability of Bauxite Reserves. Nat. Resour. Res. 2004, 13, 161–172. [Google Scholar] [CrossRef]
- Lan, G.A.; Jihong, L.I.; Denghong, W.; Xiaoyun, X.; Chengwei, Y.; Meizhi, H.A. Outline of metallogenic regularity of bauxite deposits in China. Acta Geol. Sin. Engl. Ed. 2015, 89, 2072–2084. [Google Scholar] [CrossRef]
- Wen, H.; Luo, C.; Du, S.; Yu, W.; Gu, H.; Ling, K.; Cui, Y.; Li, Y.; Yang, J. Carbonate-hosted clay-type lithium deposit and its prospecting significance. Chin. Sci. Bull. 2020, 65, 53–59. [Google Scholar] [CrossRef]
- Monsels, D.A.; van Bergen, M.J. Bauxite formation on Proterozoic bedrock of Suriname. J. Geochem. Explor. 2017, 180, 71–90. [Google Scholar] [CrossRef]
- Lu, G.; Zhang, T.; Zheng, C.; Zhu, X.; Zhang, W.; Wang, Y. The influence of the silicon saturation coefficient on a calcification-carbonation method for clean and efficient use of bauxite. Hydrometallurgy 2017, 174, 97–104. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, S.; Zhang, S.; Liu, J.; Xiao, K. Geologic characteristics and potential of bauxite in China. Ore Geol. Rev. 2019, 120, 103278. [Google Scholar] [CrossRef]
- Dyussenova, S.; Abdulvaliyev, R.; Akcil, A.; Gladyshev, S.; Ruzakhunova, G. Processing of low-quality gibbsite-kaolinite bauxites. Metals 2022, 12, 1030. [Google Scholar] [CrossRef]
- Gentzmann, M.C.; Schraut, K.; Vogel, C.; Gäbler, H.E.; Huthwelker, T.; Adam, C. Investigation of scandium in bauxite residues of different origin. Appl. Geochem. 2021, 126, 104898. [Google Scholar] [CrossRef]
- Valeev, D.V.; Lainer, Y.A.; Pak, V.I. Autoclave leaching of boehmite-kaolinite bauxites by hydrochloric acid. Inorg. Mater. Appl. Res. 2016, 7, 272–277. [Google Scholar] [CrossRef]
- Ling, K.Y.; Zhu, X.Q.; Tang, H.S.; Li, S.X. Importance of hydrogeological conditions during formation of the karstic bauxite deposits, Central Guizhou Province, Southwest China: A case study at Lindai deposit. Ore Geol. Rev. 2017, 82, 198–216. [Google Scholar] [CrossRef]
- Lu, G.Z.; Zhang, T.A.; Ma, L.N.; Wang, Y.X.; Zhang, W.G.; Zhang, Z.M.; Wang, L. Utilization of Bayer red mud by a calcification–carbonation method using calcium aluminate hydrate as a calcium source. Hydrometallurgy 2019, 188, 248–255. [Google Scholar] [CrossRef]
- Li, R.; Zhang, T.; Liu, Y.; Lv, G.; Xie, L. Calcification–carbonation method for red mud processing. J. Hazard. Mater. 2016, 316, 94–101. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Jiang, F.; Li, B.; Lv, G.; Zhang, T.A. Calcification-carbonation method for bayer red mud treatment: Carbonation performance of hydrogarnets. Bull. Environ. Contam. Toxicol. 2022, 109, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Zhang, T.; Guo, F.; Zhang, X.; Wang, Y.; Zhang, W.; Wang, L.; Zhang, Z. Clean and efficient utilization of low-grade high-iron sedimentary bauxite via calcification-carbonation method. Hydrometallurgy 2019, 187, 195–202. [Google Scholar] [CrossRef]
- Geidarov, A.A.; Alyshanly, G.I.; Dzhabbarova, Z.A. Kinetic laws of the removal of silica from an alkaline solution of sodium aluminate. Russ. Metall. 2022, 2021, 1413–1418. [Google Scholar] [CrossRef]
- Ling, K.Y.; Tang, H.S.; Zhang, Z.W.; Wen, H.J. Host minerals of Li–Ga–V–rare earth elements in Carboniferous karstic bauxites in southwest China. Ore Geol. Rev. 2020, 119, 103325. [Google Scholar] [CrossRef]
- Gu, J.; Huang, Z.; Fan, H.; Jin, Z.; Yan, Z.; Zhang, J. Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan–Zheng’an–Daozhen area, Northern Guizhou Province, China. J. Geochem. Explor. 2013, 130, 44–59. [Google Scholar] [CrossRef]
- Győri, O.; Orbán, R.; Mindszenty, A.; Fodor, L.; Poros, Z.; Erőss, A.; Benkó, Z.; Molnár, F. Red calcite: An indicator of paleo-karst systems associated with bauxitic unconformities. Geofluids 2014, 14, 459–480. [Google Scholar] [CrossRef]
- Aldabsheh, I.; Khoury, H.; Wastiels, J.; Rahier, H. Dissolution behavior of Jordanian clay-rich materials in alkaline solutions for alkali activation purpose. Part I. Appl. Clay Sci. 2015, 115, 238–247. [Google Scholar] [CrossRef]
- Edelman, C.H.; Favejee JC, L. On the crystal structure of montmorillonite and halloysite. Z. Für Krist. Cryst. Mater. 2014, 102, 417–431. [Google Scholar] [CrossRef]
- Kinsela, A.S.; Tjitradjaja, A.; Collins, R.N.; Waite, T.D.; Payne, T.E.; Macdonald, B.C.; White, I. Influence of calcium and silica on hydraulic properties of sodium montmorillonite assemblages under alkaline conditions. J. Colloid Interface Sci. 2009, 343, 366–373. [Google Scholar] [CrossRef]
- Kuwahara, Y. In-situ AFM study of smectite dissolution under alkaline conditions at room temperature. Am. Mineral. 2015, 91, 1142–1149. [Google Scholar] [CrossRef]
- Stewart, D.I.; Studds, P.G.; Cousens, T.W. The factors controlling the engineering properties of bentonite-enhanced sand. Appl. Clay Sci. 2003, 23, 97–110. [Google Scholar] [CrossRef]
- Xiang, G.; Ye, W.; Hu, Z.; Ge, L.; Zhou, Y. Swelling characteristics of fractal-textured bentonite eroded by alkaline solution. Adv. Civ. Eng. 2022, 2022, 9100822. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, T.A.; Lyu, G.; Ma, L.; Zhang, W. Multi-material circulation optimization of the calcification-carbonation process based on material balance and phase transformation for cleaner production of alumina. J. Clean. Prod. 2021, 290, 125828. [Google Scholar] [CrossRef]
- Yokoyama, S.; Kuroda, M.; Sato, T. Atomic force microscopy study of montmorillonite dissolution under highly alkaline conditions. Clays Clay Miner. 2005, 53, 147–154. [Google Scholar] [CrossRef]
- De Oliveira Montauban, M.; Guillaume, E.J. Maximal independence and symmetry in crystal chemistry of natural tectosilicates. Acta crystallographica. Sect. A Found. Adv. 2024, 80, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Lausen, S.K.; Lindgreen, H.; Jakobsen, H.J.; Nielsen, N.C. Solid-state 29Si MAS NMR studies of illite and illite-smectite from shale. Am. Mineral. 2015, 84, 1433–1438. [Google Scholar] [CrossRef]
Element | Al2O3 | SiO2 | Fe2O3 | TiO2 | K2O | Na2O | CaO | MgO | SO3 | LOI |
---|---|---|---|---|---|---|---|---|---|---|
Content | 12.83 | 62.44 | 2.2 | 0.46 | 0.72 | 0.8 | 1.66 | 2.97 | 0.09 | 15.83 |
Location | Ca | Si | Al | Na | O | Mg |
---|---|---|---|---|---|---|
1 | - | 8.13 | 25.49 | – | 51.56 | 14.83 |
2 | 23.37 | 5.16 | 13.17 | – | 58.30 | – |
3 | 23.75 | 4.77 | 12.79 | – | 58.69 | – |
4 | 35.07 | 2.59 | 13.53 | – | 48.81 | – |
5 | 25.67 | 9.63 | 14.28 | – | 50.42 | – |
6 | 27.14 | 8.45 | 13.95 | – | 50.46 | – |
7 | 3.41 | 11.47 | 15.66 | 2.31 | 59.14 | 8.02 |
8 | 34.86 | 8.08 | 15.69 | – | 41.37 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, Z.; Chen, Y.; Li, Y.; Zhang, W.; Cao, X. Study on Reaction Behavior and Phase Transformation Regularity of Montmorillonite in High-Calcium Sodium Aluminate Solution System. Minerals 2024, 14, 1077. https://doi.org/10.3390/min14111077
Tu Z, Chen Y, Li Y, Zhang W, Cao X. Study on Reaction Behavior and Phase Transformation Regularity of Montmorillonite in High-Calcium Sodium Aluminate Solution System. Minerals. 2024; 14(11):1077. https://doi.org/10.3390/min14111077
Chicago/Turabian StyleTu, Zhenchen, Yang Chen, Yibing Li, Weiguang Zhang, and Xuejiao Cao. 2024. "Study on Reaction Behavior and Phase Transformation Regularity of Montmorillonite in High-Calcium Sodium Aluminate Solution System" Minerals 14, no. 11: 1077. https://doi.org/10.3390/min14111077
APA StyleTu, Z., Chen, Y., Li, Y., Zhang, W., & Cao, X. (2024). Study on Reaction Behavior and Phase Transformation Regularity of Montmorillonite in High-Calcium Sodium Aluminate Solution System. Minerals, 14(11), 1077. https://doi.org/10.3390/min14111077