Next Article in Journal
Research on the Detection Principle of Coal Ash by X-Ray Transmission Based on FLUKA
Previous Article in Journal
Study on Reaction Behavior and Phase Transformation Regularity of Montmorillonite in High-Calcium Sodium Aluminate Solution System
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Formation and Tectonic Evolution of Ophiolites in the Sabah Area (Borneo, SE Asia)

by
Zhiwen Tian
,
Youfeng Gao
,
Pujun Wang
and
Huafeng Tang
*
College of Earth Sciences, Jilin University, Changchun 130061, China
*
Author to whom correspondence should be addressed.
Minerals 2024, 14(11), 1078; https://doi.org/10.3390/min14111078
Submission received: 31 August 2024 / Revised: 18 October 2024 / Accepted: 23 October 2024 / Published: 25 October 2024

Abstract

:
Zircon U-Pb dating, rock geochemistry, Sr-Nd-Pb, and zircon Hf isotope analyses were conducted on the ultrabasic and basic rocks of ophiolites in the Sabah area (Borneo, SE Asia). The zircon U-Pb ages of ultrabasic and basic rocks range from 248 to 244 Ma, indicating that the ophiolites already existed in the early Triassic. The rare earth elements of basic rocks in Central Sabah show N-MORB-type characteristics and E-MORB-type characteristics in the northwest and southeast. The εNd(t) values of basic rocks range from 3.66 to 8.73, and the εHf(t) values of zircon in ultrabasic rocks are between −10.2 and −6.1. Trace element analysis shows that the magmatic source was influenced by melts and fluids from the subducting plate of the Paleo-Tethys Ocean. The tectonic evolution of the Sabah area can be traced back to the Early Triassic. At that time, the fast subduction of the Paleo-Tethys Ocean plate and the retreating of the Paleo-Pacific plate resulted in the upwelling of mantle material in relatively small extensional settings, leading to the formation of the ophiolites. From the Jurassic to the Early Cretaceous, the Paleo-Pacific plate was intensely subducted, and the ophiolite intrusion in the Sabah area moved to the continental crust of South China or the Sundaland margin as fore-arc ophiolites. From the Late Cretaceous to the Miocene, with the expansion of the Proto-South China Sea and South China Sea oceanic crust, the ophiolites in the Sabah area drifted southward with microplate fragments and sutured with East Borneo.

1. Introduction

Ophiolites are fragments of non-in situ upper mantle and pristine oceanic crust that exhibit diversity in rock assemblages, magma evolution, source composition, formation environments, emplacement mechanisms, and the degree of late tectonic reworking [1,2,3]. Ophiolites are of great interest in restoring plate movements and tectonic evolution processes [4,5,6,7]. The Southeast Asian region underwent multiple plate collisions and stacking during the Mesozoic and Cenozoic and the influence of the Tethys and Pacific tectonic domains [8,9,10,11,12]. Consequently, many ophiolites were distributed along the suture zone in the Indo-China Peninsula, Philippines, Borneo, Sulawesi, and Sumatra–Java regions (Figure 1) [13,14]. Borneo was also formed by the collision and stacking of multiple small plates, distributed with a large amount of ophiolites, including the Boyan, Lubok Antu, and Kapuas mélanges along the Lupar Line to the west [8,15], Meratus suture melanges to the southeast [16], and in the Sabah area [14,17,18,19]. The ophiolites distributed along the Lupar Line are believed to have been formed by subduction of the Proto-South China Sea in the Early Cretaceous, while the mélanges distributed along the Meratus suture are thought to be formed by subduction of the Meratus Ocean in the Early Cretaceous [16]. However, little is known about the formation time, emplacement pattern, and tectonic evolution of ophiolites in the Sabah area [14,18,20,21,22,23,24,25,26]. Regarding the formation time, it is unknown whether the ophiolites were formed during the Triassic or Cretaceous [14,15,16,17,18,19,25,26,27], and whether the formation was earlier than the age of the crystalline basement. Regarding tectonic evolution, it is unknown whether the ophiolites were formed in mid-ocean ridges [18,28,29], with the expansion and emplacement of supra-subduction zones [25,30], and whether the formation was related to the subduction of the Proto-South China Sea [31]. Regarding the emplacement pattern, it is unknown whether any correlation between ophiolites in the Sabah area and the Palawan ophiolites exist and whether the ophiolites in the Sabah area are relics of the oceanic crust of the Paleo-Tethys Ocean or the Paleo-Pacific [32,33]. Based on field geological fieldwork, the formation and tectonic evolution of ophiolites in the Sabah area are discussed in this work through integrated zircon U-Pb and Lu-Hf isotope and bulk-rock geochemical data.

2. Geological Setting

2.1. Regional Geological History

The current pattern in Southeast Asia was formed by the suturing of multiple plates during the Mesozoic and Cenozoic. Previous studies have constructed relevant evolution models for the tectonic evolution of multiple plates in Southeast Asia during the Mesozoic and Cenozoic [11,12,32,33,34,35]. In the Early to Middle Triassic, the Indochina, East Malaysia, Southern Qiangtang, Northern Qiangtang, Sibumasu, and West Sumatra blocks fractured and drifted northward from the Gondwana continent [9,10]. In the Late Triassic, the Paleo-Tethys Ocean subducted and closed, and these blocks amalgamated with the Jinsha River–Ailaoshan, Song Ma, Longmuco–Shuanghu, Lancang River, Changning–Menglian, and Wendong suture zones [35,36,37,38]. In the Late Jurassic, the Southwest Borneo, East Java–West Sulawesi, and Northwest Sulawesi plates split from the Australian plate and drifted northward, while the Meso-Tethys Ocean gradually disappeared [39]. In the Late Cretaceous, Southwest Borneo had already sutured with the edge of Sundaland and amalgamated with West Borneo. Later, the Woyla Arc collided with the West Sumatra plate, while East Java–West Sulawesi sutured with Southwest Borneo. In the Cenozoic era, many tectonic events occurred in Southeast Asia, such as the subduction and the disappearing of the Proto-South China Sea [33], the extension of the South China Sea basin and the Sulu Sea [40], and the counterclockwise rotation of Borneo [41,42].
Borneo was formed by the collision and amalgamation of multiple blocks during the Mesozoic and Cenozoic, and can be divided into Southwest Borneo, East Borneo, the Kuching Belt, the Sibu Belt, the Miri Belt, and Sabah (Figure 1). Southwest Borneo is believed to be a block that separated from the Australian plate during the Mesozoic era, mainly composed of Mesozoic metamorphic basements and magmatic rocks [43]. Eastern Borneo comprises the Mangkalihat and Paternoster microcontinental fragments [8]. The southern parts of East Borneo and Southwest Borneo are bounded by the Meratus suture, while the northern part and the Kuching Belt are bounded by the Mangkalihat melanges. The Kuching Belt is composed of schist basement and river or marginal marine sediments from the Upper Cretaceous to the Cenozoic, while the Sibu Belt is composed of deep-sea sediments and is bordered by the Lupar Line with the Kuching Belt [44]. The basement of the Miri Belt is a paleo continental crust, overlaid with Cenozoic sediments. The Sibu Belt and Miri Belt are recognized as accretionary wedges of subduction in the Proto-South China Sea [31]. Many ophiolitic melanges are distributed along the suture in Borneo and its neighboring areas (Table 1).

2.2. Ophiolites and Crystalline Basement in the Sabah Area

The Sabah area is located in the northwestern part of Borneo and is surrounded by the South China, Sulawesi, and the Sulu Seas (Figure 2a). The Sabah area is mainly composed of crystalline basement, Mesozoic ophiolite, and overlying Cenozoic sedimentary rocks [39,53]. The ophiolitic rocks are mainly distributed in Darvel Bay, Segama Highlands, Telupid, Kinabalu, and Banggi areas. The ophiolite is composed of peridotite, gabbro, basaltic dykes, plagiogranites, and radiolarian chert [22,43,44,45,46,47,48,49,50,51,52,53,54,55]. The lithological combination of Cretaceous–Early Tertiary igneous rocks (KET), the Chert–Spilite Formation (Cs), and the Sapulut Formation (Sp) in the western section of Sabah display the characteristics of oceanic crust.
The lithology of Sp is characterized by deep-sea turbidities (Figure 3a). At the mesoscale, this formation consists of mudstone and siltstone, showing complete Bouma sequences (Figure 3b). Section A consists of a variety of sandstones with graded bedding, with groove casts and scour marks along the bottom surface. Section B is sandstone with parallel bedding. Section C is siltstone with ripple marks and cross-bedding. Section D is horizontally bedded siltstone and silty mudstone. Section E is the overlying massive mudstone. The ratio of sandstone to mudstone is about 0.6 overall, and the stratigraphy was overturned according to the Bouma sequence. In summary, the lithological assemblage represents the deep-sea sediments that cover the oceanic crust.
Cs consist of basic volcanic rocks and deep-sea sedimentary rocks. The sedimentary rocks include chert (Figure 3c,d), mudstones, and a small amount of siltstone. The basic volcanic rocks include gray-black massive basalt, pillow basalt (Figure 3e,f), olivine basalt, and volcanic breccia/tuff. The massive basalt has a porphyritic texture. The phenocrysts include pyroxene and olivine, and the matrix is mostly vitreous–cryptic. The pillow basalt has the characteristic of radial jointing. However, the chilled border of the pillow basalt that would have been caused by alteration and/or weathering is not apparent. The diameters of the pillows are up to 30 cm. The particle size of breccia is 3–6 cm, and the particles are angular in shape, poorly sorted, and non-oriented. The age of the Cs radiolarites of the Telupid ophiolite suite Cs is Early Cretaceous [57]. Under further investigation, the radiolarian chert from other exposed formations yielded age ranges that spanned from the Valanginian to the Turonian [58]. In summary, the lithological combination of this formation represents the basalt layer and deep-sea sedimentary layer of the upper part of the oceanic crust.
The KET is dominated by basic and ultrabasic igneous rocks. The basic rocks include gray-black diabase and gabbro (Figure 3g,h), and the ultrabasic rocks include peridotite, and serpentinized peridotite (Figure 3i,j). These rocks registered a strong serpentinization and strong deformation. Tectonic lenses and joints are abundant in the outcrops. The joints are widely filled by calcite veins. In summary, this lithological combination is inferred to represent the characteristics of the middle and lower parts of the oceanic crust.
The crystalline basement is exposed in the Segama Highlands and Darvel Bay in southeastern Sabah. The crystalline basement rocks include gneiss, schist, amphibolite, associated granite (Figure 3k,l), granodiorite, and tonalite. K-Ar and U-Pb zircon age data indicate that the crystalline basement was formed in the Triassic [14,17,22,25,30,50].
The rocks of the Sabah area were deformed during the southward subduction and extinction of the Proto-South China Sea (Figure 2b). The intermediate–mafic igneous rocks are strongly serpentinized. The Cs strata underwent deformation, such as tilting and folding. The entire area was involved in the collisional processes. Their sampling information is summarized and presented in Figure 2a and Table 2.

3. Analytical Methods

For zircon U-Pb dating analysis, zircon targets, transmitted light images, reflected light images, and cathodoluminescence (CL) images were collected at the College of Earth Sciences, Jilin University, China. Fissureless and inclusion-free areas were delineated on the zircon CL images to ensure the reliability of the data. LA-ICP-MS zircon U-Pb dating was completed at the Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Jilin University. The standard procedure for testing and analysis was conducted on an Agilent7500a ICP-MS instrument (Agilent Technologies, Inc., Santa Clara, CA, USA). During laser denudation, helium gas and argon gas were used as the carrier gas and compensation gas, respectively. The specific experimental steps and instrument parameters were described by [59]. The laser spot size was set to 32 μm, and the zircon standard 91500 was used as the external calibration standard. Data processing was completed using ICPMSDataCal software. The Andersen (2002) method was used to correct for common lead [60]. The age harmonic graph and weighted average age were determined using ISOPLOT 4.15 tools (Ludwig, 2003). In total, five samples (four igneous rock samples and one sandstone sample) were tested.
For zircon Lu-Hf isotope analysis, Lu-Hf isotope analysis was determined with CL images of zircon based on the U-Pb zircon ages obtained in this work. A laser ablation multi-receiver inductively coupled plasma mass spectrometer ((COMPEx GeoLas Pro 193 nm ArF excimer laser (Coherent Corp, Saxonburg, PA, USA) and Neptune Plus (Thermo Fisher Scientific, Waltham, MA, USA)) was used as the testing instrument, with a laser beam of 44 μm, 8 Hz, and ablation time of 26 s, with He gas as the carrier gas. The 176Lu decay constant used in the calculation of εHf(t) was 1.867 × 10−11 yr−1, and the current relevant values of chondrites were 176Hf/177Hf = 0.282785 and 176Lu/177Hf = 0.0336 [61]. The calculation of the Hf depleted mantle model age (TDM1) was conducted based on the current depleted mantle values of 176Hf/177Hf = 0.28325 and 176Lu/177Hf = 0.0384 [62]. Finally, the two-stage Hf model age (TDMC) was calculated using the average continental crust value of 176Lu/177Hf = 0.015 [63].
The major and trace element content of igneous/meta-igneous rock samples was analyzed at the Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Jilin University. The samples were then roughly crushed, and the freshest were selected for cleaning, drying, and grinding to 200 mesh size. The most commonly used analytical method, the X-ray fluorescence (XRF) fused glass method (instrument model: ZSX Primus II) (Rigaku, Tokyo, Japan), was employed to determine the major element contents. For specific experimental techniques, analytical procedures, and testing conditions, we referred to Liu et al. (2002) [64]. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the trace element contents. The detailed experimental techniques, experimental parameters, and sample processing steps were described by Liu et al. (2002) [64]. The analytical results for the international standard samples BHVO-1 (basalt) and BCR-2 (basalt) show that the accuracy of the analysis of major elements was better than 5%, whereas the accuracy of the analysis of trace elements was generally better than 10%.
For Sr-Nd-Pb isotope analysis, the samples were treated with acid, washed, dried, and ground to <200 mesh. The analysis was completed at the Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources. The accurate content of Sr-Nd was determined on Agilent 7700× quadrupole ICP-MS (Agilent Technologies, Inc., Santa Clara, CA, USA). The isotope ratios were measured on Nu PlasmaⅡ MC-ICP-MS (Nu Instruments Ltd., Wrexham, UK). The Pb isotope ratio was measured using a Triton-type thermoelectric ionization mass spectrometer (TIMS) (Thermo Electron, Thermo Fisher Scientific, Waltham, MA, USA). For the isotope ratio determination, NIST SRM 987, JNdi-1, and NBS 981 were selected as Sr, Nd, and Pb standards, respectively, to correct the instrument drift. The details of this process were described by Yang et al. (2010) [65].

4. Results

Appendix A Table A1, Table A2, Table A3, Table A4 and Table A5 show the complete datasets for the zircon U-Pb dating, whole-rock major, trace, rare earth element, Sr-Nd-Pb isotopic ratio, and zircon Lu-Hf isotopic ratio results obtained using the mafic-ultramafic samples from ophiolites in the Sabah area.

4.1. Zircon U–Pb Ages

Nine zircons were selected from peridotite (sample KDS-KET-a). These zircons have euhedral to subhedral columnar shapes, and range in size from 30 to 60 µm, with aspect ratios of about 1.5:1 to 2.5:1, and show zoned sectors or irregular–regular oscillatory zoning in CL images (Figure 4). Th/U ratios of these zircon grains ranged from 0.18 to 1.10, with an average of 0.59. The weighted average 206Pb/238U age of the youngest age group is 248.1 ± 4.6 Ma (95% confidence, MSWD = 0.58, n = 9) (Figure 5a), which is considered to represent the crystallization age of the peridotite. A couple of spots yield ages of 440.9 Ma and 461.9 Ma. The oldest ages detected are 1946.8 Ma and 1859 Ma.
A total of 25 spot analyses were acquired on sample ND-KET-b, of which 24 were valid. The zircons are mostly short columnar or round in shape and range in size from 50 to 150 µm, with a length–width ratio of 1:1 to 2:1 and Th/U values ranging from 0.43 to 1.01. Oscillatory zoning is not always observed, typical of mafic rocks zircon (Figure 4). The 206Pb/238U age of the 24 measured points ranged from 235.1 ± 6.6 to 251.5 ± 11.5 Ma, with a weighted average age of 244.9 ± 3.2 Ma (Figure 5b).
A total of 70 zircons were selected from sample KM-KET-a, obtaining 52 feasible data points. These zircons are mostly short columnar or round in shape, and range in size from 30 to 100 µm, with a length–width ratio of 1:1 to 2:1 and Th/U values ranging from 0.01 to 4.64. Oscillatory zoning is documented in many crystals, indicating the characteristics of magmatic zircons (Figure 4). The 206Pb/238U and 207Pb/206Pb ages range from 245 ± 6 to 2997 ± 19 Ma, with a weighted average age of 245 ± 6 Ma, showing the characteristics of detrital zircons (Figure 5c,d).
A total of five zircons were selected from the sample BLR-KET-a (Figure 4). These zircons have subhedral shapes and range in size from 50 to 120 µm. Th/U ratios of these zircon grains range from 0.47 to 1.44. The minimum 206Pb/238U age is 345 ± 8 Ma. The ages of the other zircons are 2494 ± 23 Ma, 1125 ± 26 Ma, 2568 ± 20 Ma, and 2681 ± 20 Ma. These zircons are captured zircons.
A total of 83 spot analyses were completed, of which 48 passed the concordance test (sample SP-a). The majority of the zircon grains are euhedral to subhedral in shape, as well as short-columnar, irregular, or stocky. The sizes of the grains range from 50 to 120 μm, with aspect ratios of 1:1–3:1. The colors are gray-black and bright white. The zircon grains are angular to subrounded. In CL, oscillatory structures could be seen, as well as evidence of resorption and later transformation of some zircons. The zircon Th and U contents and Th/U ratios are 36.78–905.03 ppm, 50.86–2115.46 ppm, and 0.08–1.44, with an average of 0.52, respectively. On the base of their internal structure, most of these zircons seem to have magmatic origin. The zircon ages ranged from 81.4 ± 2.0 to 2577.9 ± 35.2 Ma. The age spectrum of zircons of subgroup Sp-a can be divided into six main age clusters as follows: 81.4–127.2 Ma (9%), 170.5–334.4 Ma (27%), 408.5–972.9 Ma (27%), 1097.6–1195.0 Ma (9%), 1329.5–1508.9 Ma (7%), and 1645.4–2577.9 Ma (21%), with the age peaks at 105.4 Ma, 238.0 Ma, 570.5 Ma, 1111.7 Ma, 1353.1 Ma, and 1855.5 Ma, respectively (Figure 5e,f).

4.2. Zircon Lu-Hf Isotopes

Based on the zircon U-Pb isotope analyses (sample KDS-KET-a, nine zircons), 12 points were selected for zircon Hf isotope analysis. The analysis data are shown in Table A5. The 176Hf/177Hf measured at eight zircon grains with Middle Triassic U-Pb ages is 0.282364–0.282940, with an average of 0.282463. The 176Lu/177Hf is 0.000995–0.001810, with an average of 0.001242. The zircon εHf(t) ranges from −10.2 to 11.1, the Hf isotope single-stage model age (tDM1) from 451 to 1312 Ma, and the two-stage model age (tDM2) from 566 to 1929 Ma.

4.3. Whole-Rock Major, Trace, and Rare Earth Elements

4.3.1. Mafic Rocks from Ophiolites in the Sabah Area

The basalt and diabase of the northwest, central, and southeast Sabah areas contain SiO2 concentrations of 49.84–58.94 wt.% (average 52.76 wt.%). The K2O concentrations of these samples are 0.01–2.19 wt.%, and the Na2O concentrations are at 2.50–6.11 wt.%. The chondrite-normalized rare earth element (REE) patterns of the BLR-CS basalt and BLR-KET diabase samples show depletion in light (L) REEs. The distribution pattern is similar to that of normal mid-ocean ridge basalt (N-MORB) (Figure 6a,c). The LREE values are 13.73–29.08 ppm (average 22.14 ppm), and the heavy (H) REE values are 12.41–18.79 ppm (average 15.21 ppm). The LREE/HREE values range from 1.02 to 1.69, with (La/Yb)N values from 0.41 to 0.9. In the primitive mantle-normalized trace element spidergram, these samples show pronounced positive anomalies in U, Ta, Sr, and Hf and negative anomalies in Th, Nb, K, and P (Figure 6b).
The chondrite-normalized REE diagrams of KM-KET and ND-KET basalt samples show LREE enrichment and incline to the right. The distribution is similar to enriched mid-ocean ridge basalt (E-MORB) but with slightly higher elemental contents (Figure 6a). The LREE values are 26.53–68.82 ppm (average 42.03 ppm), and the HREE values are 9.38–19.11 ppm (average 13.18 ppm). The LREE/HREE ratios are from 1.73 to 3.91, with (La/Yb)N values of 0.83–3.05 (average 2.40). In the primitive mantle-normalized trace element spidergram, these samples show pronounced positive anomalies in U, Ta, K, and Hf and negative anomalies in Ba, Nb, P, Ti, and Y (Figure 6b).

4.3.2. Ultrabasic Rocks from Ophiolites in the Sabah Area

The peridotite contains SiO2 concentrations of 40.73–47.34 wt.% (average 43.51 wt.%). The K2O and Na2O concentrations are very low. The loss on ignition of these samples is 9.84% to 13.59%, and they underwent strong alteration. Primitive mantle-normalized trace element diagrams and chondrite-normalized REE diagrams for these peridotites are shown in Figure 6e. The chondrite-normalized REE patterns show a zigzag pattern with low rare earth element contents. The LREE concentrations range from 0.64 to 6.69 ppm (average 2.73 ppm), and the HREE values from 0.19 to 1.09 ppm (average 0.5 ppm). The LREE/HREE ratios vary between 2.05 and 7.66, and the (La/Yb)N values vary between 1.12 and 6.79. In the primitive mantle-normalized trace element spidergram, these samples show pronounced positive anomalies in Th, U, Ta, and Tm, negative anomalies in Ba, Nb, and Ti, and K is missing (Figure 6f).

4.4. Sr-Nd-Pb Isotopes

Four samples were analyzed for Sr isotopic compositions (KM-KET-2–3, basalt; BLR-KET-5–6, gabbro), ten for Nd isotopic compositions (KM-KET-2–3, basalt; BLR-KET-4–6, gabbro; KDS-KET-2–3, BLR-KET-2–3, ND-KET-4, serpentinized peridotite), and four for Pb isotopic compositions (KM-KET-2–3, Basalt; BLR-KET-5–6, gabbro). The analysis data are shown in Table A4. The initial Sr, Nd, and Pb isotopic compositions of the samples were calculated using their corresponding zircon U-Pb ages of 248 Ma. The 87Sr/86Sr of the four samples are between 0.70469 and 0.70758, and the initial ratios at 248 Ma are 0.70331–0.70691. The 206Pb/204Pb of the four samples is 16.588–18.442, 207Pb/204Pb is 15.421–15.637, and 208Pb/204Pb is 36.303–38.506. The 143Nd/144Nd of the five basalt and diabase samples is 0.51276–0.51309, the initial (143Nd/144Nd)i is 0.51251–0.51277, and the εNd(t) ranges from 3.66 to 8.73, with an average of 6.33. The two-stage modal age tDM2 values range from 308 to 723 Ma, with an average of 504 Ma. The 143Nd/144Nd of the five serpentinized peridotite samples is between 0.51161 and 0.51248, with initial (143Nd/144Nd)i values ranging from 0.51143 to 0.51230, and the εNd(t) from −17.31 to 0.38. Finally, the two-stage modal age tDM2 values range from 1051 to 2424 Ma.

5. Discussion

5.1. Origin of the Zircon in the Ophiolites

5.1.1. Studies on Zircon in Ultrabasic Rocks—Basic Rocks

Primitive mantle peridotites have low Zr content and Si activity and theoretically cannot directly crystallize zircon [67]. Consequently, the origin of zircon in peridotites is widely debated. Zircon in ultrabasic rocks is normally thought to have been formed by metasomatic action produced by dehydration in the asthenosphere or subducting lithosphere [68,69,70,71,72], such as metasomatism caused by Si-rich melts or fluids [71]. Zircon in ultrabasic rocks may also be directly captured from crustal materials [72,73]. Shen et al. (2017) summarized previous research on the discovery of zircon in orogenic peridotites [74,75,76,77,78], ophiolite-type ultrabasic rocks [72,73,79], and ultrabasic rocks of mantle xenoliths [74,80].
Orogenic peridotites refer to geological peridotite blocks with metamorphic textures exposed in ultrahigh-pressure collision orogenic belts [81,82,83]. Zircons in orogenic peridotites are usually interpreted to be the result of metamorphic recrystallization or metasomatism of melts or fluids [74], and metasomatic zircons may record peak metamorphism. The main views on the origin of zircons in orogenic peridotites include mantle fluid metasomatism [74], subduction-related crustal fluid metasomatism [75], injection of granitic magma during peridotite emplacement [79], and subducting crustal fragments [72]. Newly grown and relict zircons have been discovered in peridotites from the Zhimafang [74], Weihai [84], Hujialing [71], Bixiling, and Raobazhai areas of the Sulu–Dabie orogenic belt [83], as well as the Lvliangshan orogenic belt in North Qaidam and the Kokchetav orogenic belt [77,85]. Newly grown zircons are believed to be zircons formed by metasomatism of mantle melts and fluids [74], and relict zircons are believed to be old zircons captured from surrounding rocks during the physical transport of subducting crustal source fluids into peridotite or diagenetic processes [84,86].
Oceanic ophiolite-type ultrabasic rocks are common in ophiolite belts. The zircon ages of the Norbusa ophiolite suite in southern Tibet, Dongqiao ophiolite in Tibet, and oceanic ophiolite-type ultrabasic rocks in the Tumut area of southeastern Australia are widely distributed [72,73,79]. These zircons have the characteristics of crust-derived captured zircons, similar to those of detrital zircons. Robinson et al. (2015) suggested that continental crust materials entered the upper mantle through subduction, while relict materials circulated into newly formed ophiolites, resulting in the presence of zircons in ophiolites [73]. Zircons in ultrabasic rocks of the oceanic ophiolite type may have originated in one of the following ways: zircons obtained from the mixing of overlying continental materials during the diagenetic process of oceanic ophiolites; the cold intrusion of oceanic ophiolite-type ultrabasic rocks, with crustal materials entering ultrabasic rocks; at a certain depth in the subduction zone, the subducting plate fluid carrying zircons into the oceanic ophiolites; or ultrabasic rock serpentinization of some fluids carrying Si and Zr substances, leading to the formation of retrograde metamorphic hydrothermal zircons in ophiolites [78].
Zircons from mantle peridotite xenoliths are mostly zircon xenocrysts scavenged by mixing crustal materials, and their ages correspond to geological events that occurred in the crust [59,80]. For example, the zircons from Xinyang peridotite xenoliths at 210–240 Ma reflect the collision period between the North China Craton and the Yangtze plate [74].

5.1.2. Zircon Age Characteristics and Significance of Sabah Ultrabasic Rocks and Basic Rocks

Zircon selection and analysis were conducted on four samples of basic and ultrabasic rocks from ophiolites in the Sabah area. The nine zircons that were selected from the peridotite sample KDS-KET-a show a wide distribution of ages (239.4 ± 7.8–1946.8 ± 48.7 Ma), and their distribution characteristics are similar to those of detrital zircons. The zircon at point #1 may be metamorphic (Figure 4), while the other eight zircons display metamorphic zoning and characteristics of magmatic zircons. If determined according to the dating method of detrital zircons, the age of peridotite is 239.4 ± 7.8 Ma. However, the zircon morphology represented by 239.4 ± 7.8 Ma is round and unzoned; it may be metamorphic zircon, and Pb elements may be missing [87,88]. Therefore, the average zircon age of the youngest age group, 248.1 ± 4.0 Ma (Figure 5a), was adopted as the age of peridotites. The Middle Proterozoic zircons with ages of 1946.8 ± 48.7 and 1859 ± 46 Ma show some rounding and no recrystallization in morphology. This zircon was captured by peridotite. The Ordovician zircon represented by 440.9 ± 14 and 461.9 ± 12.8 Ma does not show recrystallization either. This zircon was also captured by peridotite.
The 70 zircons that were selected from the basalt sample KM-KET-a also show a wide distribution of ages (245 ± 6–2997 ± 19 Ma), and their distribution characteristics resemble those of detrital zircons. If determined according to the dating method of detrital zircons, the age of basalt is approximately 245 ± 6 Ma. The zircons mainly consist of Proterozoic zircon (71%), followed by Archean zircon (12%) and Cenozoic zircon (17%). The abundance of zircons from the Proterozoic and Archean periods indicated the involvement of paleo-plate materials.
The five zircons from gabbro BLR-KET-a show Archean and Proterozoic, reflecting the involvement of paleo-plate materials.
The 25 zircons from gabbro ND-KET-b display a relatively uniform distribution of ages (235.1 ± 6.6–251.5 ± 11.5 Ma), with an average age of 244.9 ± 3.2 Ma. The oscillatory zones are poorly developed in these zircons, indicating that they may be basic magmatic zircons rather than acidic magmatic zircons. These zircons were formed during crystallization of gabbro itself and suggest the formation of gabbro during the Middle Triassic.
The zircon ages of three samples show age characteristics of detrital zircons (KDS-KET-a, KM-KET-a, and BLR-KET-a), while one shows those of concentrated igneous rocks (ND-KET-b). The ages of rocks fall into the range of 248–244 Ma, while the peridotite is older. Wang et al. (2023) analyzed the age of the basic rocks in the Sabah area. They found that the zircon U-Pb age ranged from 153 to 112 Ma, while the whole rock Ar-Ar age ranged from 184 to 92 Ma, indicating that the basic rocks formed in the Early Jurassic [14]. The reason for the difference in age may lie in the sample locations from the middle–upper part of the ophiolite suite. In addition, there are differences in the trace elements of zircon xenocrysts with different tectonic settings [89]. Thus, zircon trace elements can be used to distinguish the formation environment of host rocks [90,91,92]. The KDS-KET-a and ND-KET-b samples, along with the collection of zircon trace element data taken from the literature, were plotted on different types of diagrams. In the Ta-Nb, U-Er, Yb-Y, and Lu/Hf-Y diagrams (Figure 7a–d), most of the data points were located in the volcanic arc and intraplate rock regions, while some data points of the sample ND-KET-b were located in the mid-ocean ridge region. In the U/Yb-Y and U/Yb-Hf diagrams, the data points were mostly located within the range of continental zircons (Figure 7e,f), while some data points of the sample ND-KET-b were located near the zircons in the oceanic crust. Based on the age of zircons, the KET ultrabasic rock samples in northwestern Sabah were captured zircons (KDS-KET-a, KM-KET-a, and BLR-KET-a), and their minimum age represented the lower limit of rock formation age. The KET basic rock samples in Southwest Sabah were magmatic crystalline zircons (ND-KET-b), representing the age of rock formation. In summary, the KET ultrabasic rocks and basic rocks at the bottom of the ophiolites may have existed since the Early to Middle Triassic, and paleo-plate materials took part in their formation.

5.2. Basic Rock Source Area and Tectonic Setting of Ophiolites in the Sabah Area

The major elements of the rocks indicate that the ultrabasic rocks in the ophiolites underwent severe alteration, with peridotite transformed into serpentinized peridotite, and the alteration of the basic rocks was relatively weak. The rare earth element distribution diagram of basic rocks shows that those of the ophiolite suite in Northwest and Southeast Sabah are of an E-MORB type (LREE enrichment), while those in Central Sabah are of the N-MORB type (LREE depletion). As shown by the Zr/Nb-La/Yb (Figure 8a), La/Sm-Sm/Yb (Figure 8b), Nb/Yb-Th/Yb (Figure 8c), and Nb/Yb-TiO2/Yb diagrams (Figure 8d), the basic rocks in Central Sabah are of the N-MORB type, while those in Southeast Sabah are of the E-MORB type. The occurrence of E-MORB in mid-ocean ridges is usually caused by the influence of enriched components on the depleted asthenospheric mantle [95,96]. The enriched sources may have the following origins: hotspots or mantle plumes near ocean ridges [97]; enriched lower mantle [98]; melts generated by the melting of eclogite after subduction of the oceanic crust into the upper mantle [99]; and shallow mantle enrichment caused by oceanic islands or seamounts subducting into the upper mantle [100]. In the tectonic setting discrimination diagram (Figure 8e,f), the ophiolite samples mostly fall into the vicinity of mid-ocean ridges. Compared with the Mesozoic basic rocks of Hainan Island, Palawan Island, Kuching Belt, Southwest Borneo, and Meratus, the Early to Middle Triassic basic rocks of Hainan Island, which have similar ages, were formed in an intracontinental extensional setting [101,102], while the Cretaceous basic rocks of the Kuching Belt, Southwest Borneo, and Meratus were volcanic arc basalt formed under the background of oceanic crust subduction. In the geological context of the subduction of the Paleo-Tethys Ocean plate during the Early Triassic, collision between the South China and Indo-China plates may have formed an extensional setting at the edges of the South China or Indo-China plate, leading to the upwelling of magma and the formation of ophiolites.
The trace element spidergram shows that the basic rocks are enriched in Ta and Hf and depleted in Nb and Th. The ratios of Nb, Th, Sm, La, Ba, Zr, and other elements can be used to constrain the composition, melting, and mixing degree of the magmatic source. Figure 9 shows that the magmatic source of the Sabah basic rocks is influenced by subduction plate melting and fluid addition. The εNd(t) values of basic rocks in ophiolites from the Sabah area ranged from 3.66 to 8.73, similar to those of the basic rocks in Kuching and the Meratus mélange zone and higher than those of the Triassic and Cretaceous basic rocks of Hainan Island (Figure 10a). According to the Pb isotope data, the Sabah basic rocks resemble Meratus ophiolites and tend to have a Pb isotope composition in the Tethys Ocean domain (Figure 10b,c). The influence of time factors can be eliminated, and the source area of lead can be traced through the Δβ-Δγ genetic classification diagram (Δβ and Δγ are Pb isotope relative deviation values, calculated using the method from [113]). The diagram shows that the Pb isotope data points of the Sabah basic rocks mainly plot into the fields of mantle source lead, orogenic belt lead, and mixed leads of the upper crust and mantle subduction zones (Figure 10d), indicating that the magmatic source may have been affected by subduction plate materials. The εHf(t) values of zircons from the ultrabasic rocks in the ophiolite ranged from −10.2 to −6.1, similar to those of the Hainan Island mélange and Triassic granite basement of the Qiongdongnan Basin, with older materials involved in the magmatic source. The relatively high εHf(t) values of zircons in the non-ophiolite basement indicate the involvement of younger oceanic crust materials, which differ significantly from the zircons of the ultrabasic rocks in the ophiolites (Figure 11). Wang et al. (2023) classified basic rocks into the following three types: MORB, Nb-enriched, and high-Nb, based on the geochemical differences in Kudat (approximately 135–11 Ma), Telupid (approximately 185–140 Ma), and Darvel Bay (185–85 Ma) ophiolite suite basic rocks in Sabah [14]. The magmatic source was altered by plate-derived melts and formed in the fore-arc setting of Paleo-Pacific plate subduction. Therefore, based on the rock geochemistry and isotope data, it is believed that the basic rocks of the ophiolites in the Sabah area formed in an extensional setting, while the magmatic source was influenced by the melting of subducted plates and fluids in the Paleo-Tethys Ocean.

5.3. Tectonic Evolution of the Ophiolites in the Sabah Area

The tectonic evolution of Sabah has been discussed previously by many authors [20,21,22,23]. Some scholars suggested that the subduction of the South China Sea and Sulu Sea oceanic lithospheres played a significant role in the tectonic evolution of the Sabah area [28,29]. Although many studies have been carried out on the Cenozoic tectonic evolution of Sabah, only a few have been devoted to the pre-Cenozoic. Hutchison (1978) and Tongkul (1991) suggested that the extrusion of basalts and intrusion of ultrabasic rocks tended to occur in older metamorphosed oceanic basements during the Early Mesozoic, and radiolarian cherts tended to be deposited in newly formed oceanic basements [28,29]. Omang and Barber (1996), based on data regarding large ion lithophile elements and high-field strength elements in ophiolites, argued that the ophiolites in the Sabah area were formed in the context of a supra-subduction zone [30]. Sabah and East Kalimantan are not a single block; instead, they drifted and amalgamated together from elsewhere [21]. Sabah was formed by the rupture of the Australian plate [24]. Graves et al. (2000) suggested that the ophiolitic basement of Sabah could be interpreted as having formed as an integral part of either the Western Pacific or the Eastern Indian Oceans [18]. Burton-Johnson et al. (2020) suggested that ophiolites in Southeast Sabah were emplaced in an extensional supra-subduction zone and rifted the continental margin of Sundaland [25]. Wang et al. (2023) concluded that the basic rocks of the ophiolites were formed in the fore-arc setting of the Paleo-Pacific plate subduction [14,19]. There is also some controversy over whether the basement of the Sabah region is continental or oceanic crust. Considering the presence of granite and metamorphic rocks in Southeast Sabah, and combined with gravity data, Leong (1974) speculated that the Sabah area derived from continental crust [17].
The ophiolites in the Sabah area underwent subduction, collision, tectonic superimposition, and reworking between plates, including interference from magmatic activity and varying degrees of metamorphism, such as severe serpentinization of peridotite. First, it is necessary to determine how the ophiolites formed and what type of ophiolites they are. Based on the geochemical characteristics of ophiolites, Dilek and Furnes (2011) classified them into non-subduction-related types, including continental margin (CM) (Figure 12a) [121], mid-ocean-ridge (MOR), plume-type (P), and subduction-related, including supra-subduction zone (SSZ) (Figure 12b) and volcanic arc (VA) (Figure 12c) [7,121], and proposed evolutionary models and simple columnar profiles of ophiolites. The continental margin-type ophiolites were formed in a passive extensional environment of the lithosphere during the expansion stage of the newly formed ocean, such as the current Red Sea and Atlantic margins [122]. Mid-ocean ridge-type ophiolites were formed on mid-ocean ridges either near or far from mantle plumes, mid-ocean ridges near trenches, or back-arc spreading ridges far from trenches [5]. Plume-type ophiolites were formed on the spreading ridge near a mantle plume. Supra-subduction zone-type ophiolites in the subduction zone were formed by the extension of the upper plate after the initial subduction and subsequent rapid retreating [123,124]. Magmas produced MORB-like units and were strongly influenced by processes of plate dehydration and metasomatism, such as the trench–arc–basin system in the west Pacific Ocean margins of the Mesozoic. Volcanic arc-type ophiolites were formed in a simatic arc setting [121]. With the continuous subduction and infiltration of arc magma, the hydrated basic crust partially melted to form tonalite magma, and the relict basic crust transformed into peridotite restite. According to the geochemical characteristics of ophiolites and basement rocks [14,25], ophiolites in the Sabah area do not fall into either the mid-ocean ridge or plume types. From the analysis of rock sequence assemblages, the ophiolites in Northwest and Central Sabah resemble the continental margin type, while those in Southeast Sabah are of the supra-subduction zone type, indicating that the ophiolites may have formed in an extensional environment. Moreover, the emplacement patterns of ophiolites can be roughly divided into fore-arc ophiolites that are easy to emplace, back-arc ophiolites that are difficult to emplace, and mid-ocean ridge ophiolites that are almost impossible to emplace (Figure 12d) [2]. From the perspective of geotectonic settings, the Mesozoic Southeast Asian region was mainly dominated by the subduction zones of the Paleo-Tethys Ocean and the Paleo-Pacific, while the ophiolites in the Sabah area are easily emplaced fore-arc ophiolites.
The zircon U-Pb ages indicate that the ultrabasic rocks in the ophiolites formed during the Early Triassic. Wang et al. (2023), using whole-rock 40Ar/39Ar dating for basalts, determined the formation time to be Early Jurassic [14]. The tectonic evolution of Southeast Asia during the Early Triassic was marked by intense subduction of the Paleo-Tethys Ocean plate. The Late Permian–Early Triassic granite and diabase of Hainan Island are products of the subduction and retreating of the Paleo-Pacific plate. Such products are formed in a tectonic environment where the continental island arc transitions from compression to extension and is influenced by the subducting plate of the Paleo-Tethys Ocean, resulting in the retreating of the Paleo-Pacific plate [112]. The geochemical data of the basic rocks in the ophiolites indicate that the magmatic source was influenced by plate subduction. Zircon Lu-Hf isotopes suggest the addition of ancient materials, while the Sr-Nd-Pb isotope data tend toward the conclusion of Tethys Ocean subduction. Therefore, in the Early Triassic, the Paleo-Tethys Ocean plate subducted, and the Paleo-Pacific plate started, forming a relatively small extensional environment near South China or Sundaland, resulting in ophiolites being formed by the upwelling and emplacement of mantle materials (Figure 13a). During the Middle to Late Triassic, the Paleo-Tethys Ocean plate closed, and the subduction of the Paleo-Pacific plate began. The Middle to Late Triassic volcanic island arc granites were developed in South China, Hainan Island [125], Vietnam [126], Malaya, West Borneo [36,41], and Southeast Sabah [25]. From the Jurassic to the Early Cretaceous, the Paleo-Pacific plate was subducted strongly, and volcanic island arc granites were developed in Guangdong, Hainan, the Pearl River Mouth Basin, and the Dangerous Grounds. At that time, ophiolites in the Sabah area, as fore-arc ophiolites, may have been emplaced on the continental crust basement (Figure 13b). In the Late Cretaceous, the age characteristics of detrital zircons in the Cs and Sp sandstone formations resembled those in northeastern Vietnam and the continental margin of South China [94]. The discrimination diagram for the tectonic setting of detrital zircons shows that Cs and Sp were likely deposited in a collision environment (Figure 14). The Cretaceous–Eocene sedimentary rocks of the Dangerous Grounds and Palawan Island mainly originate from the continental margin of South China [127,128,129,130,131]. Therefore, it is speculated that the Cs and Sp formations of the ophiolites originated from the South China or Indochina blocks, indicating that Sabah and Palawan may have been located on the margin of the Dangerous Grounds or Sundaland in the early stage of the Late Cretaceous.
In the late stage of the Late Cretaceous, the Paleo-Pacific plate subducted and retreated, and the South China Sea changed from a compression environment to an expansion environment [132]. Next, the Proto-South China Sea crust formed and expanded, while the Sabah and Palawan ophiolites split and drifted southward from the margin of the Dangerous Grounds or Sundaland (Figure 13c). The Semitau block in West Borneo was located on the margin of the Sundaland during the Jurassic–Early Cretaceous period; then, along with the expansion of the Proto-South China Sea during the late stage of the Late Cretaceous to Early Eocene, it split from the margin of the Sundaland and sutured with West Borneo [10,11]. In the Oligocene, the South China Sea ocean basin expanded, the Dangerous Grounds plate split from the northern part of the South China Sea, and Borneo underwent counterclockwise rotation under the influence of the Australian Plate in the south [38], further accelerating the suturing of the Sabah and Palawan ophiolites with East Borneo (Figure 13d). In the Miocene, Sabah had already sutured with East Borneo, and the Dangerous Grounds plate collided with Borneo, causing an uplift (the Sabah orogeny) between Sabah and South Palawan, in turn leading to ophiolite exposure (Figure 13e).
Figure 14. Detrital zircon discrimination diagram (Cawood et al., 2012) [133]. A, convergent settings; B, collisional settings; C, extensional settings. CA, crystallization age; DA, deposition age. The KDS-Cs-a and BLR-Cs-a detrital zircon age data from Tian et al. (2021) [94].
Figure 14. Detrital zircon discrimination diagram (Cawood et al., 2012) [133]. A, convergent settings; B, collisional settings; C, extensional settings. CA, crystallization age; DA, deposition age. The KDS-Cs-a and BLR-Cs-a detrital zircon age data from Tian et al. (2021) [94].
Minerals 14 01078 g014

6. Conclusions

The zircon U-Pb ages of ultrabasic and basic rocks in ophiolites in the Sabah area ranged from 248 to 244 Ma, indicating the presence of ophiolites in the Early Triassic. The geochemical characteristics of the basic rocks in the Central Sabah ophiolite are N-MORB-like, while those in Northwest and Southeast Sabah are E-MORB-like. The magmatic source is influenced by the melting of and fluids derived from the Paleo-Tethys subducting plate. The tectonic evolution of Sabah can be traced back to the Early Triassic. At that time, the fast subduction of the Paleo-Tethys Ocean plate and the retreating of the Paleo-Pacific plate resulted in the upwelling of mantle material in relatively small extensional settings, forming the ophiolites. During the Jurassic to Early Cretaceous, the Paleo-Pacific plate was intensely subducted, and ophiolites in the Sabah area intruded into the continental crust of South China or the Sundaland margin as fore-arc ophiolites. During the late stage of the Late Cretaceous to Miocene, ophiolites in the Sabah area, influenced by the expansion of the Proto-South China Sea and South China Sea oceanic crust, drifted southward with microplate fragments and then sutured with East Borneo.

Author Contributions

Writing—original draft preparation, Z.T.; methodology, Y.G.; investigation and resources, P.W.; writing—review and editing, H.T. All authors have read and agreed to the published version of the manuscript.

Funding

This study was supported by the National Science and Technology Major Project (2016ZX05026-004-001), the National Key R&D Program of China (grant No. 2019YFC0605402), and the Major Program of the National Natural Science Foundation of China (grant No. 41790453).

Data Availability Statement

Data is provided in the Appendix A.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. Zircon U-Pb dating results from the Sabah ophiolites.
Table A1. Zircon U-Pb dating results from the Sabah ophiolites.
SampleSpotTh
(ppm)
U
(ppm)
Th/UIsotopeAge (Ma)
207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
KDS-KET-a1246.89383.360.640.056100.005430.292620.027940.037830.00125455.8201.8260.622239.47.8
2168.73235.520.720.052840.004440.295930.02470.040610.00124322.1179.9263.219.4256.67.7
368.28175.880.390.060220.006350.324730.033710.039110.00135611.3212.7285.525.8247.38.4
4135.86233.650.580.058090.005680.315290.030430.039360.0013532.8201.3278.323.5248.98.1
5408.6620.230.660.051770.007220.277880.038160.038920.0015275.3291.524930.3246.29.3
690.0493.410.960.061730.005840.602560.056390.070790.00232664.7190.5478.935.7440.914
767.0984.280.80.075230.004560.770540.046750.074280.002141074.6117.1580.126.8461.912.8
8202.85876.150.230.056910.002150.302390.0120.038530.00098487.582268.39.4243.76.1
9157.59633.210.250.052730.002040.292800.01190.040270.0010331785.9260.89.3254.56.4
10225.011262.520.180.053380.00160.292510.009570.039740.00099344.966.4260.57.5251.26.1
11277.541372.30.20.051680.001480.275640.008710.038680.00096271.264.3247.26.9244.75.9
12167.74163.441.030.119370.003315.225370.160690.317460.008081946.848.71856.826.21777.339.5
13303.83276.511.10.113670.002944.801680.140160.306330.007681859461785.224.51722.637.9
KM-KET-a2135.35 218.19 0.62 0.12281 0.00350 5.52551 0.16151 0.32631 0.00751 199724190525182037
4181.01 1438.31 0.13 0.07501 0.00259 1.78986 0.04838 0.17305 0.00370 106971104218102920
530.75 44.00 0.70 0.05992 0.00862 0.68210 0.09624 0.08255 0.00332 6012405285851120
60.37 52.43 0.01 0.06933 0.00880 1.00111 0.12421 0.10472 0.00419 9091927046364224
7318.59 395.79 0.80 0.07295 0.00375 1.23600 0.06292 0.12288 0.00312 1013638172974718
9211.03 461.44 0.46 0.05409 0.00519 0.28950 0.02674 0.03882 0.00099 375220258212456
10251.03 722.58 0.35 0.06307 0.00373 0.91626 0.05355 0.10536 0.00272 711806602864616
1175.43 421.18 0.18 0.06219 0.00311 0.92333 0.04102 0.10767 0.00245 6811096642265914
12510.68 481.56 1.06 0.19206 0.00858 13.34414 0.60289 0.50391 0.01552 276037270443263167
13153.83 152.93 1.01 0.12159 0.00316 6.02900 0.16288 0.35963 0.00811 198022198024198038
1458.94 40.81 1.44 0.18642 0.00542 14.29690 0.43144 0.55623 0.01358 271123277029285156
15568.60 586.63 0.97 0.06927 0.00391 1.03062 0.05747 0.10792 0.00280 907727192966116
1647.00 544.26 0.09 0.05972 0.00197 0.78527 0.02634 0.09537 0.00214 593375881558713
1755.14 188.75 0.29 0.09362 0.00275 3.46967 0.10451 0.26880 0.00612 150027152024153531
18323.99 317.62 1.02 0.12059 0.00289 6.01793 0.15115 0.36195 0.00801 196520197822199138
1997.83 69.43 1.41 0.07610 0.01266 1.42118 0.23079 0.13546 0.00709 10982468989781940
23240.42 295.53 0.81 0.06202 0.00249 0.88957 0.03581 0.10403 0.00242 675486461963814
2470.84 133.38 0.53 0.16251 0.00417 10.21047 0.27349 0.45570 0.01044 248220245425242146
2575.00 260.27 0.29 0.16509 0.00379 10.96148 0.26623 0.48159 0.01069 250818252023253447
27207.71 282.88 0.73 0.05917 0.00341 0.75843 0.04344 0.09298 0.00233 573815732557314
KM-KET-a28173.49 157.80 1.10 0.14214 0.01000 8.52064 0.54573 0.43477 0.01262 2253125228858232757
29138.72 392.65 0.35 0.07312 0.00234 1.36243 0.04426 0.13516 0.00306 1017328731981717
31205.25 234.84 0.87 0.06189 0.00263 0.86111 0.03664 0.10091 0.00238 670526312062014
32368.24 579.43 0.64 0.05749 0.00216 0.57499 0.02175 0.07254 0.00166 510454611445110
3464.00 405.91 0.16 0.08698 0.00225 2.62470 0.07070 0.21886 0.00486 136023130820127626
35458.55 378.01 1.21 0.22226 0.00571 17.62385 0.47552 0.57516 0.01354 299719296926292955
3628.37 632.51 0.04 0.06031 0.00236 0.75566 0.02447 0.09088 0.00199 615865721456112
388.53 32.56 0.26 0.07185 0.02701 1.21306 0.44661 0.12247 0.01200 98260380720574569
39309.30 389.71 0.79 0.05456 0.00963 0.30761 0.05351 0.04089 0.00121 394367272422588
40111.53 138.25 0.81 0.12041 0.00352 6.03069 0.18153 0.36330 0.00846 196225198026199840
41157.38 218.21 0.72 0.13547 0.00342 7.47967 0.19753 0.40048 0.00904 217021217124217142
42271.39 440.80 0.62 0.07499 0.00343 1.37662 0.06272 0.13315 0.00328 1068538792780619
44125.03 200.95 0.62 0.12523 0.00600 6.29223 0.26014 0.36442 0.00883 203287201736200342
45251.98 486.24 0.52 0.05595 0.00442 0.51700 0.03872 0.06701 0.00167 4511814232641810
471286.37 277.18 4.64 0.20571 0.01259 15.28262 0.94343 0.53889 0.02130 287252283359277989
5216.43 386.96 0.04 0.05915 0.00303 0.67333 0.03077 0.08256 0.00192 5731145231951111
53182.22 1459.25 0.12 0.07338 0.00266 1.73425 0.05030 0.17142 0.00372 102475102119102020
5497.07 400.74 0.24 0.06842 0.00411 1.33706 0.07343 0.14173 0.00345 8811288623285419
5522.34 63.29 0.35 0.08279 0.00446 2.26035 0.12098 0.19805 0.00523 126464120038116528
56230.36 190.84 1.21 0.12758 0.00486 6.29641 0.24237 0.35800 0.00917 206534201834197344
KM-KET-a5793.83 198.01 0.47 0.18268 0.00572 11.73159 0.37801 0.46583 0.01165 267725258330246551
58137.00 176.26 0.78 0.20964 0.01006 15.61993 0.76105 0.54046 0.01796 290339285446278575
59358.90 274.26 1.31 0.11519 0.00324 4.91603 0.14295 0.30958 0.00711 188324180525173935
60214.85 110.25 1.95 0.11853 0.00352 5.39592 0.16504 0.33021 0.00771 193426188426183937
61171.00 215.88 0.79 0.07627 0.00325 2.01255 0.08605 0.19140 0.00468 110248112029112925
6267.08 132.87 0.50 0.05628 0.01311 0.37382 0.08542 0.04818 0.00264 4633803226330316
6329.42 111.60 0.26 0.05880 0.00447 0.71082 0.05339 0.08769 0.00241 5601165453254214
64330.93 778.24 0.43 0.12027 0.00268 5.98053 0.14227 0.36070 0.00792 196019197321198538
66129.97 225.95 0.58 0.11344 0.00333 5.12062 0.15496 0.32742 0.00760 185525184026182637
6770.50 236.12 0.30 0.06307 0.00300 0.81075 0.03852 0.09325 0.00226 711606032257513
68499.37 444.64 1.12 0.06386 0.00458 0.68927 0.04859 0.07829 0.00219 7371025322948613
695.51 1324.97 0.00 0.06165 0.00166 0.87738 0.02458 0.10324 0.00229 662286401363313
BLR-KET-a1544.65 1146.64 0.47 0.16366 0.00482 9.44065 0.28508 0.41832 0.01001 249423238228225345
20.03 0.02 1.30 0.05325 0.00449 0.40399 0.03265 0.05502 0.00132 339194345243458
3196.00 285.43 0.69 0.07713 0.00215 1.84756 0.05287 0.17371 0.00386 112526106319103321
4577.16 700.71 0.82 0.17107 0.00435 10.67251 0.28260 0.45244 0.01034 256820249525240646
567.17 46.62 1.44 0.18305 0.00478 12.14513 0.32942 0.48118 0.01116 268120261625253249
ND-KET-b144.28102.210.43 0.055470.005040.298330.026840.039010.00117431.1 190.8 265.1 21.0 246.7 7.3
232.6661.310.53 0.046830.004910.254480.026530.039420.0011640.2 233.4 230.2 21.5 249.3 7.2
360.0774.830.80 0.047940.006140.259690.03290.039290.0013295.4 278.9 234.4 26.5 248.4 8.2
437.7243.630.86 0.048890.006230.263330.033320.039070.00125142.3 274.6 237.3 26.8 247.1 7.7
543.9577.430.57 0.055970.004920.30310.026390.039280.00117450.8 184.5 268.8 20.6 248.4 7.3
631.2852.30.60 0.052780.005840.285370.031260.039220.00126319.3 233.9 254.9 24.7 248.0 7.8
733.6140.050.84 0.055030.009820.301810.05290.039780.0018413.5 356.2 267.8 41.3 251.5 11.2
826.7256.620.47 0.052220.004920.273080.025550.037930.00113295.1 201.5 245.2 20.4 240.0 7.1
919.6243.690.45 0.055070.006540.294330.034490.038770.00131414.9 245.6 262.0 27.1 245.2 8.2
1035.1679.970.44 0.047990.005250.259220.028080.039180.0012497.8 241.4 234.0 22.6 247.7 7.7
1150.1649.831.01 0.054560.008210.298770.044270.039720.00153394.4 306.1 265.4 34.6 251.1 9.5
1228.9537.750.77 0.056640.015050.305090.079350.039070.00252476.7 500.5 270.4 61.7 247.1 15.6
1330.248.070.63 0.04790.006390.260770.034490.039490.0013293.1 289.9 235.3 27.8 249.7 8.2
1426.5144.220.60 0.054490.006930.285080.035920.037950.00126391.5 262.8 254.7 28.4 240.1 7.8
1538.8671.640.54 0.054340.004950.285230.025670.038080.00117385.0 192.6 254.8 20.3 240.9 7.3
1633.5965.060.52 0.05440.005250.296880.02840.039590.0012387.5 203.4 264.0 22.2 250.3 7.5
1842.2496.020.44 0.050770.003980.260010.020270.037150.00106230.5 171.7 234.7 16.3 235.1 6.6
1918.6227.090.69 0.053460.012710.28650.067170.038870.00193348.3 463.4 255.8 53.0 245.8 12.0
2034.9771.060.49 0.052840.005030.288490.027210.03960.00121321.9 202.8 257.4 21.4 250.4 7.5
2132.6246.990.69 0.054090.008130.286040.042250.038360.00153374.7 306.9 255.4 33.4 242.6 9.5
2251.73117.70.44 0.053280.003760.27640.019420.037630.00106340.5 151.9 247.8 15.5 238.1 6.6
2353.4160.880.88 0.053320.007090.281450.036860.038290.0014342.2 276.0 251.8 29.2 242.2 8.7
2416.5125.650.64 0.050880.009070.271030.047760.038630.00151235.6 366.3 243.5 38.2 244.4 9.4
2516.8332.550.52 0.050330.008380.260260.042740.037510.00149210.1 346.1 234.9 34.4 237.4 9.3
Sp-a336.78106.410.350.172070.0036711.347010.275220.478260.011242577.935.22552.122.62519.749.0
4905.03820.291.100.051110.001880.116210.004420.016490.00040245.782.6111.64.0105.42.5
5149.06179.190.830.061790.001980.747350.025190.087720.00211666.967.3566.714.6542.012.5
6367.88358.741.030.049390.002680.094080.005140.013810.00035166.5122.291.34.888.42.2
7346.16880.450.390.052170.001310.267530.007370.037190.00087293.056.3240.75.9235.45.4
9102.74208.650.490.110370.002354.905180.119020.322300.007561805.538.21803.120.51801.036.8
1089.9895.240.940.079920.002242.066330.062220.187500.004511195.054.41137.720.61107.824.5
11117.03195.550.600.063560.001780.810960.024410.092530.00221727.158.3603.013.7570.513.0
12469.53616.460.760.055330.001760.286970.009630.037610.00090425.469.2256.27.6238.05.6
1459.41505.740.120.113900.002344.947240.117370.314990.007391862.536.61810.420.01765.236.2
16261.27708.970.370.089780.001843.073930.072960.248290.005831420.838.61426.218.21429.630.1
17120.55347.800.350.070810.001671.164920.030730.119300.00283951.947.7784.314.4726.616.3
19175.29329.910.530.106170.002224.527420.109120.309250.007291734.637.81736.020.01737.035.9
20257.34286.230.900.054540.002440.201570.009170.026800.00067393.596.6186.57.8170.54.2
21101.71198.760.510.052630.002110.304250.012560.041920.00104312.988.8269.79.8264.76.4
22295.25404.240.730.052020.002410.096080.004530.013390.00034286.4102.793.24.285.82.1
27193.75960.370.200.061710.001310.935040.022970.109880.00260664.045.0670.312.1672.115.1
28150.79226.460.670.052710.001690.346740.011780.047700.00116316.471.3302.38.9300.47.1
3056.80273.420.210.076850.001711.994650.050570.188220.004491117.343.71113.717.21111.724.4
3182.0474.701.100.064060.002341.080760.041160.122350.00306743.675.5744.020.1744.117.6
32118.11324.420.360.052030.001720.274630.009570.038280.00094286.773.6246.47.6242.15.8
33181.62366.070.500.053620.001940.287600.010860.038900.00096354.979.6256.78.6246.06.0
3484.32229.970.370.101150.002114.054540.098590.290690.006941645.438.21645.219.81645.034.6
3851.43325.340.160.068060.001551.290140.033530.137480.00330870.346.6841.414.9830.418.7
Sp-a39603.63 1311.16 0.46 0.05143 0.00124 0.24550 0.00666 0.03462 0.00083 260.0 54.5 222.9 5.4 219.4 5.2
41126.70 232.29 0.55 0.15006 0.00314 8.63560 0.21170 0.41737 0.01007 2346.6 35.4 2300.3 22.3 2248.5 45.8
43155.26 1048.64 0.15 0.11316 0.00228 4.94386 0.11805 0.31687 0.00759 1850.7 36.0 1809.8 20.2 1774.4 37.2
44170.11 355.76 0.48 0.11514 0.00236 5.21752 0.12627 0.32865 0.00790 1882.0 36.5 1855.5 20.6 1831.9 38.3
45134.58 300.67 0.45 0.06072 0.00185 0.54767 0.01789 0.06542 0.00161 629.3 64.3 443.5 11.7 408.5 9.8
46793.23 890.47 0.89 0.05241 0.00132 0.26765 0.00753 0.03704 0.00090 303.5 56.3 240.8 6.0 234.4 5.6
52120.01 172.95 0.69 0.05624 0.00214 0.33008 0.01308 0.04257 0.00107 461.1 82.9 289.6 10.0 268.7 6.6
53142.72 204.66 0.70 0.10680 0.00228 4.29421 0.10734 0.29165 0.00709 1745.5 38.5 1692.3 20.6 1649.8 35.4
5659.90 731.29 0.08 0.08682 0.00182 2.73121 0.06763 0.22819 0.00554 1356.5 39.9 1337.0 18.4 1325.0 29.1
5953.56 235.97 0.23 0.07610 0.00174 1.77189 0.04669 0.16891 0.00413 1097.6 45.2 1035.2 17.1 1006.1 22.8
61332.25 590.25 0.56 0.05647 0.00137 0.54088 0.01490 0.06949 0.00170 470.0 53.4 439.0 9.8 433.1 10.3
62105.14 1170.37 0.09 0.06891 0.00145 1.25754 0.03123 0.13239 0.00323 896.0 42.7 826.8 14.1 801.5 18.4
63221.04 690.20 0.32 0.06405 0.00146 0.85044 0.02243 0.09633 0.00236 743.2 47.6 624.9 12.3 592.9 13.9
68166.91 301.47 0.55 0.11139 0.00129 4.55493 0.06387 0.29599 0.00389 1822.1 20.9 1741.1 11.7 1671.4 19.4
69208.79 745.91 0.28 0.07821 0.00114 1.94242 0.03196 0.17975 0.00240 1152.3 28.7 1095.8 11.0 1065.6 13.1
72352.93 470.22 0.75 0.08562 0.00102 2.43262 0.03470 0.20563 0.00270 1329.5 22.9 1252.3 10.3 1205.5 14.4
73328.09 2115.46 0.16 0.05508 0.00109 0.33877 0.00714 0.04452 0.00060 415.3 43.5 296.2 5.4 280.8 3.7
7475.01 173.51 0.43 0.07702 0.00151 1.82357 0.03803 0.17135 0.00239 1121.7 38.7 1054.0 13.7 1019.6 13.2
75185.18 406.77 0.46 0.07458 0.00099 1.67879 0.02587 0.16290 0.00215 1057.0 26.9 1000.5 9.8 972.9 11.9
7649.54 358.10 0.14 0.11379 0.00148 4.79205 0.07252 0.30478 0.00408 1860.8 23.3 1783.5 12.7 1715.0 20.2
78506.75 629.94 0.80 0.05602 0.00126 0.37892 0.00889 0.04895 0.00068 452.6 49.0 326.2 6.6 308.1 4.2
80281.93 1042.62 0.27 0.05164 0.00094 0.23761 0.00466 0.03329 0.00045 269.7 41.2 216.5 3.8 211.1 2.8
81307.15 541.57 0.57 0.06255 0.00091 0.81683 0.01339 0.09449 0.00125 693.1 30.6 606.3 7.5 582.1 7.4
82123.66 432.57 0.29 0.07324 0.00113 1.46956 0.02532 0.14520 0.00195 1020.5 31.0 917.9 10.4 874.0 11.0
Table A2. In situ zircon trace, rare earth elements results from the Sabah ophiolites.
Table A2. In situ zircon trace, rare earth elements results from the Sabah ophiolites.
SampleSpotTiYZrNbLaCePrNdSmEuGdTbDyHoErTmYbLuHfTaThU
KDS-KET-a119.81 1438 394683 7.68 15.46 47.65 6.05 32.77 12.95 1.63 39.75 13.45 146.10 49.81 209.73 40.49 364.25 67.57 9590 1.75 341.58 477.33
27.53 901 343068 3.33 0.09 17.36 0.13 1.53 3.38 1.20 16.55 6.62 78.88 29.75 128.18 26.49 246.89 48.98 9376 0.99 195.49 409.51
316.70 647 392878 3.73 5.81 21.69 1.91 11.37 3.60 0.18 11.90 4.26 55.49 21.86 103.17 21.85 214.43 41.54 10508 1.31 67.70 178.31
416.51 2015 375931 2.88 5.79 19.98 2.46 16.32 10.96 0.59 49.81 16.92 196.88 73.70 307.92 58.81 505.62 92.81 7675 0.78 135.62 220.29
58.71 1446 354604 2.78 1.09 12.42 0.29 2.94 6.55 0.52 32.65 10.97 131.34 51.21 216.06 43.48 425.73 75.97 8909 1.15 419.25 655.62
623.61 1095 400240 1.65 0.47 11.52 0.58 3.43 4.51 1.06 20.64 7.48 99.01 37.48 164.69 35.28 340.62 65.40 11083 0.56 128.78 111.17
712.05 1190 386614 1.60 0.26 11.30 0.30 3.65 4.77 1.31 26.49 9.06 110.71 41.41 177.71 36.94 342.80 66.40 10119 0.56 136.32 109.42
86.68 1393 384744 9.96 3.47 14.77 1.92 13.35 8.69 1.25 32.27 11.18 125.80 46.93 202.11 41.19 385.29 72.68 11068 4.29 207.18 877.92
91.54 898 378105 5.71 0.05 3.06 0.06 0.46 2.13 0.17 13.61 5.87 77.42 29.59 134.89 28.98 263.84 50.00 11349 2.83 116.81 640.33
104.17 1093 355362 9.43 0.03 4.19 0.06 0.53 1.83 0.37 15.79 6.58 90.29 35.66 162.30 34.43 326.52 62.91 10665 6.11 224.08 1231.94
111.90 1202 371418 10.43 2.16 11.08 1.16 6.35 3.31 0.35 16.67 7.54 99.25 39.85 175.51 38.29 352.42 66.24 11133 6.79 275.25 1362.67
1214.74 1192 375299 1.24 0.34 17.84 0.78 8.90 11.37 0.98 37.29 11.77 120.92 41.00 162.09 30.82 264.19 47.64 8829 0.50 186.41 185.50
1315.70 1637 379804 1.29 0.34 21.24 1.20 14.30 14.85 1.71 54.76 16.64 172.39 56.51 220.76 40.96 347.28 62.31 8806 0.62 279.10 263.98
ND-KET-b13.61 154 426512 0.20 0.00 5.83 0.02 0.23 0.52 0.22 2.42 0.81 9.86 4.61 25.17 6.44 80.48 20.35 10481 0.10 44.28 102.21
24.21 132 420525 0.13 0.01 5.07 0.01 0.35 0.49 0.32 2.55 0.82 9.29 4.00 21.08 5.77 67.53 17.90 9173 0.08 32.66 61.31
35.01 324 427812 0.11 0.00 7.10 0.06 1.53 1.88 0.92 7.36 2.23 26.75 10.08 49.18 12.34 138.63 33.55 9598 0.06 60.07 74.83
47.24 503 415816 0.19 0.02 8.26 0.07 1.41 3.02 0.87 11.62 3.51 43.69 16.95 79.35 17.24 171.93 36.65 8650 0.10 37.72 43.63
54.04 238 432252 0.14 0.01 5.00 0.04 0.73 1.10 0.44 4.40 1.46 16.91 7.12 37.11 9.58 118.97 30.65 10092 0.07 43.95 77.43
64.56 209 427092 0.19 0.00 5.37 0.04 0.53 0.78 0.41 3.92 1.27 15.68 6.39 31.79 8.36 102.04 24.51 9495 0.11 31.28 52.30
78.27 746 433290 0.23 0.01 9.64 0.09 2.40 4.15 1.56 19.28 5.91 69.52 24.75 114.15 24.20 235.61 46.87 8878 0.10 33.61 40.05
84.32 150 418054 0.23 0.01 6.37 0.01 0.18 0.46 0.25 2.09 0.77 9.97 4.49 23.75 5.95 70.62 16.91 9739 0.10 26.72 56.62
95.12 121 437354 0.11 0.02 4.68 0.01 0.18 0.43 0.20 1.60 0.65 8.93 3.84 18.53 4.86 58.43 13.79 9671 0.06 19.62 43.69
103.45 107 424361 0.18 0.00 4.76 0.02 0.10 0.23 0.14 1.33 0.57 7.25 3.13 16.74 4.76 58.54 14.90 10225 0.10 35.16 79.97
1111.72 1043 423879 0.16 0.01 11.22 0.21 3.04 5.61 1.96 25.25 8.13 94.75 35.15 152.67 31.38 308.49 59.81 8263 0.12 50.16 49.83
128.10 566 432022 0.15 0.00 8.25 0.05 1.15 2.90 0.97 12.21 4.14 48.56 18.59 85.67 18.60 192.23 38.64 9225 0.08 28.95 37.75
135.86 314 420035 0.34 0.03 8.48 0.04 0.49 1.25 0.43 5.73 2.13 24.19 9.58 49.69 11.17 124.14 26.90 9238 0.12 30.20 48.07
146.28 296 422263 0.27 0.00 8.71 0.02 0.19 1.00 0.28 4.75 1.89 21.80 9.56 46.08 10.68 112.65 24.21 9450 0.09 26.51 44.22
154.07 207 420713 0.17 0.02 4.86 0.05 0.72 0.97 0.50 4.27 1.28 14.63 6.57 33.61 8.64 106.88 26.88 10020 0.08 38.86 71.64
164.98 141 421475 0.12 0.00 4.50 0.00 0.24 0.39 0.23 2.39 0.85 10.43 4.42 23.75 6.08 77.24 19.45 9940 0.10 33.59 65.06
184.06 144 431456 0.20 0.01 5.37 0.02 0.20 0.45 0.29 1.84 0.79 10.31 4.38 22.31 6.02 78.12 19.25 10913 0.15 42.24 96.02
199.33 413 427692 0.29 0.00 7.86 0.02 0.55 1.84 0.54 9.61 3.09 36.02 13.79 63.95 13.76 143.85 28.55 8619 0.09 18.62 27.09
203.94 170 412999 0.17 0.00 4.46 0.02 0.39 0.52 0.34 2.26 0.92 11.91 5.22 27.76 7.40 89.97 24.18 10006 0.10 34.97 71.06
2110.12 435 412936 0.24 0.00 7.51 0.08 0.88 2.44 0.81 9.09 3.13 34.95 13.26 64.54 15.64 167.25 37.13 9257 0.09 32.62 46.99
224.16 216 445649 0.21 0.00 6.42 0.01 0.39 0.36 0.22 2.95 1.13 14.69 6.15 34.85 9.44 120.94 31.15 11788 0.13 51.73 117.70
239.84 1010 418010 0.13 0.01 10.58 0.15 3.21 4.72 1.68 21.35 7.21 85.16 34.20 156.96 32.95 322.58 65.02 8243 0.12 53.41 60.88
247.87 415 421963 0.25 0.00 7.20 0.02 0.46 1.37 0.61 8.54 2.74 34.62 14.04 63.59 14.18 145.29 29.66 8416 0.07 16.51 25.65
257.00 374 436179 0.21 0.02 5.93 0.05 0.57 1.44 0.46 7.03 2.38 29.16 11.86 57.91 13.61 146.69 31.28 9857 0.09 16.83 32.55
Sp-a33.12 591 438782 0.79 0.00 4.01 0.05 0.86 1.93 0.78 10.18 4.13 50.29 19.30 87.91 18.55 184.49 37.77 8272 0.31 36.78 106.41
410.07 3059 452050 4.25 4.30 54.31 1.80 11.43 11.06 1.81 58.95 20.66 248.06 94.77 425.97 88.13 839.73 158.17 9886 1.18 905.03 820.29
550.62 1019 466409 1.54 0.14 15.43 0.48 7.41 11.10 1.77 40.43 11.86 114.00 36.06 134.37 24.26 207.21 35.51 8555 0.52 149.06 179.19
66.75 394 460673 1.58 39.50 83.35 6.44 24.64 4.87 1.16 8.71 2.63 29.80 11.90 59.76 14.14 164.16 36.96 8746 0.61 367.88 358.74
73.10 618 432450 1.88 0.57 13.13 0.18 1.24 1.89 0.50 9.73 3.89 47.68 18.86 92.98 21.16 225.49 47.23 10271 1.06 346.16 880.45
95.10 1112 446530 3.53 0.03 6.83 0.03 0.78 2.83 0.41 18.83 7.64 96.38 38.37 173.47 35.03 330.82 60.41 9970 1.56 102.74 208.65
1016.37 821 460972 2.08 0.01 12.07 0.06 1.04 2.79 0.26 15.53 6.01 73.19 28.22 126.73 26.35 248.86 46.85 10260 0.88 89.98 95.24
115.50 363 467612 0.97 0.02 14.65 0.16 2.62 3.69 0.85 12.55 3.66 35.73 11.80 47.95 9.64 90.55 16.44 9823 0.28 117.03 195.55
123.49 1469 473310 3.36 0.19 26.29 0.15 1.74 4.20 1.13 21.16 8.61 114.10 46.36 226.22 51.73 544.37 112.95 9545 0.80 469.53 616.46
144.23 607 453292 0.83 0.01 4.13 0.03 0.74 1.94 0.22 10.89 4.47 51.04 18.69 89.86 21.31 231.00 46.85 11842 0.73 59.41 505.74
169.48 612 434535 3.79 0.02 20.26 0.08 1.26 2.46 0.49 13.43 4.75 53.83 20.13 90.44 19.33 190.22 36.50 9501 1.74 261.27 708.97
1712.86 388 444766 3.20 0.01 7.85 0.04 0.89 1.28 0.45 7.18 2.66 33.36 12.89 60.53 13.36 138.26 28.05 9014 1.26 120.55 347.80
196.18 721 450530 2.15 0.83 14.29 0.32 2.73 2.93 0.36 14.47 5.20 62.55 24.45 109.65 23.02 215.95 42.34 8945 0.86 175.29 329.91
2023.87 1806 426531 0.92 0.32 19.67 0.23 3.26 6.22 1.73 33.38 11.80 142.10 55.78 259.71 55.31 553.53 109.65 8990 0.33 257.34 286.23
219.91 616 450675 0.78 4.28 22.18 1.33 6.86 3.80 0.69 13.85 4.72 52.96 19.82 89.81 18.74 181.15 35.32 9329 0.34 101.71 198.76
224.91 1229 467309 1.04 6.48 28.39 1.78 8.74 5.00 1.33 20.31 7.13 90.45 38.06 193.12 46.19 514.90 116.07 9691 0.38 295.25 404.24
274.30 981 438229 4.32 0.00 7.72 0.05 0.98 2.75 0.06 17.74 7.12 86.85 33.94 152.89 31.37 288.98 52.63 10766 1.89 193.75 960.37
285.46 962 453925 2.68 0.27 19.04 0.15 1.66 2.60 0.92 14.45 5.43 71.08 30.29 152.75 36.31 392.24 86.31 9463 0.79 150.79 226.46
3018.42 1559 450910 0.73 0.03 1.82 0.17 3.30 6.99 0.53 38.79 13.88 156.03 54.03 216.17 41.98 375.97 66.23 10140 0.34 56.80 273.42
3116.93 933 442393 0.59 0.03 11.22 0.12 2.28 4.05 0.91 20.10 6.98 81.72 31.26 137.10 28.81 278.82 54.03 8493 0.25 82.04 74.70
323.91 1033 440481 2.29 0.01 4.57 0.07 1.32 3.08 0.37 19.14 7.06 89.46 35.86 162.23 33.92 319.70 62.10 8077 0.67 118.11 324.42
3317.84 805 443119 2.27 7.58 26.69 3.09 15.05 8.52 0.61 26.26 7.77 80.77 27.84 114.87 23.05 215.27 39.86 9646 0.89 181.62 366.07
344.89 399 445732 2.09 0.00 12.73 0.02 0.45 1.50 0.26 7.99 3.02 35.74 13.21 59.57 12.33 121.47 23.52 10718 1.29 84.32 229.97
386.28 851 437276 0.73 0.00 1.02 0.05 0.96 3.14 0.09 19.32 7.97 88.40 27.96 104.79 19.24 164.24 27.95 11189 0.44 51.43 325.34
Sp-a397.32 745 445854 2.10 17.47 61.12 4.20 17.57 5.68 0.93 17.11 5.63 64.10 23.93 109.20 23.86 235.88 46.84 10559 1.32 603.63 1311.16
415.76 653 458413 1.09 0.05 11.18 0.17 2.53 3.27 1.47 16.55 5.68 63.66 21.17 93.30 19.64 193.10 35.94 10032 0.45 126.70 232.29
436.26 1088 454686 1.56 0.08 3.31 0.18 2.11 4.05 1.54 21.39 8.73 101.98 36.22 156.88 32.43 310.12 59.10 11344 1.30 155.26 1048.64
447.46 690 458818 1.94 4.22 36.69 1.28 7.17 3.99 1.36 15.35 5.06 57.88 21.58 98.88 21.55 218.59 43.54 9258 0.92 170.11 355.76
4515.46 2112 451888 1.76 0.05 5.79 0.31 3.55 6.48 1.72 35.17 15.00 181.08 68.20 301.87 62.08 584.36 106.75 10115 1.04 134.58 300.67
4618.99 2044 447242 5.09 8.30 61.48 3.89 23.90 16.53 5.38 55.28 19.68 200.47 63.97 251.95 49.57 457.16 82.44 9906 1.67 793.23 890.47
5212.25 1015 444900 1.09 0.19 19.28 0.25 3.34 5.29 0.82 22.95 8.08 89.19 33.46 148.89 30.88 301.32 58.76 8223 0.42 120.01 172.95
5322.75 1277 449625 1.46 0.05 5.50 0.25 3.60 6.69 1.09 34.17 11.27 124.84 45.12 189.76 37.10 343.36 63.84 9572 0.68 142.72 204.66
564.83 947 463033 1.72 0.01 11.97 0.03 0.62 1.40 0.43 9.91 5.19 71.51 29.86 143.82 33.54 360.81 69.16 12181 1.29 59.90 731.29
597.96 699 448051 0.67 0.07 2.46 0.07 0.91 2.35 0.41 12.46 5.03 63.44 23.56 108.09 23.09 228.06 43.20 9072 0.29 53.56 235.97
617.08 1189 449210 2.00 0.05 16.65 0.30 3.92 6.74 2.00 27.38 9.33 106.41 38.41 175.58 37.86 386.83 77.09 10000 1.05 332.25 590.25
626.66 1032 460399 21.97 0.04 2.46 0.17 2.13 3.87 1.52 18.38 6.93 79.22 31.97 164.99 44.54 547.79 129.60 12915 39.10 105.14 1170.37
6311.78 821 475169 2.49 0.02 6.48 0.07 1.22 2.65 0.44 13.95 5.52 67.80 25.65 117.25 25.45 249.27 47.52 11543 1.33 221.04 690.20
6824.09 1589 459340 1.62 0.27 9.97 0.76 10.61 16.63 3.31 63.91 19.25 185.81 55.60 202.78 36.83 320.18 53.63 10011 0.80 166.91 301.47
6915.20 1504 467637 2.18 0.42 8.58 1.01 9.30 12.52 5.35 50.11 17.45 174.14 50.72 177.90 31.20 260.88 44.41 11576 1.32 208.79 745.91
7213.77 2357 455776 5.37 0.12 13.31 0.36 5.35 9.61 0.72 50.35 18.24 211.05 78.15 327.80 63.47 574.15 102.73 9269 2.22 352.93 470.22
7311.03 2086 504728 8.25 0.30 12.14 0.15 1.58 4.75 0.99 38.61 16.82 200.51 70.12 298.14 62.74 586.93 103.37 16414 4.64 328.09 2115.45
7414.23 1526 477697 1.17 0.09 2.49 0.13 2.00 4.64 0.41 30.44 11.50 144.08 52.55 224.81 43.70 400.68 69.17 11498 0.60 75.01 173.51
7511.35 598 471667 2.30 3.60 19.78 1.13 5.80 3.43 0.39 13.15 4.59 53.84 20.01 89.63 18.74 178.84 32.76 10639 1.02 185.18 406.77
7614.63 1518 472718 0.67 0.29 1.19 0.13 1.53 3.44 0.23 25.06 11.06 135.39 49.98 216.25 44.41 409.86 75.39 12207 0.36 49.54 358.10
785.98 1397 475165 5.93 0.31 63.56 0.40 4.80 8.32 3.20 36.34 12.68 134.12 45.95 193.05 39.62 384.79 71.51 11021 1.24 506.75 629.94
8010.63 1566 467015 3.14 0.22 4.79 0.18 2.67 5.35 0.18 29.31 11.54 142.68 54.03 239.92 50.63 476.70 85.56 11870 2.55 281.93 1042.62
8132.03 1508 470778 9.50 0.92 38.81 2.36 22.03 23.66 9.35 57.26 18.07 173.42 48.86 182.65 34.42 312.31 52.59 9568 3.72 307.15 541.57
8210.38 638 486158 1.47 0.08 12.47 0.08 0.83 2.80 0.76 17.09 6.13 63.84 20.89 85.27 17.66 174.59 31.56 11977 0.82 123.66 432.57
Table A3. Whole-rock major, trace, rare earth elements results for mafic-ultramafic rocks from the Sabah ophiolites.
Table A3. Whole-rock major, trace, rare earth elements results for mafic-ultramafic rocks from the Sabah ophiolites.
SampleSiO2Al2O3Fe2O3FeOCaOMgOK2ONa2OTiO2P2O5MnOLOITotalLiBeScVCr
KM-KET-1basalt54.7116.362.532.369.674.480.383.550.870.070.104.7999.8724.430.5917.17184.20215.10
KM-KET-250.3116.833.482.2811.705.330.162.970.920.080.115.4699.8923.230.6926.63161.81226.24
KM-KET-350.3916.823.672.1111.685.300.162.960.920.080.115.4599.8922.840.6528.21154.64202.46
KM-KET-449.8414.613.194.898.377.750.424.551.320.120.174.0699.8538.800.3838.06227.75315.75
KDS-KET-1serpentinized peridotite41.420.686.641.360.0336.640.000.060.000.010.1013.09100.020.690.009.161.992182.00
KDS-KET-241.301.025.452.240.0736.550.000.000.000.000.0812.5199.475.280.1811.5668.122937.05
KDS-KET-340.730.725.791.770.0737.190.000.000.000.000.0813.0199.551.910.0310.2047.011997.71
BLR-CS-1basalt57.5413.582.734.178.235.420.013.660.890.070.143.3999.833.670.353.38274.50215.10
BLR-CS-251.0614.403.485.4810.007.100.153.601.330.110.202.8199.7118.820.505.11297.60300.60
BLR-CS-351.4514.893.205.009.476.260.024.561.320.080.173.4799.8811.950.444.83314.40146.30
BLR-CS-451.5714.744.554.688.866.010.764.431.250.110.411.9899.8711.530.4538.28259.17238.26
BLR-KET-1serpentinized peridotite45.290.896.681.270.0832.050.000.060.000.010.0913.59100.031.330.023.5016.832645.00
BLR-KET-243.501.005.991.850.1833.930.000.000.000.000.0912.7799.5110.690.1010.4054.652444.59
BLR-KET-347.340.686.231.230.1231.270.010.030.000.000.0812.3399.444.140.058.4064.343209.56
SampleCoNiCuZnGaRbSrYZrNbMoCdCsBaLaCePrNd
KM-KET-1basalt23.53 89.33 51.06 50.59 16.25 7.70 119.00 14.44 91.70 4.40 0.51 0.76 0.13 16.07 4.52 10.58 1.51 6.94
KM-KET-230.47 117.20 39.16 59.16 18.41 12.60 85.83 16.30 95.74 4.72 0.37 0.13 0.37 17.85 5.96 13.34 1.54 7.30
KM-KET-329.37 102.25 34.41 50.03 17.34 7.84 80.51 15.32 96.93 4.58 0.39 0.12 0.39 18.75 5.69 12.91 1.51 7.22
KM-KET-440.80 118.56 60.41 65.54 11.20 6.15 169.83 29.53 92.89 1.82 0.71 0.10 0.98 40.80 3.42 10.71 1.55 8.85
KDS-KET-1serpentinized peridotite74.24 1749.00 7.13 46.22 0.93 0.37 2.78 0.22 0.43 0.05 0.25 0.02 0.02 2.67 0.15 1.10 0.04 0.13
KDS-KET-269.34 1072.86 13.61 38.10 1.62 10.24 7.11 1.87 49.41 0.90 0.77 0.19 0.85 14.40 1.72 3.15 0.33 1.24
KDS-KET-372.20 1297.77 9.74 38.78 1.05 3.83 4.32 0.99 45.79 0.30 0.28 0.02 0.43 6.19 0.82 1.50 0.17 0.65
BLR-CS-1basalt29.56 80.86 50.00 63.35 16.05 1.31 66.12 13.36 65.56 1.04 0.64 0.56 0.03 5.88 1.61 5.51 0.98 5.32
BLR-CS-238.65 80.19 48.89 74.57 18.67 5.16 124.60 21.00 96.40 1.72 0.49 0.99 0.14 10.18 2.76 9.32 1.61 8.69
BLR-CS-334.82 53.90 60.44 75.95 18.56 1.41 114.30 19.65 91.75 1.45 0.54 0.91 0.04 11.42 1.99 6.95 1.25 6.85
BLR-CS-442.71 61.15 56.39 205.79 15.90 18.32 143.14 29.14 93.83 1.60 0.37 0.09 0.68 25.30 3.73 11.44 1.54 8.61
BLR-KET-1serpentinized peridotite64.79 1680.00 13.77 53.06 0.98 0.42 1.25 0.26 0.64 0.07 0.13 0.02 0.04 1.56 0.12 0.29 0.04 0.12
BLR-KET-265.41 1216.93 13.46 44.09 1.73 1.66 6.10 0.75 2.44 0.33 0.13 0.02 0.06 23.26 0.68 1.49 0.16 0.60
BLR-KET-383.88 1431.07 7.30 153.51 1.21 1.58 6.50 0.66 42.45 0.36 0.15 0.02 0.48 13.26 0.93 1.77 0.20 0.77
SampleSmEuGdTbDyHoErTmYbLuHfTaWTlPbBiThU
KM-KET-1basalt2.12 0.87 2.67 0.50 3.15 0.70 2.00 0.32 1.91 0.32 3.51 1.42 0.28 0.17 1.50 0.05 0.52 0.17
KM-KET-21.87 0.70 2.03 0.45 2.77 0.54 1.57 0.26 1.70 0.25 3.02 0.73 0.63 0.06 3.14 0.01 0.74 0.18
KM-KET-31.83 0.69 2.02 0.44 2.70 0.53 1.52 0.26 1.68 0.24 2.97 2.86 0.48 0.05 3.20 0.01 0.64 0.19
KM-KET-42.85 1.02 3.24 0.77 4.86 0.94 2.75 0.45 2.96 0.41 3.09 1.02 0.50 0.07 2.41 0.02 0.22 0.12
KDS-KET-1serpentinized peridotite0.03 0.01 0.04 0.01 0.04 0.01 0.03 0.01 0.05 0.01 0.02 0.03 0.05 0.09 0.25 0.00 0.22 0.05
KDS-KET-20.22 0.03 0.20 0.04 0.22 0.04 0.14 0.04 0.18 0.03 1.18 0.29 0.52 0.09 2.18 0.02 1.49 0.26
KDS-KET-30.11 0.02 0.10 0.02 0.12 0.02 0.08 0.04 0.12 0.02 1.11 1.00 0.76 0.05 4.89 0.03 0.51 0.10
BLR-CS-1basalt1.92 0.76 2.74 0.53 3.61 0.84 2.50 0.40 2.43 0.39 2.75 0.86 0.22 0.15 0.79 0.03 0.08 0.46
BLR-CS-23.06 1.16 4.08 0.78 5.25 1.16 3.36 0.51 3.16 0.48 3.64 0.61 0.22 0.13 0.84 0.02 0.12 0.13
BLR-CS-32.61 1.09 3.66 0.72 4.63 1.07 3.12 0.48 3.00 0.47 3.63 0.27 0.15 0.15 0.76 0.02 0.07 0.14
BLR-CS-42.76 1.00 3.21 0.75 4.82 0.97 2.80 0.45 3.03 0.44 3.07 1.06 0.87 0.08 2.39 0.01 0.29 0.17
BLR-KET-1serpentinized peridotite0.05 0.02 0.04 0.02 0.06 0.03 0.05 0.02 0.07 0.02 0.03 0.13 0.09 0.12 0.25 0.02 0.08 0.03
BLR-KET-20.11 0.03 0.11 0.02 0.12 0.02 0.07 0.03 0.09 0.01 0.08 0.69 0.74 0.05 2.93 0.19 0.16 0.04
BLR-KET-30.12 0.03 0.11 0.02 0.10 0.02 0.07 0.03 0.09 0.02 1.01 0.89 1.11 0.04 2.82 0.01 0.31 0.09
SampleSiO2Al2O3Fe2O3FeOCaOMgOK2ONa2OTiO2P2O5MnOLOITotalLiBeScVCr
BLR-KET-4gabbro50.53 14.55 2.85 5.98 7.78 8.38 0.70 3.87 1.14 0.04 0.19 3.90 99.92 6.72 0.26 37.24 292.20 158.50
BLR-KET-548.93 14.85 3.08 6.13 8.81 8.66 0.65 3.46 1.02 0.08 0.27 3.28 99.89 9.46 0.35 36.23 252.27 202.92
BLR-KET-653.86 14.72 2.71 4.71 8.33 5.93 0.14 5.49 1.39 0.10 0.14 2.31 99.85 3.09 0.48 1.62 269.60 228.10
BLR-KET-750.02 15.72 2.06 5.62 9.77 9.10 0.04 3.63 0.86 0.07 0.17 2.17 99.86 8.07 0.30 32.96 199.54 401.10
BLR-KET-852.33 15.40 3.49 6.62 3.70 6.23 0.38 6.11 1.39 0.05 0.41 3.04 99.89 45.62 0.53 31.92 279.61 50.59
ND-KET-1serpentinized peridotite45.84 0.41 8.92 0.82 0.02 31.33 0.00 0.06 0.01 0.01 0.12 12.05 99.59 0.20 0.02 3.51 5.08 1871.00
ND-KET-245.74 0.35 9.42 0.32 0.06 30.39 0.00 0.06 0.01 0.01 0.12 13.22 99.69 0.15 0.01 2.05 1.54 1387.00
ND-KET-342.27 1.65 3.21 3.85 1.37 36.86 0.00 0.12 0.01 0.01 0.11 10.24 99.70 0.09 0.05 3.57 32.20 2488.00
ND-KET-440.88 1.81 3.27 3.58 2.11 37.40 0.00 0.05 0.02 0.00 0.11 9.84 99.48 3.73 0.08 14.92 60.21 2710.83
ND-KET-5basalt58.94 16.48 1.90 3.71 3.59 4.94 0.96 5.06 0.75 0.03 0.13 3.34 99.84 5.61 1.15 6.38 147.40 132.50
ND-KET-650.64 16.88 2.75 5.42 7.50 6.93 0.28 4.65 0.74 0.10 0.18 3.68 99.74 4.76 0.49 5.74 298.30 85.83
ND-KET-759.83 15.96 3.05 3.85 6.47 3.12 2.19 2.50 0.67 0.09 0.18 1.83 99.76 8.36 0.95 9.89 236.40 24.65
ND-KET-855.00 16.80 3.72 5.25 3.49 5.07 1.29 2.87 1.10 0.11 0.18 4.93 99.82 10.20 0.60 12.62 354.10 17.17
SampleCoNiCuZnGaRbSrYZrNbMoCdCsBaLaCePrNd
BLR-KET-4gabbro38.73 64.15 74.68 82.15 15.19 4.59 118.90 18.78 55.09 0.75 0.62 0.59 0.05 14.68 1.32 4.47 0.79 4.49
BLR-KET-544.78 75.25 73.70 103.73 15.44 10.79 108.76 24.85 74.51 1.10 0.36 0.06 0.45 20.46 2.79 8.33 1.15 6.47
BLR-KET-630.14 61.87 49.87 61.59 13.97 6.07 159.50 14.83 97.45 2.12 0.41 0.87 0.31 20.27 2.63 9.25 1.47 7.86
BLR-KET-742.72 155.78 8.53 54.46 14.41 1.95 134.93 22.29 80.16 1.01 0.30 0.08 0.57 16.18 2.83 7.88 1.12 6.28
BLR-KET-831.19 34.25 36.05 131.87 14.87 9.15 91.68 26.55 85.99 1.55 0.57 0.05 2.72 51.07 3.05 9.37 1.59 8.22
ND-KET-1serpentinized peridotite106.50 2271.00 4.22 80.32 0.78 0.34 1.53 0.39 0.71 0.19 0.12 0.00 0.03 2.86 0.40 0.12 0.07 0.26
ND-KET-2102.50 2094.00 3.60 55.58 0.64 0.64 3.45 0.26 0.37 0.14 0.15 0.00 0.02 2.84 0.22 0.51 0.05 0.16
ND-KET-398.02 1812.00 4.51 50.51 1.53 0.81 4.05 0.61 0.92 0.30 0.28 0.03 0.04 1.91 0.20 0.49 0.07 0.23
ND-KET-476.94 1282.56 3.17 78.71 2.36 1.38 11.06 1.86 49.92 0.51 0.14 0.02 0.61 6.40 1.19 2.46 0.28 1.12
ND-KET-5basalt18.73 88.14 18.03 67.40 14.15 16.57 310.80 16.43 124.00 2.58 0.40 0.94 0.33 118.40 8.35 21.98 2.89 12.59
ND-KET-637.38 56.35 91.98 127.90 14.26 5.00 705.50 10.66 61.39 1.37 0.35 0.72 0.38 107.20 7.09 17.86 2.47 11.16
ND-KET-720.46 11.93 47.69 76.85 17.55 33.12 224.30 18.35 116.10 3.42 1.76 1.09 7.55 202.30 10.92 27.22 3.29 13.62
ND-KET-821.48 12.51 10.63 116.40 15.97 29.46 235.80 24.38 102.30 2.19 0.33 0.95 0.51 102.00 11.55 28.90 3.86 18.12
SampleSmEuGdTbDyHoErTmYbLuHfTaWTlPbBiThU
BLR-KET-4gabbro1.77 0.89 2.75 0.56 3.79 0.84 2.46 0.36 2.34 0.34 2.30 0.10 0.08 0.11 0.86 0.01 0.09 0.05
BLR-KET-52.17 0.81 2.63 0.63 4.02 0.82 2.36 0.39 2.58 0.36 2.54 0.89 0.82 0.06 3.89 0.01 0.35 0.13
BLR-KET-62.65 1.02 3.59 0.68 4.52 0.99 2.86 0.43 2.71 0.42 3.65 0.37 0.15 0.15 0.80 0.02 0.10 0.12
BLR-KET-72.04 0.78 2.42 0.56 3.65 0.72 2.11 0.35 2.26 0.34 2.67 5.27 0.65 0.05 3.67 0.01 0.42 0.12
BLR-KET-82.30 0.93 2.67 0.66 4.43 0.87 2.59 0.44 3.04 0.44 2.99 1.35 0.76 0.10 4.46 0.01 0.31 0.12
ND-KET-1serpentinized peridotite0.05 0.03 0.05 0.02 0.05 0.02 0.05 0.02 0.06 0.02 0.03 0.33 0.18 0.13 0.18 0.02 0.03 0.02
ND-KET-20.04 0.02 0.05 0.02 0.04 0.02 0.04 0.01 0.05 0.02 0.02 0.31 0.27 0.13 0.21 0.02 0.07 0.03
ND-KET-30.07 0.05 0.09 0.02 0.11 0.04 0.10 0.03 0.12 0.03 0.04 0.47 0.18 0.13 0.46 0.02 0.03 0.02
ND-KET-40.21 0.07 0.21 0.04 0.28 0.05 0.21 0.05 0.21 0.03 1.23 0.81 0.65 0.04 6.53 0.00 0.33 0.10
ND-KET-5basalt3.16 1.13 3.49 0.57 3.36 0.71 2.08 0.32 1.96 0.33 4.78 0.31 0.32 0.24 4.29 0.04 2.33 0.99
ND-KET-62.76 1.04 2.97 0.49 2.95 0.64 1.77 0.29 1.72 0.26 2.32 0.22 0.20 0.17 3.65 0.03 0.41 0.49
ND-KET-73.35 1.02 3.74 0.64 4.03 0.91 2.65 0.42 2.67 0.43 4.86 0.41 1.18 0.69 9.62 0.12 6.19 1.96
ND-KET-84.72 1.67 5.05 0.82 5.11 1.08 3.13 0.47 2.98 0.47 3.92 0.22 0.22 0.36 3.25 0.04 1.10 1.00
Table A4. Sr-Nd-Pb isotopic results for mafic-ultramafic rocks from the Sabah ophiolites.
Table A4. Sr-Nd-Pb isotopic results for mafic-ultramafic rocks from the Sabah ophiolites.
SampleAge
(Ma)
Rb
(ppm)
Sr
(ppm)
87Rb/86Sr87Sr/86SrSm
(ppm)
Nd
(ppm)
147Sm/144Nd143Nd/144NdISrεSr(0)εSr(t)INdTDM
(Ma)
T2DM
(Ma)
εNd(0)εNd(t)
KM-KET-2basalt24812.6085.830.42500.704811.877.300.15500.512970.703314.4−12.80.512714813916.407.72
KM-KET-32487.8480.510.28200.704811.837.220.15360.512760.703824.4−5.50.5125110047232.283.66
BLR-KET-5gabbro24810.79134.930.23150.704702.046.280.19640.513090.703882.8−4.70.512775823088.728.73
BLR-KET-62486.0791.680.19170.707582.308.220.16930.512790.7069143.838.40.5125112487122.913.77
SampleAge
(Ma)
U
(ppm)
Th
(ppm)
Pb
(ppm)
206Pb/204Pb207Pb/204Pb208Pb/204Pb206Pb/207Pb△α△β△γ(206Pb/204Pb)i(207Pb/204Pb)i(208Pb/204Pb)i
KM-KET-2basalt2480.180.743.1418.429515.527938.23621.186980.9613.731.1418.28415.52038.045
KM-KET-32480.190.643.2018.442215.527238.24111.187781.7113.6631.2718.29615.52038.079
BLR-KET-5gabbro2480.130.353.8918.371315.636838.50601.174977.5520.8138.4118.28515.63238.434
BLR-KET-62480.120.100.8016.587615.421336.30261.0756−27.076.74−21.0116.24415.40436.207
SampleAge
(Ma)
Sm
(ppm)
Nd
(ppm)
147Sm/144Nd143Nd/144NdINdTDM
(Ma)
T2DM
(Ma)
εNd(0)εNd(t)
BLR-KET-4gabbro2482.17 6.47 0.20260.513040.5127214533887.947.75
KDS-KET-2serpentinized peridotite2480.22 1.24 0.10650.512030.5118515951757−11.92−9.07
KDS-KET-32480.11 0.65 0.10370.511970.5118016311838−13.00−10.07
BLR-KET-22480.11 0.60 0.10660.511610.5114321922424−20.15−17.31
BLR-KET-32480.12 0.77 0.09470.511610.5114619622379−19.98−16.76
ND-KET-42480.21 1.12 0.11310.512480.5123010121051−3.02−0.38
Table A5. In situ zircon Lu-Hf isotopic results for mafic rocks from the Sabah ophiolites.
Table A5. In situ zircon Lu-Hf isotopic results for mafic rocks from the Sabah ophiolites.
SampleAge
(Ma)
176Hf/177Hf176Lu/177Hf176Yb/177HfεHf
Present
176/177Hf (t)
CHUR
176Hf/177Hf (t)εHf (t)εHf (t)
Error
TDM
(Ma)
TDMC
(Ma)
fs
KDS-KET-a2256.60.282331 0.001321 0.037192 −15.6 0.28 0.282324 −10.2 1.02 1312 1929 −0.96
3247.30.282433 0.001333 0.038162 −12.0 0.28 0.282427 −6.8 0.76 1168 1706 −0.96
4248.90.282940 0.001810 0.055852 6.0 0.28 0.282932 11.1 1.05 451 566 −0.95
5246.20.282427 0.001431 0.042237 −12.2 0.28 0.282420 −7.0 0.75 1180 1721 −0.96
6440.90.282369 0.001797 0.053277 −14.3 0.28 0.282354 −5.1 0.73 1275 1745 −0.95
7461.90.282361 0.001089 0.030245 −14.5 0.28 0.282351 −4.7 0.83 1262 1737 −0.97
8243.70.282374 0.000995 0.030416 −14.1 0.28 0.282370 −8.9 0.55 1240 1836 −0.97
9254.50.282388 0.000827 0.024901 −13.6 0.28 0.282384 −8.1 0.62 1215 1797 −0.98
10251.20.282449 0.001085 0.032591 −11.4 0.28 0.282444 −6.1 1.23 1138 1665 −0.97
11244.70.282364 0.001133 0.033215 −14.4 0.28 0.282358 −9.3 0.71 1259 1860 −0.97
121777.30.281595 0.001290 0.040643 −41.6 0.28 0.281552 −3.6 1.04 2337 2665 −0.96
131722.60.281465 0.000631 0.019943 −46.2 0.28 0.281445 −8.6 1.05 2473 2933 −0.98

References

  1. Colman, R.G. The diversity of ophiolites. Geol. Mijnb. 1984, 63, 144–150. [Google Scholar]
  2. Stern, R.J. Subduction initiation: Spontaneous and induced. Earth Planet. Sci. Lett. 2004, 226, 275–292. [Google Scholar] [CrossRef]
  3. Pearce, J.A. Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics 1975, 25, 41–67. [Google Scholar] [CrossRef]
  4. Moores, E.M. Origin and Emplacement of Ophiolites. Rev. Geophys. 1982, 20, 735–760. [Google Scholar] [CrossRef]
  5. Dilek, Y. Ophiolites in Earth history: Introduction. Geol. Soc. Lond. Spec. Publ. 2003, 218, 9–19. [Google Scholar] [CrossRef]
  6. Sanità, E.; Di Rosa, M.; Marroni, M.; Meneghini, F.; Pandolfi, L. Insights into the Subduction of the Ligure-Piemontese Oceanic Basin: New Constraints from the Metamorphism in the Internal Ligurian Units (Northern Apennines, Italy). Minerals 2024, 14, 64. [Google Scholar] [CrossRef]
  7. Barbero, E.; Di Rosa, M.; Pandolfi, L.; Delavari, M.; Dolati, A.; Zaccarini, F.; Saccani, E.; Marroni, M. Deformation history and processes during accretion of seamounts in subduction zones: The example of the Durkan Complex (Makran, SE Iran). Geosci. Front. 2023, 14, 101522. [Google Scholar] [CrossRef]
  8. Hutchison, C.S. Geological Evolution of Southeast Asia; Oxford University Press: Londen, UK, 1989. [Google Scholar]
  9. Hall, R. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 2012; 570–571, 1–41. [Google Scholar] [CrossRef]
  10. Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 2013, 66, 1–33. [Google Scholar] [CrossRef]
  11. Zahirovic, S.; Seton, M.; Müller, R.D. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid. Earth 2014, 5, 227–273. [Google Scholar] [CrossRef]
  12. Müller, R.D.; Cannon, J.; Qin, X.; Watson, R.J.; Gurnis, M.; Williams, S.; Pfaffelmoser, T.; Seton, M.; Russell, S.H.J.; Zahirovic, S. GPlates: Building a Virtual Earth Through Deep Time. Geochem. Geophys. Geosyst. 2018, 19, 2243–2261. [Google Scholar] [CrossRef]
  13. Pubellier, M.; Monnier, C.; Maury, R.; Tamayo, R. Plate kinematics, origin and tectonic emplacement of supra-subduction ophiolites in SE Asia. Tectonophysics 2004, 392, 9–36. [Google Scholar] [CrossRef]
  14. Wang, Y.J.; Qian, X.; Asis, J.B.; Cawood, P.A.; Wu, S.N.; Zhang, Y.Z.; Feng, Q.L.; Lu, X.H. “Where, when and why” for the arc-trench gap from Mesozoic Paleo-Pacific subduction zone: Sabah Triassic-Cretaceous igneous records in East Borneo. Gondwana Res. 2023, 117, 117–138. [Google Scholar] [CrossRef]
  15. William, P.R.; Johnston, C.R.; Almond, R.A. Late Cretaceous to Early Tertiary structural elements of West Kalimantan. Tectonophysics 1988, 148, 279–297. [Google Scholar] [CrossRef]
  16. Wang, Y.J.; Qian, X.; Cawood, P.A.; Ghani, A.; Gan, C.S.; Wu, S.N.; Zhang, Y.Z.; Wang, Y.; Zhang, P.Z. Cretaceous Tethyan subduction in SE Borneo: Geochronological and geochemical constraints from the igneous rocks in the Meratus Complex. J. Asian Earth Sci. 2022, 226, 105084. [Google Scholar] [CrossRef]
  17. Leong, K.M. The Geology and Mineral Resources of the Upper Segama Valley and Darvel Bay Area, Sabah, Malaysia. Geological Survey Department. British Territories in Borneo (Malaysia); US Government Printing Office: Washington, DC, USA, 1974; p. 354. [Google Scholar]
  18. Graves, J.E.; Hutchison, C.S.; Bergman, S.C.; Swauger, D.A. Age and MORB geochemistry of the Sabah ophiolite basement. Bull. Geol. Soc. Malays. 2000, 44, 151–158. [Google Scholar] [CrossRef]
  19. Wang, Y.J.; Wu, S.N.; Qian, X.; Asis, J.B.; Wang, Y.; Zhang, Y.Z.; Feng, Q.L.; Wang, W.T.; Zhang, P.Z. Early Triassic-Late Cretaceous Paleo-Pacific subduction zone along the East Asia continental margin: Fore-arc igneous records in Sabah of NE Borneo. Chin. Sci. Bull. 2023, 68, 954–971. [Google Scholar] [CrossRef]
  20. Hutchison, C.S. Stratigraphic-tectonic model for Eastern Borneo. Bull. Geol. Soc. Malays. 1988, 22, 135–152. [Google Scholar] [CrossRef]
  21. Tjia, H.D. Accretion tectonics in Sabah: Kinabalu suture and East Sabah accreted terrane. Bull. Geol. Soc. Malays. 1988, 22, 237–251. [Google Scholar] [CrossRef]
  22. Rangin, C.; Bellon, H.; Bernard, F.; Letouzey, J.; Müller, C.; Sanudin, T. Neogene arc-continent collision in Sabah, Northern Borneo (Malaysia). Tectonophysics 1990, 183, 305–319. [Google Scholar] [CrossRef]
  23. Tongkul, F. Structural styles and tectonics of western and northern Sabah. Bull. Geol. Soc. Malays. 1990, 27, 227–240. [Google Scholar] [CrossRef]
  24. Schluter, H.U.; Hinz, K.; Block, M. Tectono-stratigraphic terranes and detachment faulting of the South China Sea and Sulu Sea. Mar. Geol. 1996, 130, 39–78. [Google Scholar] [CrossRef]
  25. Burton-Johnson, A.B.; Macpherson, C.G.; Millar, I.L.; Whitehouse, M.J.; Ottley, C.J.; Nowell, G.M. A Triassic to Jurassic in north Borneo: Geochronology, geochemistry, and genesis of the Segama Valley Felsic Intrusions and the Sabah opiolite. Gondwana Res. 2020, 84, 229–244. [Google Scholar] [CrossRef]
  26. Swauger, D.A.; Bergman, S.C.; Graves, J.E.; Hutchison, C.S.; Surat, T.; Morillo, A.P.; Benavidez, J.J.; Pagado, E.S. Tertiary Stratigraphic, Tectonic, and Thermal History of Sabah, Malaysia: Results of a 10 Day Reconnaissance Field Study and Laboratory Analyses; Unpublished Report TRS TSR; ARCO International Oil and Gas Company: Plano, TX, USA, 1995; pp. 1–61. [Google Scholar]
  27. Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 2002, 20, 353–431. [Google Scholar] [CrossRef]
  28. Hutchison, C.S. Ophiolite metamorphism in Northeast Borneo. Lithos 1978, 11, 195–208. [Google Scholar] [CrossRef]
  29. Tongkul, F. Tectonic evolution of Sabah, Malaysia. J. Asian Earth Sci. 1991, 6, 395–405. [Google Scholar] [CrossRef]
  30. Omang, S.A.K.; Barber, A.J. Origin and tectonic significance of the metamorphic rocks associated with the Darvel Bay Ophiolite, Sabah, Malaysia. Geol. Soc. London Spec. Publ. 1996, 106, 263–279. [Google Scholar] [CrossRef]
  31. Hutchison, C.S. The ‘Rajang Accretionary Prism’ and ‘Lupar Line’ problem of Borneo. In Tectonic Evolution of SE Asia; Hall, R., Blundell, D.J., Eds.; Geological Society London Special Publication: London, UK, 1996; Volume 106, pp. 247–261. [Google Scholar]
  32. Zheng, H.; Sun, X.M.; Wang, P.J.; Chen, W.; Yue, J.P. Mesozoic tectonic evolution of the Proto-South China Sea: A perspective from radiolarian paleobiogeography. J. Asian Earth Sci. 2019, 179, 37–55. [Google Scholar] [CrossRef]
  33. Tian, Z.W.; Tang, W.; Wang, P.J.; Zhao, Z.G.; Sun, X.M.; Tang, H.F. Tectonic evolution and key geological issues of the Proto-South China Sea. Acta Geol. Sin. 2021, 95, 77–90. [Google Scholar] [CrossRef]
  34. Young, A.; Flament, N.; Maloney, K.; Williams, S.; Matthews, K.; Zahirovic, S.; Müller, R.D. Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geosci. Front. 2019, 10, 989–1013. [Google Scholar] [CrossRef]
  35. Liu, H.; Wang, B.D.; Chen, L.; Li, X.B.; Wang, L.Q. Early Carboniferous subduction of Lungmu Co-Shuanghu Paleo-Tethys Ocean: Evidence from island arc volcanic rocks in Riwanchaka, Central Qiangtang. Geol. Bull. Chin. 2015, 34, 274–282. [Google Scholar]
  36. Stampfli, G.M.; Hochard, C.; Vérard, C.; Wilhem, C.; Vonraumer, J. The formation of Pangea. Tectonophysics 2013, 593, 1–19. [Google Scholar] [CrossRef]
  37. Stampfli, G.M.; Borel, G.D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 2002, 196, 17–33. [Google Scholar] [CrossRef]
  38. Wang, D.; Lin, F.C.; Shi, M.F.; Wang, H.; Yang, X.Y. Geological setting, tectonic evolution and spatio-temporal distributions of main mineral resources in South East Asia: A comprehensive review. Soild Earth Sci. 2023, 8, 34–48. [Google Scholar] [CrossRef]
  39. Hennig, J.; Breitfeld, H.T.; Hall, R.; Nugraha, A.M.S. The Mesozoic tectono-magmatic evolution at the Paleo-Pacific subduction zone in West Borneo. Gondwana Res. 2017, 48, 292–310. [Google Scholar] [CrossRef]
  40. Morley, C.K. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics 2002, 347, 189–215. [Google Scholar] [CrossRef]
  41. Fuller, M.; Ali, J.R.; Moss, S.T.; Frost, G.M.; Richter, B.; Mahfi, A. Paleomagnetism of Borneo. J. Asian Earth Sci. 1999, 17, 3–24. [Google Scholar] [CrossRef]
  42. Advokaat, E.L.; Marshall, N.T.; Li, S.; Spakman, W.; Krijgsman, W.; van Hinsbergen, D.J.J. Cenozoic rotation history of Borneo and Sundaland, SE Asia revealed by paleomagnetism, seismic tomography, and kinematic reconstruction. Tectonics 2018, 37, 2486–2512. [Google Scholar] [CrossRef]
  43. Wang, Y.J.; Liu, Z.; Murtadha, S.; Cawood, P.A.; Qian, X.; Ghani, A.; Gan, C.S.; Zhang, Y.Z.; Wang, Y.; Li, S. Jurassic subduction of the Paleo-Pacific plate in Southeast Asia: New insights from the igneous and sedimentary rocks in West Borneo. J. Asian Earth Sci. 2022, 232, 105111. [Google Scholar] [CrossRef]
  44. Breitfeld, H.T.; Hall, R.; Galin, T.; Forster, M.A.; BouDagher-Fadel, M.K. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo. Tectonophysics 2017, 694, 35–56. [Google Scholar] [CrossRef]
  45. Raschka, H.; Nacario, E.; Rammlmair, D.; Samonte, C.; Steiner, L. Geology of the ophiolite of Central Palawan Island, Philippines. Ophiolite 1985, 10, 375–390. [Google Scholar]
  46. Gibaga, C.R.L.; Arcilla, C.A.; Hoang, N. Volcanic rocks from the central and southern Palawan Ophiolites, Philippines: Tectonic and mantle heterogeneity constraints. J. Asian Earth Sci. X 2020, 4, 100038. [Google Scholar] [CrossRef]
  47. Dycoco, J.M.A.; Payot, B.D.; Valera, G.T.V.; Labis, F.A.C.; Pasco, J.A.; Perez, A.D.C.; Tani, K. Juxtaposition of Cenozoic and Mesozoic ophiolites in Palawan island, Philippines: New insights on the evolution of the Proto-South China Sea. Tectonophysics 2021, 819, 229085. [Google Scholar] [CrossRef]
  48. Labis, F.A.C.; Payot, B.D.; Valera, G.T.V.; Pasco, J.A.; Dycoco, J.M.A.; Tamura, A.; Morishita, T.; Arai, S. Melt-rock interaction in the subarc mantle: Records from the plagioclase peridotites of the southern Palawan Ophiolite, Philippines. Int. Geol. Rev. 2021, 63, 1067–1089. [Google Scholar] [CrossRef]
  49. Chien, Y.H.; Wang, K.L.; Chung, S.L.; Ghani, A.A.; Iizuka, Y.; Li, X.H.; Lee, H.Y. Age and genesis of Sabah Ophiolite complexes in NE Borneo. Goldschmidt Abstr. 2019, 598, 18–23. [Google Scholar]
  50. Zhao, Z.G.; Tang, W.; Liu, S.X.; Tang, H.F.; Wang, P.J.; Tian, Z.W. U-Pb zircon ages and petrogeochemistry and tectonic implications of gabbro and granite in southwest Lahad Datu area of Sabah, Malaysia. Acta Oceanol. Sin. 2024, 43, 94–110. [Google Scholar] [CrossRef]
  51. Wang, Y.J.; Zhang, A.M.; Qian, X.; Asis, J.B.; Feng, Q.L.; Gan, C.S.; Zhang, Y.Z.; Cawood, P.A.; Wang, W.T.; Zhang, P.Z. Cretaceous Kuching accretionary orogenesis in Malaysia Sarawak: Geochronological and geochemical constraints from mafic and sedimentary rocks. Lithos, 2021; 400–401, 106425. [Google Scholar] [CrossRef]
  52. Wang, Y.J.; Wu, S.N.; Qian, X.; Cawood, P.A.; Lu, X.H.; Gan, C.S.; Bin Asis, J.; Zhang, P.Z. Early Cretaceous subduction in NW Kalimantan: Geochronological and geochemical constraints from the Raya and Mensibau igneous rocks. Gondwana Res. 2022, 101, 243–256. [Google Scholar] [CrossRef]
  53. Tongkul, F. The geology of Northern Sabah, Malaysia: Its relationship to the opening of the South China Sea Basin. Tectonophysics 1994, 235, 131–147. [Google Scholar] [CrossRef]
  54. Jasin, B. Significance of radiolarian cherts from the Chert-Spilite Formation, Telupid, Sabah. Bull. Geol. Soc. Malays. 1992, 31, 67–83. [Google Scholar] [CrossRef]
  55. Asis, J.; Jasin, B. Aptian to Turonian Radiolaria from the Darvel Bay Ophiolite Complex, Kunak, Sabah. Bull. Geol. Soc. Malays. 2012, 58, 89–96. [Google Scholar] [CrossRef]
  56. Hall, R. Contraction and extension in northern Borneo driven by subduction rollback. J. Asian Earth Sci. 2013, 76, 399–411. [Google Scholar] [CrossRef]
  57. Jasin, B. Geological significance of radiolarian cherts in Sabah. Bull. Geol. Soc. Malays. 2000, 44, 35–43. [Google Scholar] [CrossRef]
  58. Jasin, B.; Tongkul, F. Cretaceous radiolarians from Baliojong ophiolite sequence, Sabah, Malaysia. J. Asian Earth Sci. 2013, 76, 258–265. [Google Scholar] [CrossRef]
  59. Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
  60. Andersen, T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
  61. Blichert-Toft, J.; Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
  62. Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
  63. Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
  64. Liu, X.M.; Gao, S.; Yuan, H.L.; Hattendorf, B.; Gunther, D.; Chen, L.; Hu, S.H. Analysis of 42 major and trace elements in glass standard reference materials by 193nm LA-ICPMS. Acta Petrol. Sin. 2002, 18, 408–418. [Google Scholar]
  65. Yang, Y.H.; Zhang, H.F.; Chu, Z.Y.; Xie, L.W.; Wu, F.Y. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using Multi-Collector ICP-MS and TIMS. Int. J. Mass. Spectrome. 2010, 290, 120–126. [Google Scholar] [CrossRef]
  66. Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Pub. 1989, 42, 313–345. [Google Scholar] [CrossRef]
  67. Zheng, Y.F. Metamorphic chemical geodynamics in continental subduction zones. Chem. Geol. 2012, 328, 5–48. [Google Scholar] [CrossRef]
  68. Katayama, I.; Muko, A.; Iizuka, T.; Maruyama, S.; Terada, K.; Tsutsumi, Y.; Sano, Y.; Zhang, R.Y.; Liou, J.G. Dating of zircon from Ti-clinohumite-bearing garnet peridotite: Implication for timing of mantle metasomatism. Geology 2003, 31, 713–716. [Google Scholar] [CrossRef]
  69. Griffin, W.L.; Graham, S.; O’Reily, S.Y.; Pearson, N.J. Lithosphere evolution beneath the Kaapvaal Craton: Re-Os systematics of sulfides in mantle-derived peridotites. Chem. Geol. 2004, 208, 89–118. [Google Scholar] [CrossRef]
  70. Smith, D.; Griffin, W.L. Garnetite xenoliths and mantle-water interactions below the Colorado Plateau, Southwestern United States. J. Petrol. 2005, 46, 1901–1924. [Google Scholar] [CrossRef]
  71. Gao, T.S.; Chen, J.F.; Xie, Z.; Yang, S.H.; Yu, G. Zircon SHRIMP UPb age of garnet olivine pyroxenite at Hujialin in the Sulu terrane and its geological significance. Chin. Sci. Bull. 2004, 49, 2198–2204. [Google Scholar] [CrossRef]
  72. Yamamoto, S.; Komiya, T.; Yamamoto, H.; Kaneko, Y.; Terabayashi, M.; Katayama, I.; Iizuka, T.; Maruyama, S.; Yang, J.; Kon, Y.; et al. Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet. Island Arc 2013, 22, 89–103. [Google Scholar] [CrossRef]
  73. Robinson, P.T.; Trumbull, R.B.; Schmitt, A.; Yang, J.S.; Li, J.W.; Zhou, M.F.; Erzinger, J.; Dare, S.; Xiong, F.H. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Res. 2015, 27, 486–506. [Google Scholar] [CrossRef]
  74. Zheng, J.P.; Griffin, W.L.; O’Reilly, S.Y.; Yang, J.S.; Zhang, R.Y. A refractory mantle protolith in younger continental crust, east-central China: Age and composition of zircon in the Sulu ultrahigh-pressure peridotite. Geology 2006, 34, 705–708. [Google Scholar] [CrossRef]
  75. Hermann, J.; Rubatto, D.; Trommsdorff, V. Sub-Solidus Oligocene Zircon Formation in Garnet Peridotite during Fast Decompression and Fluid Infiltration (Duria, Central Alps). Mineral. Petrol. 2006, 88, 181–206. [Google Scholar] [CrossRef]
  76. Liati, A.; Gebauer, D. Crustal origin of zircon in a garnet peridotite: A study of U-Pb SHRIMP dating, mineral inclusions and REE geochemistry (Erzgebirge, Bohemian Massif). Eur. J. Mineral. 2009, 21, 737–750. [Google Scholar] [CrossRef]
  77. Xiong, Q.; Zheng, J.P.; Griffin, W.L.; O’Reilly, S.Y.; Pearson, N.J. Pyroxenite Dykes in Orogenic Peridotite from North Qaidam (NE Tibet, China) Track Metasomatism and Segregation in the Mantle Wedge. J. Petrol. 2014, 55, 2347–2376. [Google Scholar] [CrossRef]
  78. Shen, T.T.; Zhang, L.F.; Yang, J.S.; Zhang, C.; Qiu, T.; Bader, T. The characteristics and significance of age of zircon from ultramafic rocks: A case study from UHP serpentinites in Chinese southwestern Tianshan. Acta Petrol. Sin. 2017, 33, 3783–3800. [Google Scholar]
  79. Belousova, E.A.; González Jiménez, J.M.; Graham, I.; Griffin, W.L.; O’Reilly, S.Y.; Pearson, N.; Martin, L.; Craven, S.; Talavera, C. The enigma of crustal zircons in upper-mantle rocks: Clues from the Tumut ophiolite, southeast Australia. Geology 2015, 43, 119–122. [Google Scholar] [CrossRef]
  80. Liati, A.; Franz, L.; Gebauer, D.; Fanning, C.M. The timing of mantle and crustal events in South Namibia, as defined by SHRIMP dating of zircon domains from a garnet peridotite xenolith of the Gibeon Kimberlite Province. J. Afr. Earth Sci. 2004, 39, 147–157. [Google Scholar] [CrossRef]
  81. Scambelluri, M.; Cannaò, E.; Guerini, S.; Bebout, G.E.; Epstein, G.S.; Rotondo, F.; Campomenosi, N.; Tartarotti, P. Carbon mobility and exchange in a plate-interface subduction mélange: A case study of meta-ophiolitic rocks in Champorcher Valley, Italian Alps. Lithos, 2022; 428–429, 106813. [Google Scholar] [CrossRef]
  82. Song, S.G.; Su, L.; Niu, Y.L.; Zhang, L.F.; Zhang, G.B. Petrological and geochemical constraints on the origin of garnet peridotite in the North Qaidam ultrahigh-pressure metamorphic belt, northwestern China. Lithos 2007, 96, 243–265. [Google Scholar] [CrossRef]
  83. Zheng, J.P.; Sun, M.; Griffin, W.L.; Zhou, M.F.; Zhao, G.C.; Robinson, P.; Tang, H.Y.; Zhang, Z.H. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: Petrogenetic and geodynamic implications. Chem. Geol. 2008, 247, 82–304. [Google Scholar] [CrossRef]
  84. Liu, F.L.; Shi, J.R.; Liu, J.H.; Ye, J.G.; Liu, P.H.; Wang, F. Protolith and ultranhigh-pressure (UHP) metamorphic ages of ultramafic rocks in Weihai area, North Sulu UHP terrane. Acta Petrol. Sin. 2011, 27, 1075–1084. [Google Scholar]
  85. Katayama, I.; Maruyama, S. Inclusion study in zircon from ultrahigh-pressure metamorphic rocks in the Kokchetav massif: An excellent tracer of metamorphic history. J. Geol. Soc. 2009, 166, 783–796. [Google Scholar] [CrossRef]
  86. Chen, R.X.; Zheng, Y.F. Multiple crust-mantle interaction in continental subduction zones: Insights from orogenic peridoties. Earth Sci. 2019, 44, 4095–4101. [Google Scholar] [CrossRef]
  87. Yakymchuk, C.; Kirkland, C.L.; Clark, C. Th/U ratios in metamorphic zircon. J. Metamorph. Geol. 2018, 36, 715–737. [Google Scholar] [CrossRef]
  88. Xiang, W.; Griffin, W.L.; Jie, C.; Pinyun, H.; Xiang, L. U and Th Contents and Th/U Ratios of Zircon in Felsic and Mafic Magmatic Rocks: Improved Zircon-Melt Distribution Coefficients. Acta Geol. Sin. 2011, 85, 164–174. [Google Scholar] [CrossRef]
  89. El-Bialy, M.Z.; Ali, K.A. Zircon trace element geochemical constraints on the evolution of the Ediacaran (600~614Ma) postcollisional Dokhan volcanics and younger granites of SE Sinai, NE Arabian-Nubian Shield. Chem. Geol. 2013; 360–361, 54–73. [Google Scholar]
  90. Pearce, J.A.; Peate, D.W. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 1995, 23, 251–285. [Google Scholar] [CrossRef]
  91. Schulz, Z.; Klemd, R.; Brätz, H. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement. Geochim. Cosmochim. Acta 2006, 70, 697–710. [Google Scholar] [CrossRef]
  92. Grimes, C.B.; John, B.E.; Keleman, P.B.; Mazdab, F.Z.; Wooden, J.L.; Cheadle, M.J.; Hanghoj, K.; Schwartz, J.J. Trace element chemistry of zircon from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 2015, 35, 643–646. [Google Scholar] [CrossRef]
  93. Grimes, C.B.; Wooden, J.L.; Cheadle, M.J.; John, B.E. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib. Mineral. Petrol. 2015, 170, 46. [Google Scholar] [CrossRef]
  94. Tian, Z.W.; Tang, H.F.; Zhao, Z.G.; Tang, W.; He, K.L.; Zhu, C.X.; Wang, P.J. U-Pb dating of detrital zircons from Chert-Spilite Formation in Sabah, Malaysia and its geological significance. Glob. Geol. 2021, 40, 52–64. [Google Scholar]
  95. Liu, X.J.; Xu, J.F.; Wang, S.Q.; Hou, Q.Y.; Bai, Z.H.; Lei, M. Geochemistry and dating of E-MORB type mafic rocks from Dalabute ophiolite in West Junggar, Xinjiang and geological implications. Acta Petrol. Sin. 2009, 25, 1373–1389. [Google Scholar]
  96. Wang, J.R.; Chen, W.F.; Zhang, Q.; Jiao, S.T.; Yang, J.; Pan, Z.J.; Wang, S. Preliminary research on data mining of N-MORB and E-MORB: Discussion on method of the basalt discrimination diagrams and the character of MORB’s mantle source. Acta Petrol. Sin. 2017, 33, 993–1005. [Google Scholar]
  97. Schilling, J.G.; Thompson, G.; Kingsley, R.; Humphris, S. Hotspot-migrating ridge interaction in the South Atlantic. Nature 1985, 313, 187–191. [Google Scholar] [CrossRef]
  98. Zindler, A.; Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
  99. Niu, Y.L.; Collerson, K.D.; Batiza, R.; Wendt, J.I.; Regelous, M. Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11° 20′ N. J. Geophys. Res. 1999, 104, 7067–7087. [Google Scholar] [CrossRef]
  100. Workman, R.K.; Hart, S.R.; Jackson, M.; Regelous, M.; Farley, K.A.; Blusztajn, J.; Kurz, M.; Staudigel, H. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain. Geochem. Geophys. Geosyst. 2004; 5, 2003GC000623. [Google Scholar] [CrossRef]
  101. Tang, L.M.; Chen, H.L.; Dong, C.W.; Shen, Z.Y. Triassic neutral and basic rocks in Hainan Island, geochemistry and their geological significance. Chin. J. Geol. 2010, 45, 1139–1155. [Google Scholar]
  102. Chen, X.Y.; Wang, Y.J.; Han, H.P.; Zhang, Y.Z.; Wen, S.N.; Cao, Y.J. Geochemical and geochronological characteristics of Triassic basic dikes in SW Hainan Island and its tectonic implications. J. Jilin Univ. Earth Sci. Ed. 2014, 44, 835–847. [Google Scholar] [CrossRef]
  103. Göncüoglu, M.C.; Sayit, K.; Tekin, U.K. Oceanization of the northern Neotethys: Geochemical evidence from ophiolitic melange basalts within the İzmir-Ankara suture belt, NW Turkey. Lithos 2010, 116, 175–187. [Google Scholar] [CrossRef]
  104. Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
  105. Shervais, J.W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett. 1982, 59, 101–118. [Google Scholar] [CrossRef]
  106. Meschede, M. A method of discriminating between different types of mid-ocean ridge basalts and and continental tholeiites with the Nb–Zr–Y diagram. Chem. Geol. 1986, 56, 207–218. [Google Scholar] [CrossRef]
  107. Yumul, G.P.; Dimalanta, C.B.; Tamayo, R.; Faustino-Eslava, D.V. Geological features of a collision zone marker: The Antique Ophiolite Complex (Western Panay, Philippines). J. Asian Earth Sci. 2013, 65, 53–63. [Google Scholar] [CrossRef]
  108. Deng, J.H.; Yang, X.Y.; Zhang, Z.F.; Santosh, M. Early Cretaceous arc volcanic suite in Cebu Island, Central Philippines and its implications on paleo-Pacific plate subduction: Constraints from geochemistry, zircon U–Pb geochronology and Lu–Hf isotopes. Lithos 2015, 230, 166–179. [Google Scholar] [CrossRef]
  109. Guotana, J.M.R.; Payot, B.D.; Dimalanta, C.B.; Ramos, N.T.; Faustino-Eslava, D.V.; Queaño, K.L.; Yumul, G.P. Arc and backarc geochemical signatures of the proto-Philippine Sea Plate: Insights from the petrography and geochemistry of the Samar Ophiolite volcanic section. J. Asian Earth Sci. 2017; 142, 77–92. [Google Scholar] [CrossRef]
  110. Zhou, Y.; Liang, X.Q.; Kröner, A.; Cai, Y.F.; Shao, T.B.; Wen, S.N.; Jiang, Y.; Fu, J.G.; Wang, C.; Dong, C.G. Late Cretaceous lithospheric extension in SE China: Constraints from volcanic rocks in Hainan Island. Lithos 2015, 232, 100–110. [Google Scholar] [CrossRef]
  111. Shen, L.W.; Yu, J.H.; O’Reilly, S.Y.; Griffin, W.L.; Zhou, X.Y. Subduction-related middle Permian to early Triassic magmatism in central Hainan Island, South China. Lithos, 2018; 318–319, 158–175. [Google Scholar] [CrossRef]
  112. Liu, F.; Yang, J.S.; Feng, G.Y.; Niu, X.L.; Li, G.L.; Zhang, C.F. Late Permian to Early Triassic subduction and retreating of the Paleopacific slab: Constraints from continental arc magmatism in Hainan Island. Acta Petrol. Sin. 2022, 38, 3455–3483. [Google Scholar] [CrossRef]
  113. Zhu, B.Q. Study on chemical heterogeneities of mantle-crustal systems and geochemical boundaries of blocks. Earth Sci. Front. 1998, 5, 72–80. [Google Scholar]
  114. Yao, J.; Li, S.Q.; He, J.F.; Chen, F.K. Geochemical characteristics of Cenozoic basalts in Tengchong block, the southeastern margin of Qinghai-Tibet Plateau, China: Constraints on the nature of mantle source. J. Earth Sci. Environ. 2018, 40, 398–413. [Google Scholar]
  115. Hawkesworth, C.; Turner, S.; Peate, D.; McDermott, F.; Calsteren, P. Elemental U and Th variations in island arc rocks: Implications for U-series isotopes. Chem. Geol. 1997, 139, 207–221. [Google Scholar] [CrossRef]
  116. Wang, Y.J.; Qian, X.; Cawood, P.A.; Liu, H.C.; Feng, Q.L.; Zhao, G.C.; Zhang, Y.H.; He, H.Y.; Zhang, P.Z. Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragment. Earth Sci. Rev. 2018, 186, 195–230. [Google Scholar] [CrossRef]
  117. Wang, Y.J.; Wang, Y.K.; Qian, X.; Zhang, Y.Z.; Gan, C.S.; Senebouttalath, V.; Wang, Y. Early Paleozoic subduction in the Indochina interior: Revealed by Ordo-Silurian mafic-intermediate igneous rocks in South Laos. Lithos, 1054. [Google Scholar] [CrossRef]
  118. Wang, Y.J.; Zhang, Y.Z.; Qian, X.; Senebouttalath, V.; Wang, Y.; Wang, Y.K.; Gan, C.S.; Zaw, K. Ordo-Silurian assemblage in the Indochina interior: Geochronological, elemental, and Sr-Nd-Pb-Hf-O isotopic constraints of Early Paleozoic granitoids in South Laos. Geol. Soc. Am. Bull. 2020, 133, 325–346. [Google Scholar] [CrossRef]
  119. Wang, Y.J.; Qian, X.; Zhang, Y.Z.; Gan, C.S.; Zhang, A.M.; Zhang, F.F.; Feng, Q.L.; Cawood, P.A.; Zhang, P.Z. Southern extension of the Paleotethyan zone in SE Asia: Evidence from the Permo-Triassic granitoids in Malaysia and West Indonesia. Lithos, 1063. [Google Scholar] [CrossRef]
  120. Wang, Y.J.; Zhang, Y.Z.; Qian, X.; Wang, Y.; Cawood, P.A.; Gan, C.S.; Senebouttalath, V. Early Paleozoic accretionary orogenesis in the northeastern Indochina and implications for the paleogeography of East Gondwana: Constraints from igneous and sedimentary rocks. Lithos, 2021; 382–383, 105921. [Google Scholar] [CrossRef]
  121. Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonic: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 2011, 123, 387–411. [Google Scholar] [CrossRef]
  122. Dilek, Y. Ophiolite concept and its evolution. Geol. Soc. Am. Spec. Pap. 2003, 373, 1–16. [Google Scholar]
  123. Rampone, E.; Romairone, A.; Abouchami, W.; Piccardo, G.B.; Hofmann, A.W. Chronology, petrology, and isotope geochemistry of the Erro-Tobbio peridotites (Ligurian Alps, Italy): Records of late Palaeozoic lithospheric extension. J. Petrol. 2005, 46, 799–827. [Google Scholar] [CrossRef]
  124. Reagan, M.K.; Ishizuka, O.; Stern, R.J.; Kelley, K.A.; Ohara, Y.; Blichert-Toft, J.; Bloomer, S.H.; Cash, J.; Fryer, P.; Hanan, B.B.; et al. Fore-arc basalts and subduction initiation in the Izu Bonin-Mariana system. Geochem. Geophys. Geosyst. 2010, 11, 3. [Google Scholar] [CrossRef]
  125. Yan, Q.S.; Metcalfe, I.; Shi, X.F. U-Pb isotope geochronology and geochemistry of granites from Hainan Island (northern South China Sea margin): Constraints on late Paleozoic-Mesozoic tectonic evolution. Gondwana Res. 2017, 49, 333–349. [Google Scholar] [CrossRef]
  126. Nguyen, N.T.B.; Satir, M.; Siebel, W.; Vennemann, T.; Long, T.V. Geochemical and isotopic constraints on the petrogenesis of granitoids from the Dalat zone, southern Vietnam. J. Asian Earth Sci. 2004, 23, 467–482. [Google Scholar] [CrossRef]
  127. Suggate, S.M.; Cottam, M.A.; Hall, R.; Sevastjanova, I.; Forster, M.A.; White, L.T.; Armstrong, R.A.; Carter, A.; Mojares, E. South China continental margin signature for sandstones and granites from Palawan, Philippines. Gondwana Res. 2014, 26, 699–718. [Google Scholar] [CrossRef]
  128. Shao, L.; Cao, L.; Qiao, P.; Zhang, X.; Li, Q.; van Hinsbergen, D.J.J. Cretaceous–Eocene provenance connections between the Palawan Continental Terrane and the northern South China Sea margin. Earth Planet. Sci. Lett. 2017, 477, 97–107. [Google Scholar] [CrossRef]
  129. Cui, Y.C.; Shao, L.; Li, Z.X.; Zhu, W.L.; Qiao, P.J.; Zhang, X.T. A Mesozoic Andean-type active continental margin along coastal South China: New geological records from the basement of the northern South China Sea. Gondwana Res. 2021, 99, 36–52. [Google Scholar] [CrossRef]
  130. Cui, Y.C.; Shao, L.; Yu, M.M.; Huang, C.Y. Formation of Hengchun Accretionary Prism Turbidites and Implications for Deep-water Transport Processes in the Northern South China Sea. Acta Geol. Sin. 2021, 95, 55–65. [Google Scholar] [CrossRef]
  131. Zhao, Z.G.; Zhang, H.; Cui, Y.C.; Tang, W.; Qiao, P.J. Cenozoic Sea-land Transition and its Petroleum Geological Significance in the Northern South China Sea. Acta Geol. Sin. 2021, 95, 41–54. [Google Scholar] [CrossRef]
  132. Zhang, G.C.; Feng, C.J.; Yao, X.Z.; Ji, M.; Yang, H.Z.; Qu, H.J.; Zeng, Q.B.; Zhao, Z.; Sun, R. Petroleum Geology in Deepwater Settings in a Passive Continental Margin of a Marginal Sea: A Case Study from the South China Sea. Acta Geol. Sin. 2021, 95, 1–20. [Google Scholar] [CrossRef]
  133. Cawood, P.A.; Hawkesworth, C.J.; Dhuime, B. Detrital zircon record and tectonic setting. Geology 2012, 40, 875–878. [Google Scholar] [CrossRef]
Figure 1. Tectonic sketch map of Southeast Asia [8,13,32]. Yellow square is represented Figure 2a. D, Devonian; P, Permian; P2, Late Permian; T, Triassic; J, Jurassic; K, Cretaceous; K1, Early Cretaceous; K2, Late Cretaceous; E, Paleogene; E1, Paleocene; E2, Eocene; E3, Oligocene; N, Neogene.
Figure 1. Tectonic sketch map of Southeast Asia [8,13,32]. Yellow square is represented Figure 2a. D, Devonian; P, Permian; P2, Late Permian; T, Triassic; J, Jurassic; K, Cretaceous; K1, Early Cretaceous; K2, Late Cretaceous; E, Paleogene; E1, Paleocene; E2, Eocene; E3, Oligocene; N, Neogene.
Minerals 14 01078 g001
Figure 2. Geological map of the Sabah area and the sample locations ((a), location shown in Figure 1), and related cross section (b), location shown in Figure 1, reference from Hall (2013) [56].
Figure 2. Geological map of the Sabah area and the sample locations ((a), location shown in Figure 1), and related cross section (b), location shown in Figure 1, reference from Hall (2013) [56].
Minerals 14 01078 g002
Figure 3. Meso- and microphotographs of the Sabah area. (a,b) Sp, Bouma sequence, sandstones, shale, and mudstones; (c,d) radiolarites of Cs; (e,f) pillow lava and basalts of Cs; (g,h) KET, gabbro, and basalt; (i,j) KET, serpentine peridotite; and (k,l) Cb, cataclastic granite. Aug, Augite; Ol, olivine; Pl, Plagioclase; Q, Quartz; Ser, serpentine.
Figure 3. Meso- and microphotographs of the Sabah area. (a,b) Sp, Bouma sequence, sandstones, shale, and mudstones; (c,d) radiolarites of Cs; (e,f) pillow lava and basalts of Cs; (g,h) KET, gabbro, and basalt; (i,j) KET, serpentine peridotite; and (k,l) Cb, cataclastic granite. Aug, Augite; Ol, olivine; Pl, Plagioclase; Q, Quartz; Ser, serpentine.
Minerals 14 01078 g003
Figure 4. CL images of zircons from the Sabah area samples.
Figure 4. CL images of zircons from the Sabah area samples.
Minerals 14 01078 g004
Figure 5. LA-ICP-MS U-Pb concordia diagram, weighted mean age diagram, histogram, and probability density distribution diagram. (a) Serpentinite peridotite, KET; (b) gabbro, KET; (cd) basalt, KET; and (ef) sandstone from Sp.
Figure 5. LA-ICP-MS U-Pb concordia diagram, weighted mean age diagram, histogram, and probability density distribution diagram. (a) Serpentinite peridotite, KET; (b) gabbro, KET; (cd) basalt, KET; and (ef) sandstone from Sp.
Minerals 14 01078 g005
Figure 6. Chondrite-normalized rare earth element abundances (a,c,e) and primitive mantle-normalized trace element abundances (b,d,f) for the igneous rocks of KET and Cs in the Sabah area. The normalizing values are from Sun and McDonough (1989) [66].
Figure 6. Chondrite-normalized rare earth element abundances (a,c,e) and primitive mantle-normalized trace element abundances (b,d,f) for the igneous rocks of KET and Cs in the Sabah area. The normalizing values are from Sun and McDonough (1989) [66].
Minerals 14 01078 g006
Figure 7. Discrimination diagrams for the tectonic setting of the host rocks of zircon (ad), after Schulz et al. (2006) [91]), zircon Hf versus U/Yb and Y versus U/Yb diagrams (e,f), after Grimes et al. (2007, 2015) [92,93]). Sabah ophiolites and non-ophiolite basement data from Wang et al. (2023) [14]. KDS-Cs-a and BLR-Cs-a data from Tian et al. (2021) [94].
Figure 7. Discrimination diagrams for the tectonic setting of the host rocks of zircon (ad), after Schulz et al. (2006) [91]), zircon Hf versus U/Yb and Y versus U/Yb diagrams (e,f), after Grimes et al. (2007, 2015) [92,93]). Sabah ophiolites and non-ophiolite basement data from Wang et al. (2023) [14]. KDS-Cs-a and BLR-Cs-a data from Tian et al. (2021) [94].
Minerals 14 01078 g007
Figure 8. Plots of Zr/Nb versus La/Yb ((a), after Göncüoglu et al. (2010) [103]), La/Sm versus Sm/Yb ((b), after Pearce et al. (2008) [104]), Nb/Yb versus Th/Yb (c), after Pearce et al. (2008) [104]), Nb/Yb versus TiO2/Yb (d), after Pearce et al. (2008) [104]), Ti/1000 versus V (e), after Shervais (1982) [105]), and 2Nb versus Zr/4 versus Y (f), after Meschede (1986) [106]) for the mafic rocks from the Sabah ophiolites. Sabah ophiolite data from Wang et al. (2023) [14]. Palawan ophiolite data from Gibaga et al. (2020) and Dycoco et al. (2021) [46,47]. Kuching mafic rock data from Wang et al. (2021) [51]. Meratus complex data from Wang et al. (2022) [16]. Philippine ophiolite data from Yumul et al. (2013), Deng et al. (2015), and Guotana et al. (2017) [107,108,109]. South Schwaner Mountains and South China Sea mafic–intermediate rock data from Wang et al. (2022) [52]. Hainan Island mafic rock data from Tang et al. (2010), Chen et al. (2014), Zhou et al. (2015), Shen et al. (2018), and Liu et al. (2022) [101,102,110,111,112].
Figure 8. Plots of Zr/Nb versus La/Yb ((a), after Göncüoglu et al. (2010) [103]), La/Sm versus Sm/Yb ((b), after Pearce et al. (2008) [104]), Nb/Yb versus Th/Yb (c), after Pearce et al. (2008) [104]), Nb/Yb versus TiO2/Yb (d), after Pearce et al. (2008) [104]), Ti/1000 versus V (e), after Shervais (1982) [105]), and 2Nb versus Zr/4 versus Y (f), after Meschede (1986) [106]) for the mafic rocks from the Sabah ophiolites. Sabah ophiolite data from Wang et al. (2023) [14]. Palawan ophiolite data from Gibaga et al. (2020) and Dycoco et al. (2021) [46,47]. Kuching mafic rock data from Wang et al. (2021) [51]. Meratus complex data from Wang et al. (2022) [16]. Philippine ophiolite data from Yumul et al. (2013), Deng et al. (2015), and Guotana et al. (2017) [107,108,109]. South Schwaner Mountains and South China Sea mafic–intermediate rock data from Wang et al. (2022) [52]. Hainan Island mafic rock data from Tang et al. (2010), Chen et al. (2014), Zhou et al. (2015), Shen et al. (2018), and Liu et al. (2022) [101,102,110,111,112].
Minerals 14 01078 g008
Figure 9. Plots of Th/La versus Nb/La ((a), after [14]), Th/Zr versus Nb/Zr ((b), after [14]), La/Sm versus Sr/Th ((c), after [14]), Th/Nb versus Ba/Th (d), after [114]), Th/Nb versus Ba/La ((e), after [114]), and Th/Zr versus U/Th ((f), after [115]) for the basalt from the Sabah ophiolites.
Figure 9. Plots of Th/La versus Nb/La ((a), after [14]), Th/Zr versus Nb/Zr ((b), after [14]), La/Sm versus Sr/Th ((c), after [14]), Th/Nb versus Ba/Th (d), after [114]), Th/Nb versus Ba/La ((e), after [114]), and Th/Zr versus U/Th ((f), after [115]) for the basalt from the Sabah ophiolites.
Minerals 14 01078 g009
Figure 10. Initial 87Sr/86Sr versus εNd(t) (a), 206Pb/204Pb versus 208Pb/204Pb and 207Pb/204Pb (bc), and Δβ versus Δγ (d). NHRL, with a northern hemisphere reference line. Data are from Zindler and Hart (1986), Burton-Johnson et al. (2020), and Wang et al. (2018, 2020, 2021, 2022, 2023) [14,16,19,25,41,53,54,100,116,117,118,119,120].
Figure 10. Initial 87Sr/86Sr versus εNd(t) (a), 206Pb/204Pb versus 208Pb/204Pb and 207Pb/204Pb (bc), and Δβ versus Δγ (d). NHRL, with a northern hemisphere reference line. Data are from Zindler and Hart (1986), Burton-Johnson et al. (2020), and Wang et al. (2018, 2020, 2021, 2022, 2023) [14,16,19,25,41,53,54,100,116,117,118,119,120].
Minerals 14 01078 g010
Figure 11. Hf isotopic composition versus age of the zircons from sample KDS-KET-a: (a) εHf(t)-t diagram and (b) 176Hf/177Hf-t diagram. The chondrite and depleted mantle lines are from Blichert-Toft and Albarède (1997) and Griffin et al. (2000) [61,62].
Figure 11. Hf isotopic composition versus age of the zircons from sample KDS-KET-a: (a) εHf(t)-t diagram and (b) 176Hf/177Hf-t diagram. The chondrite and depleted mantle lines are from Blichert-Toft and Albarède (1997) and Griffin et al. (2000) [61,62].
Minerals 14 01078 g011
Figure 12. Tectonic settings and processes of continental margin (a), supra-subduction zone (b), and volcanic (c) ophiolite types, with columnar sections depicting the simplified structural architecture of the ophiolite type [121]. Emplacement pattern of ophiolites (d) [2].
Figure 12. Tectonic settings and processes of continental margin (a), supra-subduction zone (b), and volcanic (c) ophiolite types, with columnar sections depicting the simplified structural architecture of the ophiolite type [121]. Emplacement pattern of ophiolites (d) [2].
Minerals 14 01078 g012
Figure 13. Tectonic cartoons showing the evolution of the Sabah ophiolite. (a) In the Triassic or older Sabah ophiolite formed. (b) The Jurassic -Early Cretaceous, Sabah ophiolite emplaced on the continental crust basement. (c) The late Late Cretaceous, Sabah and Palawan ophiolites split and drifted southward from the margin of the Dangerous Grounds or Sundaland. (d) The Oligocene, the suturing of the Sabah and Palawan ophiolites with East Borneo. (e) The Miocene, the Sabah orogeny leading to ophiolite exposure. DGS, Dangerous Grounds; EB, East Borneo; PSCS, Proto-South China Sea; SCB, South China Block; SCS, South China Sea; SD, Sundaland.
Figure 13. Tectonic cartoons showing the evolution of the Sabah ophiolite. (a) In the Triassic or older Sabah ophiolite formed. (b) The Jurassic -Early Cretaceous, Sabah ophiolite emplaced on the continental crust basement. (c) The late Late Cretaceous, Sabah and Palawan ophiolites split and drifted southward from the margin of the Dangerous Grounds or Sundaland. (d) The Oligocene, the suturing of the Sabah and Palawan ophiolites with East Borneo. (e) The Miocene, the Sabah orogeny leading to ophiolite exposure. DGS, Dangerous Grounds; EB, East Borneo; PSCS, Proto-South China Sea; SCB, South China Block; SCS, South China Sea; SD, Sundaland.
Minerals 14 01078 g013
Table 1. Summary of geochemical characteristics of mafic rocks from ophiolites in the Palawan and Borneo area.
Table 1. Summary of geochemical characteristics of mafic rocks from ophiolites in the Palawan and Borneo area.
LocalityOphiolitic ComplexAge (Ma)MethodGeochemical SignatureTectonic SettingReference
PalawanCentral Palawan40.5–34K-Ar (Am, Mc); Ar-Ar (Am, Mc); U-Pb (Zr)MORB to MORB-IATForearc or back-arc basin[45,46,47]
Southern Palawan103–100U-Pb (Zr)MORB-like, IAT, OIBForearc or main arc[46,47,48]
North BorneoNorthern Sabah, Kudat, Baliojong136–112 Ar-Ar (Wr); U-Pb (Zr); RadiolarianMORB-likeMid-oceanic ridge[14,27]
Central Sabah, Telupid163–42.5K-Ar; Ar-Ar (Wr); U-Pb (Zr)MORB-likeMid-oceanic ridge[14,49]
Eastern Sabah, Darvel Bay231–33.41K-Ar (Hb, Pl); Ar-Ar (Wr); U-Pb (Zr)N-MORB, OIB, IATMid-oceanic ridge or forearc[14,17,18,22,26,30,46,49,50]
West BorneoLupar line Complex (Boyan, Lubok Antu, Bunguran, Serabang, Sejingkat)115–105; 98–77Ar-Ar (Wr); U-Pb (Zr); RadiolarianMORB-likeMid-oceanic ridge[8,15,16,43,46,51,52]
Southeast BorneoMeratus Complex150–115U-Pb (Zr)Arc volcanicsForearc[16]
Note: Am, Amphibole; Hb, Hornblende; Mc, Mica; Pl, Plagioclase; Wr, whole-rock; Zr, zircon.
Table 2. Sampling locations and related information of the Sabah ophiolite.
Table 2. Sampling locations and related information of the Sabah ophiolite.
Sample LocationRock typeMethods
Western SabahKM-KET-aKimundu (N 6°5′55.5″, E 116°47′56.7″)BasaltU-Pb (Zr), Lu-Hf (Zr)
KM-KET-1–4BasaltMT, Sr-Nd-Pb
KDS-KET-aKundasang (N 5°58′22.1″, E 116°44′8.6″)Serpentinized peridotite (Figure 3i,j)U-Pb (Zr)
KDS-KET-1–3Serpentinized peridotiteMT
Central SabahBLR-CS-1–4Telupid (N 5°39′39″, E 117°2′31.5″)Basalt (Figure 3e,f)MT
BLR-KET-1–3Telupid (N 5°36′17.5″, E 117°5′50.8″)Serpentinized peridotiteMT
BLR-KET-4–5Telupid (N 5°36′17.0″, E 117°5′49.5″)Gabbro (Figure 3g,h)MT
BLR-KET-aTongod (N 5°25′17.0″, E 117°01′23″)GabbroU-Pb (Zr)
BLR-KET-6–8GabbroMT, Sr-Nd-Pb
Eastern SabahND-KET-bLahad Datu (N 5°2′15.9″, E 118°16′7.7″)GabbroU-Pb (Zr)
ND-KET-1–4Serpentinized peridotiteMT
ND-KET-5–8BasaltMT
SP-aSapulut (N 4°42′23.4″, E 116°29′24.9″)Siltstone (Figure 3a,b)U-Pb (Zr)
Note: Lu-Hf (Zr), zircon Lu-Hf isotopic data; MT, whole-rock major and trace elements; Sr-Nd-Pb, Sr-Nd-Pb isotopic; U-Pb (Zr), zircon U–Pb dating.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Tian, Z.; Gao, Y.; Wang, P.; Tang, H. Formation and Tectonic Evolution of Ophiolites in the Sabah Area (Borneo, SE Asia). Minerals 2024, 14, 1078. https://doi.org/10.3390/min14111078

AMA Style

Tian Z, Gao Y, Wang P, Tang H. Formation and Tectonic Evolution of Ophiolites in the Sabah Area (Borneo, SE Asia). Minerals. 2024; 14(11):1078. https://doi.org/10.3390/min14111078

Chicago/Turabian Style

Tian, Zhiwen, Youfeng Gao, Pujun Wang, and Huafeng Tang. 2024. "Formation and Tectonic Evolution of Ophiolites in the Sabah Area (Borneo, SE Asia)" Minerals 14, no. 11: 1078. https://doi.org/10.3390/min14111078

APA Style

Tian, Z., Gao, Y., Wang, P., & Tang, H. (2024). Formation and Tectonic Evolution of Ophiolites in the Sabah Area (Borneo, SE Asia). Minerals, 14(11), 1078. https://doi.org/10.3390/min14111078

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop