Reviving Riches: Unleashing Critical Minerals from Copper Smelter Slag Through Hybrid Bioleaching Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Metallurgical Slag Material
2.2. Pretreatment of Metallurgical Slag
2.3. Bacterial Adaptation and Bioleaching Process
2.4. Analytical Methods
3. Results and Discussion
3.1. Chemical and Mineralogical Composition of the Slag
3.2. Variation in Physico-Chemical Parameters During Bioleaching Process
3.3. Bioprocessing of Copper Smelter Slag and Recovery of Critical Minerals
3.4. Mineralogical Study on Slag After Bioleaching and Copper Recovered from Bioleach Liquor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmadi, A.; Khezri, M.; Abdollahzadeh, A.A.; Askari, M. Bioleaching of copper, nickel and cobalt from the low-grade sulfidic tailing of Golgohar Iron Mine, Iran. Hydrometallurgy 2015, 154, 1–8. [Google Scholar] [CrossRef]
- Lohmeier, S.; Lottermoser, B.G.; Schirmer, T.; Gallhofer, D. Copper slag as a potential source of critical elements-A case study from Tsumeb, Namibia. J. S. Afr. Inst. Min. Metall. 2021, 121, 129–142. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, C.; Gao, W.; Lu, M. Recovery of iron from copper slag using coal-based direct reduction: Reduction characteristics and kinetics. Minerals 2020, 10, 973. [Google Scholar] [CrossRef]
- Wan, X.; Dou, Z.; Hao, J.; Jiang, K.; Wang, K. Recovery of value-added products from copper slag by pyrometallurgy: Transfer and structure of arsenic compounds. J. Environ. Chem. Eng. 2023, 11, 109868. [Google Scholar] [CrossRef]
- Johnson, D.B.; Grail, B.M.; Hallberg, K.B. A new direction for biomining: Extraction of metals by reductive dissolution of oxidized ores. Minerals 2013, 3, 49–58. [Google Scholar] [CrossRef]
- Smith, S.L.; Grail, B.M.; Johnson, D.B. Reductive bioprocessing of cobalt-bearing limonitic laterites. Miner. Eng. 2017, 106, 86–90. [Google Scholar] [CrossRef]
- Darvanjooghi, M.H.K.; Kaur, K.; Magdouli, S.; Brar, S.K. Extracellular polymeric substances overproduction strategy in Ferroplasma acidiphilum growth for biooxidation of low-grade gold bearing ore: Role of monosaccharides. Bioresour. Technol. 2023, 369, 128476. [Google Scholar] [CrossRef]
- Thallner, S.; Hemmelmair, C.; Martinek, S.; Schnitzhofer, W. Bioleaching for removal of chromium and associated metals from LD slag. Solid State Phenom. 2017, 262, 79–83. [Google Scholar] [CrossRef]
- Yang, Y.K.; Chen, S.; Yang, D.S.; Zhang, W.; Wang, H.J.; Zeng, R.J. Anaerobic reductive bio-dissolution of jarosites by Acidithiobacillus ferrooxidans using hydrogen as electron donor. Sci. Total Environ. 2019, 686, 869–877. [Google Scholar] [CrossRef]
- Chen, H.R.; Zhang, D.R.; Nie, Z.Y.; Xia, J.L.; Li, Q.; Zhang, R.Y.; Yin, H.H.; Pakostova, E. Reductive dissolution of jarosite by inorganic sulfur compounds catalyzed by Acidithiobacillus thiooxidans. Hydrometallurgy 2022, 212, 105908. [Google Scholar] [CrossRef]
- Gan, M.; Zhou, S.; Li, M.; Zhu, J.; Liu, X.; Chai, L. Bioleaching of multiple heavy metals from contaminated sediment by mesophile consortium. Environ. Sci. Pollut. Res. 2015, 22, 5807–5816. [Google Scholar] [CrossRef] [PubMed]
- Falagán, C.; Grail, B.M.; Johnson, D.B. New approaches for extracting and recovering metals from mine tailings. Miner. Eng. 2017, 106, 71–78. [Google Scholar] [CrossRef]
- Mangold, S.; Valdés, J.; Holmes, D.; Dopson, M. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. Front. Microbiol. 2011, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, P.; Nicolova, M.; Spasova, I.; Lazarova, A.; Groudev, S. Leaching of valuabe metals from copper slag by means of chemolithotrophic archaea and bacteria. J. Min. Geol. Sci. 2017, 60, 127–130. [Google Scholar]
- Schippers, A.; Hedrich, S.; Vasters, J.; Drobe, M.; Sand, W.; Willscher, S. Biomining: Metal recovery from ores with microorganisms. In Geobiotechnology I: Metal-Related Issues; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–47. [Google Scholar] [CrossRef]
- Osorio, H.; Mangold, S.; Denis, Y.; Osorio, H.; Esparza, M.; Johnson, D.B.; Bonnefoy, V.; Dopson, M.; Holmes, D.S. Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol. 2013, 79, 2172–2181. [Google Scholar] [CrossRef]
- Pathak, A.; Srichandan, H.; Kim, D.J. Column bioleaching of metals from refinery spent catalyst by Acidithiobacillus thiooxidans: Effect of operational modifications on metal extraction, metal precipitation, and bacterial attachment. J. Environ. Manag. 2019, 242, 372–383. [Google Scholar] [CrossRef]
- Kinnunen, P.; Mäkinen, J.; Salo, M.; Soth, R.; Komnitsas, K. Efficiency of chemical and biological leaching of copper slag for the recovery of metals and valorisation of the leach residue as raw material in cement production. Minerals 2020, 10, 654. [Google Scholar] [CrossRef]
- Schippers, A. Bioleaching of copper slag material. In Solid State Phenomena; Trans Tech Publications Ltd.: Wollerau, Switzerland, 2017; Volume 262, pp. 61–64. [Google Scholar] [CrossRef]
- Stanković, S.; Martin, M.; Goldmann, S.; Gäbler, H.E.; Ufer, K.; Haubrich, F.; Moutinho, V.F.; Giese, E.C.; Neumann, R.; Stropper, J.L.; et al. Effect of mineralogy on Co and Ni extraction from Brazilian limonitic laterites via bioleaching and chemical leaching. J. Miner. Eng. 2022, 184, 107604. [Google Scholar] [CrossRef]
- Rouchalova, D.; Rouchalova, K.; Janakova, I.; Cablik, V.; Janstova, S. Bioleaching of iron, copper, lead, and zinc from the sludge mining sediment at different particle sizes, pH, and pulp density using Acidithiobacillus ferrooxidans. Minerals 2020, 10, 1013. [Google Scholar] [CrossRef]
- Potysz, A.; Kierczak, J. Prospective (bio) leaching of historical copper slags as an alternative to their disposal. Minerals 2019, 9, 542. [Google Scholar] [CrossRef]
- Wenk, H.R.; Yu, R.; Tamura, N.; Bischoff, D.; Hunkeler, W. Slags as evidence for copper mining above Casaccia, Val Bregaglia (Central Alps). Minerals 2019, 9, 292. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brar, K.K.; Magdouli, S.; Perreault, N.N.; Tanabene, R.; Brar, S.K. Reviving Riches: Unleashing Critical Minerals from Copper Smelter Slag Through Hybrid Bioleaching Approach. Minerals 2024, 14, 1094. https://doi.org/10.3390/min14111094
Brar KK, Magdouli S, Perreault NN, Tanabene R, Brar SK. Reviving Riches: Unleashing Critical Minerals from Copper Smelter Slag Through Hybrid Bioleaching Approach. Minerals. 2024; 14(11):1094. https://doi.org/10.3390/min14111094
Chicago/Turabian StyleBrar, Kamalpreet Kaur, Sara Magdouli, Nancy N. Perreault, Rayen Tanabene, and Satinder Kaur Brar. 2024. "Reviving Riches: Unleashing Critical Minerals from Copper Smelter Slag Through Hybrid Bioleaching Approach" Minerals 14, no. 11: 1094. https://doi.org/10.3390/min14111094
APA StyleBrar, K. K., Magdouli, S., Perreault, N. N., Tanabene, R., & Brar, S. K. (2024). Reviving Riches: Unleashing Critical Minerals from Copper Smelter Slag Through Hybrid Bioleaching Approach. Minerals, 14(11), 1094. https://doi.org/10.3390/min14111094