Magnetic Mineral Dissolution in Heqing Core Lacustrine Sediments and Its Paleoenvironment Significance
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. The Availability of the Low ARM in the HQ Drill Core
4.2. Reductive Dissolution and Its Influence on the Magnetic Mineral Grain Size
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clemens, S.C.; Prell, W.L. A 350,000 year summer-monsoon multi-proxy stack from the Owen Ridge, Northern Arabian Sea. Mar. Geol. 2003, 201, 35–51. [Google Scholar] [CrossRef]
- An, Z.S.; Clemens, S.C.; Shen, J.; Qiang, X.K.; Jin, Z.D.; Sun, Y.B.; Prell, W.L.; Luo, J.J.; Wang, S.M.; Xu, H.; et al. Glacial-interglacial Indian summer monsoon dynamics. Science 2011, 333, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Mohtadi, M.; Prange, M.; Steinke, S. Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 2016, 533, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Landais, A.; Stenni, B.; Masson-Delmotte, V.; Jouzel, J.; Cauquoin, A.; Fourré, E.; Minster, B.; Selmo, E.; Extier, T.; Werner, M.; et al. Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts. Nat. Geosci. 2021, 14, 918–923. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Ikehara, M.; Horikawa, K.; Asahara, Y.; Yoo, C.M.; Khim, B. Indian monsoon variability in the Mahanadi Basin over the last two glacial cycles and its implications on the Indonesian throughflow. Geosci. Front. 2023, 14, 101483. [Google Scholar] [CrossRef]
- Cai, Y.; Fung, I.; Edwards, R.; An, Z.; Cheng, H.; Lee, J.; Tana, L.; Sheng, C.; Wang, X.; Day, J.; et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc. Natl. Acad. Sci. USA 2015, 112, 2954–2959. [Google Scholar] [CrossRef]
- Tierney, J.; Pausata, F.; deMenocal, P. Deglacial Indian monsoon failure and North Atlantic stadials linked by Indian Ocean surface cooling. Nat. Geosci. 2016, 9, 46–50. [Google Scholar] [CrossRef]
- Clemens, S.C.; Yamamoto, M.; Thirumalai, K.; Giosan, L.; Richey, J.N.; Nilsson-Kerr, K.; Rosenthal, Y.; Anand, P.; McGrath, S.M. Remote and local drivers of Pleistocene South Asian summer monsoon precipitation: A test for future predictions. Sci. Adv. 2021, 7, eabg3848. [Google Scholar] [CrossRef]
- Cui, K.; Wang, Y.; Liu, X.; Shen, J.; Wang, Y. Holocene variation in the Indian Summer Monsoon modulated by the tropical Indian Ocean sea-surface temperature mode. Catena 2022, 215, 106302. [Google Scholar] [CrossRef]
- Weldeab, S.; Rühlemann, C.; Ding, Q.; Khon, V.; Schneider, B.; Gray, W.R. Impact of Indian Ocean surface temperature gradient reversals on the Indian Summer Monsoon. Earth Planet. Sci. Lett. 2022, 578, 117327. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Z.; Huang, K.; Yang, X.; Tian, L. Sensitivity of altitudinal vegetation in southwest China to changes in the Indian summer monsoon during the past 68000 years. Quat. Sci. Rev. 2020, 239, 106359. [Google Scholar] [CrossRef]
- Zhang, E.L.; Zhao, C.; Xue, B.; Liu, Z.H.; Yu, Z.C.; Chen, R.; Shen, J. Millennialscale hydroclimate variations in southwest China linked to tropical Indian Ocean since the Last Glacial Maximum. Geology 2017, 45, 435–438. [Google Scholar] [CrossRef]
- Zhao, C.; Rohling, E.J.; Liu, Z.; Yang, X.; Zhang, E.; Cheng, J.; Liu, Z.; An, Z.; Yang, X.; Feng, X.; et al. Possible obliquity-forced warmth in southern Asia during the last glacial stage. Sci. Bull. 2021, 66, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Ao, H.; Deng, C.L.; Dekkers, M.J.; Liu, Q.S. Magnetic mineral dissolution in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China). Earth Planet. Sci. Lett. 2010, 292, 191–200. [Google Scholar] [CrossRef]
- Roberts, A.P. Magnetic mineral diagenesis. Earth-Sci. Rev. 2015, 151, 1–47. [Google Scholar] [CrossRef]
- Warrier, A.K.; Mahesh, B.S.; Mohan, R.; Shankar, R. A 43-ka mineral magnetic record of environmental variations from lacustrine sediments of Schirmacher Oasis, East Antarctica. Catena 2021, 202, 105300. [Google Scholar] [CrossRef]
- Lisé-Pronovost, A.; Fletcher, M.; Simon, Q.; Jacobs, Z.; Gadd, P.; Heslop, D.; Herries, A.; Yokoyama, Y.; Team, A. Chronostratigraphy of a 270-ka sediment record from Lake Selina, Tasmania: Combining radiometric, geomagnetic and climatic dating. Quat. Geochronol. 2021, 62, 101152. [Google Scholar] [CrossRef]
- Thompson, R.; Morton, D.J. Magnetic susceptibility and particle size distribution in recent sediments of the Loch Lomond drainage basin, Scotland. J. Sediment. Res. 1979, 49, 801–811. [Google Scholar]
- Hu, S.; Goddu, S.; Herb, C.; Appel, E.; Gleixner, G.; Wang, S.; Yang, X.; Zhu, X. Climate variability and its magnetic response recorded in a lacustrine sequence in Heqing basin at the se Tibetan Plateau since 900 ka. Geophys. J. Int. 2015, 201, 444–458. [Google Scholar] [CrossRef]
- Scheidt, S.; Egli, R.; Lenz, M.; Rolf, C.; Fabian, K.; Melles, M. Mineral magnetic characterization of highlatitude sediments from Lake Levinson-Lessing, Siberia. Geophys. Res. Lett. 2021, 48, e2021GL093026. [Google Scholar] [CrossRef]
- Gromig, R.; Grunert, P.; Scheidt, S.; Melles, M. Postglacial shelf erosion, riverine input and lake drainage in the eastern Kara Sea, Russia. Mar. Geol. 2022, 451, 106865. [Google Scholar] [CrossRef]
- Just, J.; Nowaczyk, N.R.; Sagnotti, L.; Francke, A.; Vogel, H.; Lacey, J.H.; Wagner, B. Environmental control on the occurrence of high-coercivity magnetic minerals and formation of iron sulfides in a 640 ka sediment sequence from Lake Ohrid (Balkans). Biogeosciences 2016, 13, 2093–2109. [Google Scholar] [CrossRef]
- Qiang, X.K.; Xu, X.W.; Zhao, H.; Fu, C.F. Greigite formed in early Pleistocene lacustrine sediments from the Heqing Basin, southwest China, and its paleoenvironmental implications. J. Asian Earth Sci. 2018, 156, 256–264. [Google Scholar] [CrossRef]
- Peng, J.; Yang, X.; Toney, J.L.; Ruan, J.; Li, G.; Zhou, Q.; Gao, H.; Xie, Y.; Chen, Q.; Zhang, T. Indian Summer Monsoon variations and competing influences between hemispheres since ~35 ka recorded in Tengchongqinghai Lake, southwest China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 516, 113–125. [Google Scholar] [CrossRef]
- Xu, X.; Qiang, X.; Li, X.; Qiu, H.; Zhao, H.; Fu, C.; Yang, Z. Determination of the optimized late Pleistocene chronology of a lacustrine sedimentary core from the Heqing Basin by geomagnetic paleointensity and its paleoclimate significance. Catena 2022, 212, 106095. [Google Scholar] [CrossRef]
- Liu, Q.S.; Roberts, A.P.; Larrasoaña, J.C.; Banerjee, S.K.; Guyodo, Y.; Tauxe, L.; Oldfield, F. Rock and environmental magnetism: Principles and applications. Rev. Geophy. 2012, 50, RG4002. [Google Scholar] [CrossRef]
- Xu, X.; Qiang, X.; Zhao, H.; Fu, C. Magnetic mineral dissolution recorded in a lacustrine sequence from the Heqing Basin, SW China, and its relationship with changes in the Indian monsoon. J. Asian Earth Sci. 2020, 188, 104081. [Google Scholar] [CrossRef]
- Murdock, K.J.; Wilkie, K.; Brown, L.L. Rock magnetic properties, magnetic susceptibility, and organic geochemistry comparison in core LZ1029-7 Lake El’gygytgyn, Russia Far East. Clim. Past Discuss. 2013, 9, 467–479. [Google Scholar] [CrossRef]
- Dunlop, D.J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J. Geophys. Res. 2002, 107, 2057. [Google Scholar] [CrossRef]
- Oldfield, F. Mud and magnetism: Records of late Pleistocene and Holocene environmental change recorded by magnetic measurements. J. Paleolimnol. 2013, 49, 465–480. [Google Scholar] [CrossRef]
- Roberts, A.P.; Almeida, T.P.; Church, N.S.; Harrison, R.J.; Heslop, D.; Li, Y.; Li, J.; Muxworthy, A.R.; Williams, W.; Zhao, X. Resolving the origin of Pseudo-Single domain magnetic behavior. J. Geophys. Res. 2017, 122, 9534–9558. [Google Scholar] [CrossRef]
- Canfield, D.E.; Thamdrup, B. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology 2009, 7, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Van Oorschot, I.; Dekkers, M.; Havlicek, P. Selective dissolution of magnetic iron oxides with the acid-ammonium-oxalate/ferrous-iron extraction technique-II. Natural loess and palaeosol samples. Geophys. J. Int. 2002, 149, 106–117. [Google Scholar] [CrossRef]
- Hu, P.; Liu, Q.; Torrent, J.; Barrón, V.; Jin, C. Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis. Earth Planet. Sci. Lett. 2013, 369–370, 271–283. [Google Scholar] [CrossRef]
- Deng, C.L.; Zhu, R.X.; Verosub, K.L.; Singer, M.; Vidic, N. Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. J. Geophys. Res. 2004, 109, B01103. [Google Scholar] [CrossRef]
- Xiao, X.Y.; Shen, J.; Wang, S.M.; Xiao, H.F.; Tong, G.B. The variation of the southwest monsoon from the high resolution pollen record in Heqing Basin, Yunnan Province, China for the last 2.78 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 287, 45–57. [Google Scholar] [CrossRef]
- Yang, X.; Su, Z.; Wei, G.; Zhang, T.; Chen, Q.; Ye, Y. Geomagnetic paleointensity variations in the northern South China Sea since the Late Pleistocene. Quat. Sci. Rev. 2024, 324, 108452. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, P.; Xu, X.; Yang, Z.; Wang, Q.; Hou, L.; Jin, Y.; Wu, Q. Magnetic Mineral Dissolution in Heqing Core Lacustrine Sediments and Its Paleoenvironment Significance. Minerals 2024, 14, 1096. https://doi.org/10.3390/min14111096
Lei P, Xu X, Yang Z, Wang Q, Hou L, Jin Y, Wu Q. Magnetic Mineral Dissolution in Heqing Core Lacustrine Sediments and Its Paleoenvironment Significance. Minerals. 2024; 14(11):1096. https://doi.org/10.3390/min14111096
Chicago/Turabian StyleLei, Peng, Xinwen Xu, Ziyi Yang, Qiongqiong Wang, Lirong Hou, Yi Jin, and Qiubin Wu. 2024. "Magnetic Mineral Dissolution in Heqing Core Lacustrine Sediments and Its Paleoenvironment Significance" Minerals 14, no. 11: 1096. https://doi.org/10.3390/min14111096
APA StyleLei, P., Xu, X., Yang, Z., Wang, Q., Hou, L., Jin, Y., & Wu, Q. (2024). Magnetic Mineral Dissolution in Heqing Core Lacustrine Sediments and Its Paleoenvironment Significance. Minerals, 14(11), 1096. https://doi.org/10.3390/min14111096