Limits for the Identification of Smectites Mixed with Common Minerals Based on Short-Wave Infrared Spectroscopy
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. SWIR Spectra of the Binary Mixture Samples
3.2. CR Spectra of the Binary Mixture Samples
3.3. Second Derivative of Binary Mixture Samples Spectra
3.4. Mineral Identification Limits
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hauff, P. An Overview of VIS-NIR-SWIR Field Spectroscopy as Applied to Precious Metals Exploration; Spectral International Inc.: Arvada, CO, USA, 2008; Volume 80001, pp. 303–403. [Google Scholar]
- Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. 1990, 95, 12653–12680. [Google Scholar] [CrossRef]
- Bishop, J.L.; Lane, M.D.; Dyar, M.D.; Brown, A.J. Reflectance and emission spectroscopy study of four groups of phyllosilicates: Smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 2008, 43, 35–54. [Google Scholar] [CrossRef]
- Bishop, J.L. Visible and near-infrared reflectance spectroscopy: Laboratory spectra of geologic materials. In Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces; Bishop, J., Bell III, J., Moersch, J., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 68–101. [Google Scholar] [CrossRef]
- Bishop, J.L.; King, S.J.; Lane, M.D.; Brown, A.J.; Lafuente, B.; Hiroi, T.; Roberts, R.; Swayze, G.A.; Lin, J.F.; Sánchez Román, M. Spectral Properties of Anhydrous Carbonates and Nitrates. Earth Space Sci. 2021, 8, e2021EA001844. [Google Scholar] [CrossRef]
- Post, J.L.; Noble, P.N. The Near-Infrared Combination Band Frequencies of Dioctahedral Smectites, Micas, and Illites. Clays Clay Miner. 1993, 41, 639–644. [Google Scholar] [CrossRef]
- Robertson, K.M.; Milliken, R.E.; Li, S. Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra. Icarus 2016, 277, 171–186. [Google Scholar] [CrossRef]
- del Buey, P.; Sanz-Montero, M.E.; Sánchez-Román, M. Bioinduced precipitation of smectites and carbonates in photosynthetic diatom-rich microbial mats: Effect of culture medium. Appl. Clay Sci. 2023, 238, 106932. [Google Scholar] [CrossRef]
- Schrank, A.B.S.; Dos Santos, T.; Altenhofen, S.D.; Freitas, W.; Cembrani, E.; Haubert, T.; Dalla Vecchia, F.; Barili, R.; Rodrigues, A.G.; Maraschin, A.; et al. Interactions between Clays and Carbonates in the Aptian Pre-Salt Reservoirs of Santos Basin, Eastern Brazilian Margin. Minerals 2024, 14, 191. [Google Scholar] [CrossRef]
- Molnár, Z.; Pekker, P.; Dódony, I.; Pósfai, M. Clay minerals affect calcium (magnesium) carbonate precipitation and aging, Earth Planet. Sci. Lett. 2021, 567, 116971. [Google Scholar] [CrossRef]
- Chevrier, V.F.; Morisson, M. Carbonate-phyllosilicate parageneses and environments of aqueous alteration in Nili Fossae and Mars. J. Geophys. Res. Planets 2021, 126, e2020JE006698. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Skiba, M.; Maj-Szeliga, K.; Mazurek, R.; Zaleski, T. Does calcium carbonate influence clay mineral transformation in soils developed from slope deposits in Southern Poland? J. Soil. Sediment. 2021, 21, 257–280. [Google Scholar] [CrossRef]
- Reijonen, H.M.; Elminen, T.; Heikkilä, P.; Kuva, J.; Jolis, E.M. Enhanced Identification of Fracture Smectites and Other Alteration Minerals Via Short-Wave Infrared Reflectance at Two Finnish Crystalline Sites, Olkiluoto and Hyrkkölä. Rock Mech. Rock Eng. 2024, 57, 4299–4332. [Google Scholar] [CrossRef]
- Bultel, B.; Viennet, J.; Poulet, F.; Carter, J.; Werner, S.C. Detection of carbonates in Martian weathering profiles. J. Geophys. Res. Planets 2019, 124, 989–1007. [Google Scholar] [CrossRef]
- Cloutis, E.A.; Grasby, S.E.; Last, W.M.; Léveillé, R.; Osinski, G.R.; Sherriff, B.L. Spectral reflectance properties of carbonates from terrestrial analogue environments: Implications for Mars. Planet. Space Sci. 2010, 58, 522–537. [Google Scholar] [CrossRef]
- Michalski, J.R.; Cuadros, J.; Niles, P.B.; Parnell, J.; Rogers, A.D.; Wright, S.P. Groundwater activity on Mars and implications for a deep biosphere. Nat. Geosci. 2013, 6, 133–138. [Google Scholar] [CrossRef]
- Cuadros, J.; Diaz-Hernandez, J.L.; Sanchez-Navas, A.; Garcia-Casco, A.; Yepes, J. Chemical and textural controls on the formation of sepiolite, palygorskite and dolomite in volcanic soils. Geoderma 2016, 271, 99–114. [Google Scholar] [CrossRef]
- Harvey, R.P. Carbonates and Martian Climate. Science 2010, 329, 400–401. [Google Scholar] [CrossRef]
- Bandfield, J.L.; Glotch, T.D.; Christensen, P.R. Spectroscopic identification of carbonate minerals in the martian dust. Science 2003, 301, 1084. [Google Scholar] [CrossRef]
- Blaney, D.L.; McCord, T.B. An observational search for carbonates on Mars. J. Geophys. Res. 1989, 94, 10159. [Google Scholar] [CrossRef]
- Alemanno, G.; Carli, C.; Serventi, G.; Maturilli, A.; Helbert, J. Study of Detection Limits of Carbonate Phases in Mixtures with Basaltic-like Fine Regolith in the MIR (1–5.5 µm) Spectral Range. Minerals 2023, 13, 764. [Google Scholar] [CrossRef]
- Poulet, F.; Bibring, J.P.; Mustard, J.F.; Gendrin, A.; Mangold, N.; Langevin, Y.; Arvidson, R.E.; Gondet, B.; Gomez, C.; Berthe, M.; et al. Phyllosilicates on Mars and implications for early martian climate. Nature 2005, 438, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Hover, V.C.; Walter, L.M.; Peacor, D.R.; Martini, A.M. Mg-Smectite Authigenesis in a Marine Evaporative Environment, Salina Ometepec, Baja California. Clays Clay Miner. 1999, 47, 252–268. [Google Scholar] [CrossRef]
- Bishop, J.L.; Gross, C.; Danielsen, J.; Parente, M.; Murchie, S.L.; Horgan, B.; Wray, J.J.; Viviano, C.; Seelos, F.P. Multiple mineral horizons in layered outcrops at Mawrth Vallis, Mars, signify changing geochemical environments on early Mars. Icarus 2020, 341, 113634. [Google Scholar] [CrossRef] [PubMed]
- Çelik, M.; Karakaya, N.; Temel, A. Clay Minerals in Hydrothermally Altered Volcanic Rocks, Eastern Pontides, Turkey. Clays Clay Miner. 1999, 47, 708–717. [Google Scholar] [CrossRef]
- Naimi, S.; Ayoubi, S.; Di Raimo, L.A.D.L.; Dematte, J.A.M. Quantification of some intrinsic soil properties using proximal sensing in arid lands: Application of Vis-NIR, MIR, and pXRF spectroscopy. Geoderma Reg. 2022, 28, e00484. [Google Scholar] [CrossRef]
- Wilson, S.A.; Bish, D.L. Formation of Gypsum and Bassanite by Cation Exchange Reactions in the Absence of Free-liquid H 2 O: Implications for Mars. J. Geophys. Res. 2011, 116, 2011JE003853. [Google Scholar] [CrossRef]
- Cuadros, J.; Caballero, E.; Huertas, F.J.; Jiménez de Cisneros, C.; Huertas, F.; Linares, J. Experimental alteration of vol canic tuff: Smectite formation and effect on 18O isotope compo sition. Clays Clay Miner. 1999, 47, 769–776. [Google Scholar] [CrossRef]
- Sunshine, J.M.; Pieters, C.M.; Pratt, S.F. Deconvolution of mineral absorption bands: An improved approach. J. Geophys. Res. 1990, 95, 6955–6966. [Google Scholar] [CrossRef]
- Sunshine, J.M.; Pieters, C.M. Estimating Modal Abundances From the Spectra of Natural and Laboratory Pyroxene Mixtures Using the Modified Gaussian Model. J. Geophys. Res. 1993, 98, 9075–9087. [Google Scholar] [CrossRef]
- Shkuratov, Y.G.; Kreslavsky, M.A.; Ovcharenko, A.A.; Stankevich, D.G.; Zubko, E.S.; Pieters, C.; Arnold, G. Opposition Effect from Clementine Data and Mechanisms of Backscatter. Icarus 1999, 141, 132–155. [Google Scholar] [CrossRef]
- Pompilio, L.; Pedrazzi, G.; Sgavetti, M.; Cloutis, E.A.; Craig, M.A.; Roush, T.L. Exponential Gaussian approach for spectral modeling: The EGO algorithm I. Band saturation. Icarus 2009, 201, 781–794. [Google Scholar] [CrossRef]
- Rialland, R.; Soussen, C.; Marion, R.; Carrere, V. Improved Deconvolution of Mineral Reflectance Spectra. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9711–9726. [Google Scholar] [CrossRef]
- Makarewicz, H.D.; Parente, M.; Bishop, J.L. Deconvolution of VNIR spectra using modified Gaussian modeling (MGM) with automatic parameter initialization (API) applied to CRISM. In Proceedings of the WHISPERS ’09–1st Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Grenoble, France, 26–28 August 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Bishop, J.L.; Madejová, J.; Komadel, P.; Fröschl, H. The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites. Clay Miner. 2002, 37, 607–616. [Google Scholar] [CrossRef]
- Madejová, J.; Gates, W.P.; Petit, S. IR Spectra of Clay Minerals. In Developments in Clay Science; Gates, W.P., Kloprogge, J.T., Madejová, J., Bergaya, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 107–149. [Google Scholar] [CrossRef]
- Novais, J.J.; Poppiel, R.R.; Lacerda, M.P.C.; Demattê, J.A.M. VNIR-SWIR Spectroscopy, XRD and Traditional Analyses for Pedomorphogeological Assessment in a Tropical Toposequence. Agric. Eng. 2023, 5, 1581–1598. [Google Scholar] [CrossRef]
- Hecker, C.; van Ruitenbeek, F.J.A.; van der Werff, H.M.A.; Bakker, W.H.; Hewson, R.D.; van der Meer, F.D. Spectral Absorption Feature Analysis for Finding Ore: A Tutorial on Using the Method in Geological Remote Sensing. IEEE Geosci. Remote Sens. Mag. 2019, 7, 51–71. [Google Scholar] [CrossRef]
- Demetriades-Shah, T.H.; Steven, M.D.; Clark, J.A. High resolution derivative spectra in remote sensing. Remote Sens. Environ. 1990, 33, 55–64. [Google Scholar] [CrossRef]
- Kariuki, P.C.; Woldai, T.; van der Meer, F. Effectiveness of spectroscopy in identification of swelling indicator clay minerals. Int. J. Remote Sens. 2004, 25, 455–469. [Google Scholar] [CrossRef]
- Poggialini, F.; Legnaioli, S.; Campanella, B.; Cocciaro, B.; Lorenzetti, G.; Raneri, S.; Palleschi, V. Calculating the Limits of Detection in Laser-Induced Breakdown Spectroscopy: Not as Easy as It Might Seem. Appl. Sci. 2023, 13, 3642. [Google Scholar] [CrossRef]
- Gomez, C.; Adeline, K.; Bacha, S.; Driessen, B.; Gorretta, N.; Lagacherie, P.; Roger, J.M.; Briottet, X. Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data, from multispectral to hyperspectral scenarios. Remote Sens. Environ. 2018, 204, 18–30. [Google Scholar] [CrossRef]
- Currie, L.A. Detection and quantification limits: Origins and historical overview. Anal. Chim. Acta 1999, 391, 127–134. [Google Scholar] [CrossRef]
- Vogelgesang, J.; Haedrich, J. Limits of Detection, Identification and Determination: A Statistical Approach for Practitioners. Accredit. Qual. Assur. 1998, 3, 242–255. [Google Scholar] [CrossRef]
- Wu, X.; Mustard, J.F.; Tarnas, J.D.; Zhang, X.; Das, E.; Liu, Y. Imaging Mars analog minerals’ reflectance spectra and testing mineral detection algorithms. Icarus 2021, 369, 114644. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, X.; Mustard, J.; Tarnas, J.; Lin, H.; Liu, Y. Joint Hapke Model and Spatial Adaptive Sparse Representation with Iterative Background Purification for Martian Serpentine Detection. Remote Sens. 2021, 13, 500. [Google Scholar] [CrossRef]
- Santamaría-López, A.; Suárez, M.; García-Romero, E. Detection limits of kaolinites and some common minerals in binary mixtures by short-wave infrared spectroscopy. Appl. Clay Sci. 2024, 250, 107269. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C., Jr. Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Warr, L.N. IMA–CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- García-Romero, E.; Manchado, E.M.; Suárez, M.; García-Rivas, J. Spanish bentonites: A review and new data on their geology, mineralogy, and crystal chemistry. Minerals 2019, 9, 696. [Google Scholar] [CrossRef]
- Manchado, E.M.; Suárez, M.; García-Romero, E. The kaolin and bentonite deposit of Tamame de Sayago (Zamora, Spain): Mineralogy, geochemistry, and genesis. Clays Clay Miner. 2023, 71, 478–495. [Google Scholar] [CrossRef]
- García-Romero, E.; Suárez, M. HRTEM evidence of Tajo Basin mineralogical complexity: Crystal chemistry and genetic relationship. Appl. Clay Sci. 2022, 224, 106515. [Google Scholar] [CrossRef]
- García-Rivas, J.; Suárez, M.; García-Romero, E.; García-Meléndez, E. Identification and classification of mineralogical associations by VNIR-SWIR spectroscopy in the Tajo basin (Spain). Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 57–65. [Google Scholar] [CrossRef]
- Iyakwari, S.; Glass, H.J. Influence of mineral particle size and choice of suitable parameters for ore sorting using near infrared sensors. Miner. Eng. 2014, 69, 102–106. [Google Scholar] [CrossRef]
- Menges, F. Spectragryph-Optical Spectroscopy Software (Version 1.2.15). 2016. Available online: http://www.effemm2.de/spectragryph/ (accessed on 19 September 2024).
- Cardoso-Fernandes, J.; Silva, J.; Dias, F.; Lima, A.; Teodoro, A.C.; Barrès, O.; Cauzid, J.; Perrotta, M.; Roda-Robles, E.; Ribeiro, M.A. Tools for remote exploration: A lithium (Li) dedicated spectral library of the Fregeneda–Almendra aplite–pegmatite field. Data 2021, 6, 33. [Google Scholar] [CrossRef]
- Gaffey, S.J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns): Calcite, aragonite, and dolomite. Am. Mineral. 1986, 71, 151–162. [Google Scholar] [CrossRef]
- Rinnan, A.; Van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Clark, R.N. Chapter 1: Spectroscopy of rocks and minerals, and principles of spectroscopy. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing; Rencz, N.A., Ed.; John Wiley & Sons: New York, NY, USA, 1999; pp. 3–58. [Google Scholar]
- Mulder, V.L.; Plötze, M.; de Bruin, S.; Schaepman, M.E.; Mavris, C.; Kokaly, R.F.; Egli, M. Quantifying mineral abundances of complex mixtures by coupling spectral deconvolution of SWIR spectra (2.1–2.4 μm) and regression tree analysis. Geoderma 2013, 207–208, 279–290. [Google Scholar] [CrossRef]
- Squyres, S.W.; Arvidson, R.E.; Bell, J.F.; Calef, F.; Clark, B.C.; Cohen, B.A.; Crumpler, L.A.; de Souza, P.A.; Farrand, W.H.; Gellert, R.; et al. Ancient Impact and Aqueous Processes at Endeavour Crater, Mars. Science 2012, 336, 570–576. [Google Scholar] [CrossRef]
- Zhang, G.; Wasyliuk, K.; Pan, Y. The characterization and quantitative analysis of clay minerals in the Athabasca basin, Saskatchewan: Application of shortwave infrared reflectance spectroscopy. Can. Mineral. 2001, 39, 1347–1363. [Google Scholar] [CrossRef]
- Bou-Orm, N.; Al Romaithi, A.A.; Elrmeithi, M.; Ali, F.M.; Nazzal, Y.; Howari, F.M.; Al Aydaroos, F. Advantages of first-derivative reflectance spectroscopy in the VNIR-SWIR for the quantification of olivine and hematite. Planet. Space Sci. 2020, 188, 104957. [Google Scholar] [CrossRef]
- Ducasse, E.; Adeline, K.; Briottet, X.; Hohmann, A.; Bourguignon, A.; Grandjean, G. Montmorillonite estimation in clay-quartz-calcite samples from laboratory SWIR imaging spectroscopy: A comparative study of spectral preprocessings and unmixing methods. Remote Sens. 2020, 12, 1723. [Google Scholar] [CrossRef]
- McKeown, N.K.; Bishop, J.L.; Cuadros, J.; Hillier, S.; Amador, E.; Makarewicz, H.D.; Parente, M.; Silver, E.A. Interpretation of reflectance spectra of clay mineral-silica mixtures: Implications for Martian clay mineralogy at Mawrth Vallis. Clays Clay Miner. 2011, 59, 400–415. [Google Scholar] [CrossRef]
- Mathian, M.; Hebert, B.; Baron, F.; Petit, S.; Lescuyer, J.; Furic, R.; Beaufort, D. Identifying the phyllosilicate minerals of hypogene ore deposits in lateritic saprolites using the near-IR spectroscopy second derivative methothology. J. Geochem. Explor. 2018, 186, 198–314. [Google Scholar] [CrossRef]
- Hubbard, B.E.; Gallegos, T.J.; Stengel, V.; Hoefen, T.M.; Kokaly, R.F.; Elliott, B. Hyperspectral (VNIR-SWIR) analysis of roll front uranium host rocks and industrial minerals from Karnes and Live Oak Counties, Texas Coastal Plain. J. Geochem. Explor. 2024, 257, 107370. [Google Scholar] [CrossRef]
- Ali, A.; Chiang, Y.W.; Santos, R.M. X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals 2022, 12, 205. [Google Scholar] [CrossRef]
- Hapke, B. Bidirectional reflectance spectroscopy. 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 2002, 157, 523–534. [Google Scholar] [CrossRef]
Region 1255 nm–1690 nm | Region 1800 nm–2145 nm | Region 2070 nm–2415 nm | |
---|---|---|---|
Di-Sme | 1415 nm | 1910 nm | 2210 nm |
Tri-Sme | 1391 nm | 1908 nm | 2312 nm |
Calcite | 1875 nm; 1995 nm | 2337 nm | |
Dolomite | 2320 nm | ||
Gypsum | 1446 nm; 1490 nm; 1535 nm | 1944 nm | 2175 nm; 2217 nm; 2267 nm |
Continuum Removal | Second Derivative | |||
---|---|---|---|---|
Mixture sets | Di-Sme—Cal | Di-Sme | 5 | 5 |
Cal | 70 | 65 | ||
Tri-Sme—Cal | Tri-Sme | 10 | 5 | |
Cal | 70 | 65 | ||
Di-Sme—Dol | Di-Sme | 10 | 5 | |
Dol | NI | 65 | ||
Tri-Sme—Dol | Tri-Sme | 10 | 5 | |
Dol | NI | 85 | ||
Di-Sme—Gp | Di-Sme | 70 | 15 | |
Gp | 20 | 10 | ||
Tri-Sme—Gp | Tri-Sme | 70 | 5 | |
Gp | 20 | 10 | ||
Di-Sme—Qz | Di-Sme | 5 | 5 | |
Qz | NI | NI | ||
Tri-Sme—Qz | Tri-Sme | 5 | 5 | |
Qz | NI | NI | ||
Di-Sme—Fsp | Di-Sme | 5 | 5 | |
Fsp | NI | NI | ||
Tri-Sme—Fsp | Tri-Sme | 5 | 5 | |
Fsp | NI | NI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santamaría-López, Á.; Suárez, M. Limits for the Identification of Smectites Mixed with Common Minerals Based on Short-Wave Infrared Spectroscopy. Minerals 2024, 14, 1098. https://doi.org/10.3390/min14111098
Santamaría-López Á, Suárez M. Limits for the Identification of Smectites Mixed with Common Minerals Based on Short-Wave Infrared Spectroscopy. Minerals. 2024; 14(11):1098. https://doi.org/10.3390/min14111098
Chicago/Turabian StyleSantamaría-López, Ángel, and Mercedes Suárez. 2024. "Limits for the Identification of Smectites Mixed with Common Minerals Based on Short-Wave Infrared Spectroscopy" Minerals 14, no. 11: 1098. https://doi.org/10.3390/min14111098
APA StyleSantamaría-López, Á., & Suárez, M. (2024). Limits for the Identification of Smectites Mixed with Common Minerals Based on Short-Wave Infrared Spectroscopy. Minerals, 14(11), 1098. https://doi.org/10.3390/min14111098