Geochemical Dynamics and Evolutionary Implications of Sediments at the Xingu–Amazon Rivers’ Confluence: Proxies for Mixing, Mobility and Weathering
Abstract
:1. Introduction
Physiographic and Geological Settings
2. Materials and Methods
2.1. Data Acquisition
2.2. Analytical Procedures
3. Results
3.1. Mineralogical Groups and Textural Patterns
3.2. Oxide and Trace Geochemistry
3.3. Rare Earth Elements and Normalization
3.4. Principal Component Analysis (PCA)
4. Discussion
4.1. Effects of Reworking Grain and the Amazon River
4.2. Chemical Weathering
4.3. Conservation of Trace Elements and REE
4.4. Provenance and Geochemical Assignment of Sediments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Singh, S.K.; France-Lanord, C. Tracing the distribution of erosion in the Brahmaputra watershed from isotopic compositions of stream sediments. Earth Planet. Sci. Lett. 2002, 202, 645–662. [Google Scholar] [CrossRef]
- Tripathi, J.K.; Ghazanfari, P.; Rajamani, V.; Tandon, S. Geochemistry of sediments of the Ganges alluvial plains: Evidence of large-scale sediment recycling. Quat. Int. 2007, 159, 119–130. [Google Scholar] [CrossRef]
- Hossain, H.Z.; Kawahata, H.; Roser, B.P.; Sampei, Y.; Manaka, T.; Otani, S. Geochemical characteristics of modern river sediments in Myanmar and Thailand: Implications for provenance and weathering. Chem. Erde 2017, 77, 443–458. [Google Scholar] [CrossRef]
- Natali, C.; Bianchini, G. Geochemical proxies of sediment provenance in alluvial plains with interfering fluvial systems: A study case from NE Italy. Catena 2017, 157, 67–74. [Google Scholar] [CrossRef]
- Maharana, C.; Srivastava, D.; Tripathi, J.K. Geochemistry of sediments of the Peninsular rivers of the Ganga basin and its implication to weathering, sedimentary processes and provenance. Chem. Geol. 2018, 483, 1–20. [Google Scholar] [CrossRef]
- Chen, J.; Liu, P.; Sun, D.; Zhang, D.; Miao, B.; Chen, J. Riverine Sediment Geochemistry as Provenance Fingerprints along the Eastern Coast of China: Constraint, Approach, and Application. Minerals 2020, 10, 29. [Google Scholar] [CrossRef]
- Irion, G.; Kalliola, R. Long-term landscape development processes in Amazonia. In Amazonia, Landscape and Species Evolution: A Look into the Past; Hoorn, C.M., Wesselingh, F.P., Eds.; John Wiley & Sons: New York, NY, USA, 2010; pp. 185–197. [Google Scholar]
- Albert, J.S.; Val, P.; Hoorn, C. The changing course of the Amazon River in the Neogene: Center stage for Neotropical diversification. Neotropical Ichthyol. 2018, 16, 1–24. [Google Scholar] [CrossRef]
- Bertassoli, D.J.; Sawakuchi, A.O.; Sawakuchi, H.O.; Pupim, F.N.; Hartmann, G.A.; McGlue, M.M.; Chiessi, C.M.; Zabel, M.; Schefuß, E.; Pereira, T.S.; et al. The Fate of Carbon in Sediments of the Xingu and Tapajós Clearwater Rivers, Eastern Amazon. Front. Mar. Sci. 2017, 4, 44. [Google Scholar] [CrossRef]
- Fricke, A.T.; Nittrouer, C.A.; Ogston, A.S.; Nowacki, D.J.; Asp, N.E.; Filho, P.W.M.S.; da Silva, M.S.; Jalowska, A.M. River tributaries as sediment sinks: Processes operating where the Tapajós and Xingu rivers meet the Amazon tidal river. Sedimentology 2017, 64, 1731–1753. [Google Scholar] [CrossRef]
- Silva, A.M.; Asp, N.E.; Gomes, V.J.; Braga, A.A.; Gomes, J.D.; Fricke, A.T.; Souza-Filho, P.W.M.; Souza, T.P.; Almeida, P.D.; Ogston, A.S.; et al. Recent sedimentation in an Amazon tidal tributary: Integrated analysis of morphology and sedimentology. J. South Am. Earth Sci. 2021, 107, 103134. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Victoria, R.L.; Dematte, J.L.I.; Richey, J.; Devol, A. Chemical and mineralogical composition of Amazon River floodplain sediments, Brazil. Appl. Geochem. 1993, 8, 391–402. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupre, B.; Allegre, C.J.; Négrel, P. Chemical and physical denudation in the Amazonian River Basin. Chem. Geol. 1997, 142, 141–173. [Google Scholar] [CrossRef]
- Horbe, A.M.C.; da Trindade, I.R.; Dantas, E.L.; Santos, R.V.; Roddaz, M. Provenance of quaternary and modern alluvial deposits of the Amazonian floodplain (Brazil) inferred from major and trace elements and Pb–Nd–Sr isotopes. Palaeogeogr. Palaeoclim. Palaeoecol. 2014, 411, 144–154. [Google Scholar] [CrossRef]
- Baturin, G.N.; Gordeev, V.V. Geochemistry of Suspended Matter in the Amazon River Waters. Geochem. Int. 2019, 57, 197–205. [Google Scholar] [CrossRef]
- Vital, H.; Stattegger, K. Lowermost Amazon River: Evidence of late Quaternary sea-level fluctuations in a complex hydrodynamic system. Quat. Int. 2000, 72, 53–60. [Google Scholar] [CrossRef]
- Seyler, P.T.; Boaventura, G.R. Distribution and partition of trace metals in the Amazon basin. Hydrol. Process. 2003, 17, 1345–1361. [Google Scholar] [CrossRef]
- Bouchez, J.; Gaillardet, J.; France-Lanord, C.; Maurice, L.; Dutra-Maia, P. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles. Geochem. Geophys. Geosystems 2011, 12, Q03008. [Google Scholar] [CrossRef]
- Filho, L.C.M.; Lafon, J.-M.; Filho, P.W.M.S. Pb Sr Nd isotopic tracing of the influence of the Amazon River on the bottom sediments in the lower Tapajós River. J. S. Am. Earth Sci. 2016, 70, 36–48. [Google Scholar] [CrossRef]
- Irion, G. Sedimentation and sediments of Amazonian rivers and evolution of the Amazonian landscape since Pliocene times. In The Amazon; Sioli, H., Ed.; Monographiae Biologicae; Springer: Dordrecht, The Netherlands, 1984; Volume 56. [Google Scholar] [CrossRef]
- Ahmad, I.; Chandra, R. Geochemistry of loess-paleosol sediments of Kashmir Valley, India: Provenance and weathering. J. Asian Earth Sci. 2013, 66, 73–89. [Google Scholar] [CrossRef]
- Garzanti, E.; Resentini, A. Provenance control on chemical indices of weathering (Taiwan river sands). Sediment. Geol. 2016, 336, 81–95. [Google Scholar] [CrossRef]
- Vasquez, M.L.; Rosa-Costa, L.T. (org.). Geologia e Recursos Minerais do Estado do Pará: Texto Explicativo do Mapa Geológico e de Recursos Minerais do Estado do Pará. Belém, PA: CPRM, 2008. 327 p. il. Color. Programa Geologia do Brasil (PGE), Integração, Atualização e Difusão de Dados da Geologia do Brasil. Mapas Geológicos Estaduais. Escala 1:1.000,000. Available online: https://rigeo.sgb.gov.br/handle/doc/10443 (accessed on 21 January 2024).
- Kroonenberg, S.B.; de Roever, E.W.F. Geological Evolution of the Amazonian Craton. In Amazonia: Landscape and Species Evolution: A Look into the Past; Hoorn, C., Wesselingh, F.P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA; pp. 7–19. [CrossRef]
- Hoorn, C.; Roddaz, M.; Dino, R.; Soares, E.; Uba, C.; Ochoa-Lozano, D.; Mapes, R. The Amazonian Craton and its influence on past fluvial systems (Mesozoic-Cenozoic, Amazonia). In Amazonia: Landscape and Species Evolution—A Look into the Past; Hoorn, C., Wesselingh, F.P., Eds.; Blackwell. Publishing Ltd.: West Sussex, UK, 2010; pp. 103–122. [Google Scholar] [CrossRef]
- Tassinari, C.C.; Macambira, M.J. Geochronological provinces of the Amazonian Craton. Episodes 1999, 22, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Tassinari, C.C.G.; Macambira, M.J.B. A evolução tectônica do Cráton Amazônico. In Geologia do Continente Sul-Americano: Evoluçao da Obra de Fernando Flávio Marques de Almeida; Recuperado de Beca: São Paulo, Brazil, 2004; Available online: https://repositorio.usp.br/directbitstream/92ee8375-3d03-4514-a8a9-98c7d6eaba02/1417504.pdf (accessed on 30 January 2021).
- Folk, R.L.; Ward, W. Brazos river bar: A study in the significance of grain-size parameters. J. Sediment. Res. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleo-weathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M.; McLennan, S.M.; Keays, R.R. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implication for provenance studies. J. Geol. 1996, 104, 525–542. [Google Scholar] [CrossRef]
- Mineli, R.C. Proveniência e Retrabalhamento Sedimentar das Areias da Volta Grande do rio Xingu, PA. MS Dissertation, Instituto de Geociências, Universidade de São Paulo, Belém, Portugal, 2013; p. 74. Available online: http://www.teses.usp.br/teses/disponiveis/44/44141/tde-07042014-093930/ (accessed on 21 May 2021).
- Souza, T.P. 2018. Influência do rio Amazonas nos sedimentos de fundo do rio Xingu: Evidências mineralógicas e geoquímicas. MS Dissertation, Instituto de Geociências, Universidade Federal do Pará, Belém, p. 115. Available online: https://repositorio.ufpa.br/jspui/handle/2011/11701 (accessed on 5 June 2021).
- Rollinson, H. Using trace elements data. In Using Geochemical Data: Evaluation, Presentation, Interpretation, 1st ed.; Rollinson, H., Ed.; Routledge: London, UK, 1993; pp. 133–134. [Google Scholar] [CrossRef]
- Singh, M.; Sharma, M.; Tobschall, H.J. Weathering of the Ganga alluvial plain, northern India: Implications from fluvial geochemistry of the Gomati River. Appl. Geochem. 2005, 20, 1–21. [Google Scholar] [CrossRef]
- Hu, D.; Böning, P.; Köhler, C.M.; Hillier, S.; Pressling, N.; Wan, S.; Brumsack, H.J.; Clift, P.D. Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14 ka in the South China Sea. Chem. Geol. 2012, 326–327, 1–18. [Google Scholar] [CrossRef]
- K, B. Geochemical characteristics of sandstones from Cretaceous Garudamangalam area of Ariyalur, Tamilnadu, India: Implications of provenance and tectonic setting. J. Earth Syst. Sci. 2017, 126, 45. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Guimarães, J.T.F.; Souza-Filho, P.W.M.; da Silva, M.S.; Nascimento, W.; Powell, M.A.; Reis, L.S.; Pessenda, L.C.R.; Rodrigues, T.M.; da Silva, D.F.; et al. Geochemical characterization of the largest upland lake of the Brazilian Amazonia: Impact of provenance and processes. J. S. Am. Earth Sci. 2017, 80, 541–558. [Google Scholar] [CrossRef]
- Roser, B.P.; Korsch, R.J. Plate Tectonics and Geochemical Composition of Sandstones: A Discussion. J. Geol. 1985, 93, 81–84. [Google Scholar] [CrossRef]
- McLennan, S.M. Weathering and Global Denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Silva, M.M.V.G.; Pinto, M.M.C.; Carvalho, P.C.S. Major, trace and REE geochemistry of recent sediments from lower Catumbela River (Angola). J. Afr. Earth Sci. 2016, 115, 203–217. [Google Scholar] [CrossRef]
- He, M.; Zheng, H.; Clift, P.D.; Tada, R.; Wu, W.; Luo, C. Geochemistry of fine-grained sediments in the Yangtze River and the implications for provenance and chemical weathering in East Asia. Prog. Earth Planet. Sci. 2015, 2, 32. [Google Scholar] [CrossRef]
- Bhatia, M.R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sediment. Geol. 1985, 45, 97–113. [Google Scholar] [CrossRef]
- Goldstein, S.J.; Jacobsen, S.B. Rare earth elements in river waters. Earth Planet. Sci. Lett. 1988, 89, 35–47. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its composition and evolution: Oxford, Blackwell, 311 p. ISBN 0 632 01148 3. Geol. Mag. 1985, 122, 673–674. [Google Scholar] [CrossRef]
- Su, N.; Yang, S.; Guo, Y.; Yue, W.; Wang, X.; Yin, P.; Huang, X. Revisit of rare earth element fractionation during chemical weathering and river sediment transport. Geochem. Geophys. Geosyst. 2017, 18, 935–955. [Google Scholar] [CrossRef]
Sample | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | TiO2 | MnO | P2O5 | BaO | LOI | CIA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Upper Sector | AMAZ 103 | 46.6 | 22.9 | 7.62 | 0.26 | 0.39 | 0.09 | 1.06 | 0.78 | 0.09 | 0.22 | 0.07 | 21.8 | 94.20 |
AMAZ 98 | 95.7 | 2.11 | 0.79 | 0.09 | 0.03 | 0.02 | 0.14 | 0.11 | 0.01 | 0.02 | 0.01 | 2.78 | 89.41 | |
AMAZ 105 | 97.2 | 0.73 | 1.06 | 0.04 | <0.01 | 0.01 | 0.02 | 0.13 | 0.02 | 0.03 | <0.01 | 1.65 | 91.25 | |
AMAZ 91 | 66.8 | 13.3 | 5.12 | 0.29 | 0.27 | 0.21 | 1.01 | 0.58 | 0.09 | 0.11 | 0.06 | 13.65 | 89.80 | |
AMAZ82 | - | - | - | - | - | - | - | - | - | - | - | 21.4 | - | |
AMAZ 78 | 47 | 21.3 | 7 | 0.23 | 0.37 | 0.1 | 1.04 | 0.71 | 0.14 | 0.18 | 0.07 | 21 | 93.96 | |
AMAZ 75 | 50 | 21.1 | 6.43 | 0.23 | 0.39 | 0.09 | 1.09 | 0.7 | 0.12 | 0.16 | 0.07 | 17.85 | 93.74 | |
AMAZ 74 | 48.6 | 20.9 | 7.87 | 0.27 | 0.38 | 0.09 | 0.99 | 0.68 | 0.16 | 0.18 | 0.07 | 20.7 | 93.93 | |
Mean | 64.5 | 14.62 | 5.1 | 0.20 | 0.31 | 0.09 | 0.76 | 0.53 | 0.09 | 0.13 | 0.06 | 15.10 | 92.33 | |
SD | 22.9 | 9.54 | 3.0 | 0.10 | 0.14 | 0.07 | 0.47 | 0.28 | 0.06 | 0.08 | 0.02 | 8.39 | 2.11 | |
CV | 35.4 | 65.24 | 58.6 | 48.00 | 46.63 | 75.17 | 61.48 | 53.94 | 63.51 | 60.65 | 41.17 | 55.57 | 2.29 | |
Middle Sector | AMAZ 66 | 44 | 23.9 | 7.51 | 0.29 | 0.31 | 0.07 | 0.84 | 0.84 | 0.11 | 0.22 | 0.06 | 20.2 | 95.22 |
AMAZ 63 | 48.2 | 20.1 | 6.63 | 0.28 | 0.35 | 0.12 | 0.98 | 0.66 | 0.14 | 0.22 | 0.06 | 21 | 93.58 | |
AMAZ 62 | 46.8 | 22.3 | 6.56 | 0.29 | 0.36 | 0.09 | 1.01 | 0.72 | 0.11 | 0.19 | 0.07 | 20.1 | 94.13 | |
AMAZ 52 | 46.9 | 23.1 | 7.39 | 0.18 | 0.37 | 0.08 | 1.03 | 0.71 | 0.17 | 0.26 | 0.07 | 20.3 | 94.71 | |
AMAZ 51 | 46.3 | 22.7 | 7.44 | 0.16 | 0.37 | 0.07 | 0.96 | 0.67 | 0.17 | 0.26 | 0.06 | 20.4 | 95.02 | |
AMAZ 49 | 74.1 | 9.55 | 3.48 | 0.11 | 0.13 | 0.05 | 0.36 | 0.82 | 0.04 | 0.09 | 0.03 | 10.25 | 94.84 | |
AMAZ 39 | 45.2 | 22.3 | 8.2 | 0.13 | 0.35 | 0.07 | 0.91 | 0.62 | 0.24 | 0.22 | 0.06 | 20.4 | 95.26 | |
AMAZ 38 | 44.7 | 22.3 | 8.92 | 0.12 | 0.37 | 0.08 | 0.91 | 0.64 | 0.26 | 0.23 | 0.05 | 20.6 | 95.26 | |
AMAZ 37 | 84.3 | 1.93 | 10.7 | 0.04 | 0.04 | 0.03 | 0.11 | 0.24 | 0.04 | 0.08 | 0.01 | 4.13 | 91.47 | |
AMAZ 29 | 45.8 | 21.3 | 8.27 | 0.19 | 0.42 | 0.1 | 0.92 | 0.61 | 0.24 | 0.19 | 0.06 | 20.6 | 94.62 | |
Mean | 52.6 | 18.9 | 7.5 | 0.18 | 0.31 | 0.08 | 0.80 | 0.65 | 0.15 | 0.19 | 0.05 | 17.80 | 94.41 | |
SD | 14.2 | 7.26 | 1.8 | 0.09 | 0.12 | 0.03 | 0.31 | 0.16 | 0.08 | 0.06 | 0.02 | 5.78 | 1.16 | |
CV | 27.1 | 38.1 | 24.7 | 47.6 | 39.7 | 32.9 | 38.6 | 25.2 | 52.1 | 32.2 | 35.63 | 32.47 | 1.23 | |
Lower Sector | AMAZ 18 | 62.3 | 11.85 | 11 | 0.63 | 0.69 | 0.72 | 1.36 | 0.57 | 0.15 | 0.17 | 0.07 | 10.55 | 81.39 |
AMAZ 17 | 66 | 13.5 | 5.21 | 0.71 | 0.93 | 0.97 | 1.88 | 0.8 | 0.07 | 0.13 | 0.06 | 9.04 | 79.13 | |
AMAZ 13 | 74.7 | 10.2 | 4.01 | 0.61 | 0.64 | 0.99 | 1.64 | 0.59 | 0.04 | 0.07 | 0.05 | 6.34 | 75.89 | |
AMAZ 10 | 60.2 | 14.65 | 7.44 | 0.75 | 0.97 | 0.81 | 1.87 | 0.78 | 0.09 | 0.12 | 0.06 | 11.5 | 81.03 | |
XIN 10 | 88.7 | 4.92 | 2.07 | 0.5 | 0.34 | 0.39 | 0.73 | 0.33 | 0.04 | 0.06 | 0.03 | 3.64 | 75.23 | |
XIN 09 | 73.7 | 11.1 | 4.17 | 0.87 | 0.96 | 1.17 | 1.84 | 0.71 | 0.07 | 0.1 | 0.05 | 5.23 | 74.10 | |
XIN 08 | 67.9 | 13.15 | 5.02 | 0.9 | 1.16 | 1.11 | 2.13 | 0.84 | 0.08 | 0.13 | 0.06 | 6.61 | 76.06 | |
XIN 11 | 67.7 | 12.8 | 4.89 | 0.98 | 1.13 | 1.11 | 2.07 | 0.77 | 0.07 | 0.13 | 0.05 | 7.56 | 75.47 | |
XIN 14 | 98.2 | 0.5 | 0.85 | <0.01 | <0.01 | 0.02 | 0.14 | 0.03 | 0.01 | 0.03 | <0.01 | 0.82 | - | |
XIN 13 | 96.7 | 1.51 | 1.07 | 0.13 | 0.09 | 0.21 | 0.31 | 0.12 | 0.01 | 0.03 | 0.01 | 0.93 | 69.91 | |
AMAZ 3 | 71.7 | 11.6 | 4.11 | 0.91 | 1 | 1 | 1.9 | 0.69 | 0.07 | 0.11 | 0.05 | 6.02 | 75.28 | |
Mean | 75.2 | 9.6 | 4.5 | 0.70 | 0.79 | 0.77 | 1.44 | 0.57 | 0.06 | 0.10 | 0.05 | 6.20 | 76.35 | |
SD | 13.3 | 4.9 | 2.9 | 0.25 | 0.35 | 0.39 | 0.72 | 0.28 | 0.04 | 0.05 | 0.02 | 3.48 | 3.42 | |
CV | 17.7 | 51.5 | 63.7 | 36.1 | 44.25 | 51.0 | 49.70 | 49.81 | 61.78 | 45.96 | 35.28 | 56.16 | 4.47 |
Sample | Ba | Cr | Ga | Hf | Nb | Rb | Sn | Sr | Ta | Th | U | V | Y | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMAZ 103 | 610 | 80 | 29.6 | 5.9 | 17.3 | 70.5 | 3 | 45.6 | 1.1 | 22.9 | 4.23 | 67 | 36.7 | 225 |
AMAZ 98 | 109 | 10 | 4.1 | 4.4 | 4.1 | 10.2 | 1 | 12.6 | 0.1 | 5.14 | 1.08 | 13 | 6.9 | 171 |
AMAZ 105 | 44.7 | 10 | 1.6 | 2.9 | 3.3 | 2.3 | <1 | 4.2 | <0.1 | 3.11 | 0.75 | 9 | 4 | 104 |
AMAZ 91 | 518 | 110 | 23.2 | 14.6 | 15 | 59.2 | 2 | 52.9 | 1.1 | 17.4 | 3.72 | 73 | 30.2 | 576 |
AMAZ 82 | 710 | 80 | 30.2 | 6.1 | 17.2 | 71.9 | 4 | 60.2 | 1.2 | 24 | 4.52 | 71 | 35.9 | 226 |
AMAZ 78 | 556 | 60 | 25.9 | 5.3 | 16.9 | 59.4 | 3 | 41.1 | 1.1 | 21 | 3.71 | 63 | 32.8 | 200 |
AMAZ 75 | 637 | 70 | 28.3 | 6.5 | 17.3 | 68.2 | 3 | 47.6 | 1.2 | 22.5 | 3.77 | 64 | 36.3 | 240 |
AMAZ 74 | 781 | 80 | 30.8 | 6.6 | 17.7 | 71.8 | 4 | 52.8 | 1.1 | 24.8 | 4.59 | 71 | 38.1 | 244 |
Mean | 496 | 62.5 | 21.71 | 6.54 | 13.60 | 51.69 | 2.86 | 39.63 | 0.99 | 17.61 | 3.30 | 53.88 | 27.61 | 248.25 |
SD | 271.88 | 35.36 | 11.92 | 3.48 | 6.17 | 28.58 | 1.07 | 20.21 | 0.39 | 8.63 | 1.51 | 26.71 | 13.92 | 140.23 |
CV | 54.85 | 56.57 | 54.90 | 53.28 | 45.36 | 55.29 | 37.42 | 51.01 | 39.91 | 49.03 | 45.89 | 49.58 | 50.42 | 56.49 |
AMAZ 66 | 445 | 60 | 26.3 | 6.4 | 16.6 | 47.3 | 2 | 38.7 | 1.2 | 20.8 | 3.38 | 68 | 27.8 | 232 |
AMAZ 63 | 485 | 60 | 24.3 | 4.6 | 14.2 | 54.2 | 2 | 40.3 | 1 | 19.8 | 3.63 | 57 | 29.9 | 179 |
AMAZ 62 | 600 | 70 | 29.1 | 5.3 | 16.5 | 64.3 | 4 | 44.1 | 1.1 | 21.8 | 3.75 | 68 | 34.4 | 198 |
AMAZ 52 | 625 | 120 | 34.7 | 5.3 | 17.1 | 74.5 | 3 | 44.3 | 1.2 | 24.3 | 4.06 | 95 | 34.9 | 190 |
AMAZ 51 | 659 | 90 | 34 | 5.3 | 17.2 | 75.2 | 4 | 43.6 | 1.1 | 24.4 | 4.26 | 82 | 37.4 | 189 |
AMAZ 49 | 276 | 80 | 14.4 | 20.2 | 19.7 | 26 | 2 | 24.8 | 1.3 | 17.9 | 3.91 | 48 | 27.8 | 798 |
AMAZ 39 | 446 | 60 | 25 | 3.5 | 11.6 | 52.6 | 3 | 28.3 | 0.9 | 18.1 | 2.94 | 67 | 26 | 129 |
AMAZ 38 | 494 | 70 | 29.1 | 3.9 | 13.4 | 62 | 3 | 34.3 | 0.8 | 20.4 | 3.52 | 75 | 28.2 | 141 |
AMAZ 37 | 81.9 | 30 | 4.2 | 9.7 | 5.2 | 8.1 | 1 | 9.6 | 0.2 | 5.47 | 1.67 | 79 | 17.9 | 394 |
AMAZ 29 | 549 | 70 | 28.9 | 3.9 | 14 | 65.3 | 3 | 43.8 | 0.8 | 21.3 | 3.63 | 78 | 30.8 | 147 |
Mean | 466.09 | 71 | 24.24 | 5.83 | 10.87 | 40.35 | 2.7 | 29.23 | 0.7 | 15.72 | 2.94 | 71.7 | 25.725 | 259.7 |
SD | 174.16 | 23.31 | 11.65 | 3.35 | 4.92 | 27.91 | 0.95 | 17.65 | 0.35 | 8.89 | 1.10 | 13.25 | 5.57 | 203.48 |
CV | 37.37 | 32.83 | 48.06 | 57.41 | 45.25 | 69.17 | 35.14 | 60.39 | 49.49 | 56.55 | 37.46 | 18.48 | 21.67 | 78.35 |
AMAZ 18 | 746 | 50 | 18.9 | 8.3 | 12.9 | 69.1 | 2 | 119.5 | 0.7 | 13 | 2.64 | 95 | 30.4 | 315 |
AMAZ 17 | 456 | 30 | 14.7 | 8.7 | 13.8 | 64.6 | 2 | 105 | 0.9 | 10.15 | 2.63 | 72 | 26.8 | 339 |
AMAZ 13 | 522 | 40 | 15 | 9 | 13 | 73.4 | 2 | 131.5 | 0.7 | 10.05 | 2.54 | 66 | 26.7 | 342 |
AMAZ 10 | 625 | 60 | 21.7 | 7.9 | 18.3 | 104 | 3 | 140 | 1.1 | 14.45 | 3.51 | 105 | 36.1 | 306 |
XIN 10 | 252 | 50 | 7.2 | 6.9 | 8.2 | 34.7 | 2 | 63.7 | 0.5 | 5.31 | 1.63 | 33 | 15.7 | 257 |
XIN 09 | 479 | 70 | 14 | 10.7 | 15.8 | 82.6 | 3 | 161 | 1.1 | 10.55 | 2.68 | 68 | 30.6 | 421 |
XIN 08 | 512 | 80 | 16.8 | 13.7 | 18.5 | 96.8 | 3 | 163.5 | 1.4 | 12.45 | 3.66 | 92 | 36.7 | 525 |
XIN 11 | 511 | 80 | 15.4 | 10.2 | 17.9 | 94.7 | 4 | 166.5 | 1.3 | 11.9 | 3.21 | 88 | 36.3 | 360 |
XIN 14 | 45.1 | 20 | 1.7 | 1.4 | 1.1 | 4.6 | 1 | 3.9 | 0.1 | 1.8 | 0.53 | <5 | 3.3 | 44 |
XIN 13 | 79.8 | 30 | 3.7 | 3.4 | 2.9 | 12.2 | 1 | 25.4 | 0.1 | 3.28 | 0.84 | 14 | 6.4 | 136 |
AMAZ 3 | 524 | 50 | 17.9 | 10.4 | 15.9 | 92.6 | 3 | 168 | 0.9 | 11.5 | 3.06 | 86 | 30.4 | 404 |
Mean | 431.99 | 50.91 | 13.36 | 8.24 | 12.57 | 66.30 | 2.36 | 113.45 | 0.80 | 9.49 | 2.45 | 71.90 | 25.40 | 313.55 |
SD | 217.71 | 20.23 | 6.40 | 3.42 | 6.03 | 34.51 | 0.92 | 58.24 | 0.44 | 4.15 | 1.03 | 28.69 | 11.77 | 132.47 |
CV | 50.40 | 39.73 | 47.85 | 41.58 | 47.98 | 52.05 | 39.11 | 51.34 | 54.49 | 43.75 | 42.09 | 39.90 | 46.34 | 42.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medeiros Filho, L.C.; Asp, N.E.; Lafon, J.M.; Souza, T.P.; Berredo, J.F.; Salomão, G.N. Geochemical Dynamics and Evolutionary Implications of Sediments at the Xingu–Amazon Rivers’ Confluence: Proxies for Mixing, Mobility and Weathering. Minerals 2024, 14, 1101. https://doi.org/10.3390/min14111101
Medeiros Filho LC, Asp NE, Lafon JM, Souza TP, Berredo JF, Salomão GN. Geochemical Dynamics and Evolutionary Implications of Sediments at the Xingu–Amazon Rivers’ Confluence: Proxies for Mixing, Mobility and Weathering. Minerals. 2024; 14(11):1101. https://doi.org/10.3390/min14111101
Chicago/Turabian StyleMedeiros Filho, Lucio Cardoso, Nils Edvin Asp, Jean Michel Lafon, Thiago Pereira Souza, José Francisco Berredo, and Gabriel Negreiros Salomão. 2024. "Geochemical Dynamics and Evolutionary Implications of Sediments at the Xingu–Amazon Rivers’ Confluence: Proxies for Mixing, Mobility and Weathering" Minerals 14, no. 11: 1101. https://doi.org/10.3390/min14111101
APA StyleMedeiros Filho, L. C., Asp, N. E., Lafon, J. M., Souza, T. P., Berredo, J. F., & Salomão, G. N. (2024). Geochemical Dynamics and Evolutionary Implications of Sediments at the Xingu–Amazon Rivers’ Confluence: Proxies for Mixing, Mobility and Weathering. Minerals, 14(11), 1101. https://doi.org/10.3390/min14111101