Approximation of the Role of Mineralized Collagen Fibril Orientation in the Mechanical Properties of Bone: A Computational Study on Dehydrated Osteonal Lamellar Bone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Transformation Matrix
2.2.2. Calculation of Dimensional Change in Transverse and Oblique Planes
2.2.3. The Anisotropy Ratio
2.3. Statistical Analysis
3. Results
3.1. Transverse Plane
3.2. Oblique Plane
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ascenzi, A.; Bonucci, E. The tensile properties of single osteon. Anat. Rec. 1967, 58, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.; Hiltner, A.; Lando, J.B.; Baer, E. Interaction of water with native collagen. Biopolymers 1977, 16, 231–246. [Google Scholar] [CrossRef]
- Weiner, S.; Wagner, H.D. The Material Bone: Structure-Mechanical Function Relations. Annu. Rev. Mater. Sci. 1998, 28, 271–298. [Google Scholar] [CrossRef]
- Stock, S.R. The Mineral-Collagen Interface in Bone. Calcif. Tissue Int. 2015, 97, 262–280. [Google Scholar] [CrossRef] [PubMed]
- Cowin, S.C. Mechanosensation and fluid transport in living bone. J. Musculoskelet. Neuronal Interact. 2002, 2, 256–260. [Google Scholar] [PubMed]
- Currey, J.D. Bones: Structure and Mechanics; Princeton University Press: Princeton, NJ, USA, 2002; pp. 32–58. [Google Scholar]
- Ziv, V.; Sabanay, I.; Arad, T.; Traub, W.; Weiner, S. Transitional structures in lamellar bone. Microsc. Res. Tech. 1996, 33, 203–213. [Google Scholar] [CrossRef]
- Utku, F.S.; Klein, E.; Saybasili, H.; Yucesoy, C.A.; Weiner, S. Probing the role of water in lamellar bone by dehydration in the environmental scanning electron microscope. J. Struct. Biol. 2008, 162, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Reznikov, N.; Shahar, R.; Weiner, S. Three-dimensional structure of human lamellar bone: The presence of two different materials and new insights into the hierarchical organization. Bone 2014, 59, 93–104. [Google Scholar] [CrossRef]
- Fratzl, P.; Weinkamer, R. Nature’s hierarchical materials. Prog. Mater. Sci. 2007, 52, 1263–1334. [Google Scholar] [CrossRef]
- Hulmes, D.J.; Wess, T.J.; Prockop, D.J.; Fratzl, P. Radial packing, order, and disorder in collagen fibrils. Biophys. J. 1995, 68, 1661–1670. [Google Scholar] [CrossRef]
- Jäger, I.; Fratzl, P. Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophys. J. 2000, 79, 1737–1746. [Google Scholar] [CrossRef] [PubMed]
- Reznikov, N.; Shahar, R.; Weiner, S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014, 10, 3815–3826. [Google Scholar] [CrossRef] [PubMed]
- McKee, D.J.; Reznikov, N. Mineral tessellation in bone and the stenciling principle for extracellular matrix mineralization. J. Struct. Biol. 2022, 214, 107823. [Google Scholar] [CrossRef] [PubMed]
- Traub, W.; Arad, T.; Weiner, S. Origin of mineral crystal growth in collagen fibrils. Natrix 1992, 12, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Buss, D.J.; Kröger, R.; McKee, M.D.; Reznikov, N. Hierarchical organization of bone in three dimensions: A twist of twists. J. Struct. Biol. X 2022, 6, 100057. [Google Scholar] [CrossRef]
- Binkley, D.M.; Deering, J.; Yuan, H.; Gourrier, A.; Grandfield, K. Ellipsoidal mesoscale mineralization pattern in human cortical bone revealed in 3D by plasma focused ion beam serial sectioning. J. Struct. Biol. 2020, 212, 107615. [Google Scholar] [CrossRef]
- Landis, W.J.; Hodgens, K.J.; Arena, J.; Song, M.J.; McEwen, B.F. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc. Res. Tech. 1996, 33, 192–202. [Google Scholar] [CrossRef]
- Reznikov, N.; Bilton, M.; Lari, L.; Stevens, M.M.; Kroeger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 2018, 360, eaao2189. [Google Scholar] [CrossRef]
- Schwarcz, H.P.; McNally, E.A.; Botton, G.A. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals. J. Struct. Biol. 2014, 188, 240v248. [Google Scholar] [CrossRef]
- Giraud-Guille, M.M. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif. Tissue Int. 1988, 42, 167–180. [Google Scholar] [CrossRef]
- Weiner, S.; Arad, T.; Sabanay, I.; Traub, W. Rotated plywood of primary lamellar bone in the rat: Orientations of the collagen fibril arrays. Bone 1997, 20, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Marotti, G. A new theory of bone lamellation. Calcif. Tissue Int. 1993, 53, S47–S56. [Google Scholar] [CrossRef]
- Wagermaier, W.; Gupta, H.S.; Gourrier, A.; Burghammer, M.; Roschger, P.; Fratzl, P. Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 2006, 1, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Orgel, J.P.R.O.; Persikov, A.V.; Antipova, O.; Stultz, C.M. Variation in the helical structure of native collagen. PLoS ONE 2014, 9, e89519. [Google Scholar] [CrossRef] [PubMed]
- Schrof, S.; Varga, P.; Galvis, L.; Raum, K.; Masic, A. 3D Raman Mapping of the Collagen Fibril Orientation in Human Osteonal Lamellae. J. Struc. Biol. 2014, 187, 266–275. [Google Scholar] [CrossRef]
- Reznikov, N.; Almany-Magal, R.; Shahar, R.; Weiner, S. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bone 2013, 52, 676–683. [Google Scholar] [CrossRef]
- Boyde, A.; Hobdell, M.H. Scanning electron microscopy of lamellar bone. Z. Zellforsch. Mikrosk. Anat. 1968, 93, 213–231. [Google Scholar] [CrossRef]
- Utku, F.S. The consequences of dehydration-hydration on bone anisotropy and implications on the sublamellar organization of mineralized collagen fibrils. J. Biomech. 2020, 104, 109737. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Chittenden, M.; Schirer, J.; Dickinson, M.; Jasiuk, I. Mechanical properties of porcine femoral cortical bone measured by nanoindentation. J. Biomech. 2012, 45, 1775–1782. [Google Scholar] [CrossRef]
- Guidoni, G.; Swain, M.; Jager, I. Nanoindentation of wet and dry compact bone: Influence of environment and indenter tip geometry on the indentation modulus. Philos. Mag. 2010, 90, 553–565. [Google Scholar] [CrossRef]
- Fan, Z.; Fan, Z.; Swadener, J.G.; Rho, J.Y.; Roy, M.E.; Pharr, G.M. Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J. Orthop. Res. 2002, 20, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Spiesz, E.M.; Roschger, P.; Zysset, P.K. Elastic anisotropy of uniaxial mineralized collagen fibers measured using two-directional indentation. Effects of hydration state and indentation depth. J. Mech. Behav. Biomed. Mater. 2012, 12, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Eanes, E.D.; Martin, G.N.; Lundy, D.R. The distribution of water in calcified turkey leg tendon. Calcif. Tissue Res. 1976, 20, 313–316. [Google Scholar] [CrossRef]
- Fratzl, P.; Fratzl-Zelman, N.; Klaushofer, K. Collagen packing and mineralization. An X-ray scattering investigation of turkey leg tendon. Biophys. J. 1993, 64, 260–266. [Google Scholar] [CrossRef]
- Ascenzi, M.-G. A first estimation of prestress in so-called circularly fibered osteonic lamellae. J. Biomech. 1999, 32, 935–942. [Google Scholar] [CrossRef]
- Fois, M.; Lamure, A.; Fauran, M.J.; Lacabanne, C. Study of human cortical bone and demineralized human cortical bone viscoelasticity. J. Appl. Polym. Sci. 2001, 79, 2527–2533. [Google Scholar] [CrossRef]
- Nyman, J.S.; Roy, A.; Shen, X.; Acuna, R.L.; Tyler, J.H.; Wang, X. The influence of water removal on the strength and toughness of cortical bone. J. Biomech. 2006, 39, 931–938. [Google Scholar] [CrossRef]
- Riches, P.E.; Everitt, N.M.; Heggie, A.R.; McNally, D.S. Microhardness anisotropy of lamellar bone. J. Biomech. 1997, 30, 1059–1061. [Google Scholar] [CrossRef]
- Utku, F.S. A Theoretical Study on the Mechanical Significance of Mineralized Collagen Fibril Orientation in Osteonal Lamellar Bone. Düzce Üniv. Bilim Ve Teknoloji Dergisi 2021, 9, 24–33. [Google Scholar] [CrossRef]
- Faingold, A.; Cohen, S.R.; Shahar, R.; Weiner, S.; Rapoport, L.; Wagner, H.D. The effect of hydration on mechanical anisotropy, topography and fibril organization of the osteonal lamellae. J. Biomech. 2014, 47, 367–372. [Google Scholar] [CrossRef]
- Riggs, C.M.; Lanyon, L.E.; Boyde, A. Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius. Anat. Embr. 1993, 187, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Almer, J.; Stock, S. Micromechanical response of mineral and collagen phases in bone. J. Struct. Biol. 2007, 157, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Seto, J.; Himadri, S.G.; Zaslansky, P.; Wagner, H.D.; Fratzl, P. Tough Lessons From Bone: Extreme Mechanical Anisotropy at the Mesoscale. Adv. Funct. Mat. 2008, 18, 1905–1911. [Google Scholar] [CrossRef]
- Giri, B.; Almer, J.D.; Dong, X.N.; Wang, X. In situ mechanical behavior of mineral crystals in human cortical bone under compressive load using synchrotron X-ray scattering techniques. J. Mech. Behav. Biomed. Mater. 2012, 14, 101–112. [Google Scholar] [CrossRef]
- Schwiedrzik, J.; Taylor, A.; Casari, D.; Wolfram, U.; Zysset, P.; Michler, J. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. J. Acta Biomater. 2017, 60, 302–314. [Google Scholar] [CrossRef]
- Bonfield, W.; Grynpas, M.D. Anisotropy of the Young’s modulus of bone. Nature 1977, 270, 453–454. [Google Scholar] [CrossRef]
- Faingold, A.; Cohen, S.R.; Reznikov, N.; Wagner, H.D. Osteonal lamellae elementary units: Lamellar microstructure, curvature and mechanical properties. Acta Biomater. 2013, 9, 5956–5962. [Google Scholar] [CrossRef]
- Currey, J.D.; Shahar, R. Cavities in the compact bone in tetrapods and fish and their effects on mechanical properties. J. Struct. Biol. 2013, 183, 107–122. [Google Scholar] [CrossRef]
- Takano, Y.; Turner, C.H.; Owan, I.; Martin, R.B.; Lau, S.T.; Forwood, M.R.; Burr, D.B. Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution. J. Ortop. Res. 1999, 17, 59–66. [Google Scholar] [CrossRef]
- Ayoubi, M.; van Tol, A.F.; Weinkamer, R.; Roschger, P.; Brugger, P.C.; Berzlanovich, A.; Bertinetti, L.; Roschger, A.; Fratzl, P. 3D Interrelationship between Osteocyte Network and Forming Mineral during Human Bone Remodeling. Adv. Healthc. Mater. 2021, 10, 2100113. [Google Scholar] [CrossRef]
- Weiner, S.; Traub, W.; Wagner, H.D. Lamellar Bone: Structure–Function Relations. J. Struct. Biol. 1999, 126, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Casari, D.; Michler, J.; Zysset, P.; Schwiedrzik, J. Microtensile properties and failure mechanisms of cortical bone at the lamellar level. J. Acta Biomater. 2020, 120, 135–145. [Google Scholar] [CrossRef] [PubMed]
Stage of Study | Angle Title | Axial Rotation About | Angle Range | Step Size | Angles |
---|---|---|---|---|---|
1st | ‘a’ | y-axis | 0° to 150° | 5° | 5°, 10°, 15°, 20°, 25°, 30°, 40° |
‘b’ | y-axis | 120° to 150° | 5° | 120°, 125°, 130°, 135°, 140°, 150° | |
2nd | ‘d’ | y-axis | 1° to 10° | 1° | 1°, 2°, 3°, …, 10° |
3rd | ‘f’ | x-axis | 35°− 45° | 1° | −35°, −36°,…, −45° |
Collagen Fibril Orientation | Contraction Vector Projections | |||||
---|---|---|---|---|---|---|
Sublamellae | X-Axis | Y-Axis | Z-Axis | u | v | w |
S-0 | 0.0000 | 0 | 1.0000 | 0.0000 | 1.0000 | 0.0000 |
S-5 | 0.0872 | 0 | 0.9962 | 0.0793 | 0.9924 | 0.0941 |
S-10 | 0.1737 | 0 | 0.9848 | 0.1413 | 0.9699 | 0.1986 |
S-15 | 0.2588 | 0 | 0.9659 | 0.1853 | 0.9330 | 0.3085 |
S-20 | 0.3420 | 0 | 0.9397 | 0.2115 | 0.8830 | 0.4190 |
S-25 | 0.4226 | 0 | 0.9063 | 0.2212 | 0.8214 | 0.5257 |
S-30 | 0.5000 | 0 | 0.8660 | 0.2165 | 0.7500 | 0.6250 |
S-35 | 0.5736 | 0 | 0.8192 | 0.2004 | 0.6710 | 0.7138 |
S-40 | 0.6428 | 0 | 0.7660 | 0.1759 | 0.5868 | 0.7904 |
S-45 | 0.7071 | 0 | 0.7071 | 0.1465 | 0.5000 | 0.8536 |
S-50 | 0.7660 | 0 | 0.6428 | 0.1152 | 0.4132 | 0.9033 |
S-55 | 0.8192 | 0 | 0.5736 | 0.0850 | 0.3290 | 0.9405 |
S-60 | 0.8660 | 0 | 0.5000 | 0.0580 | 0.2500 | 0.9665 |
S-65 | 0.9063 | 0 | 0.4226 | 0.0359 | 0.1786 | 0.9833 |
S-70 | 0.9397 | 0 | 0.3420 | 0.0194 | 0.1169 | 0.9930 |
S-75 | 0.9659 | 0 | 0.2588 | 0.0085 | 0.0670 | 0.9977 |
S-80 | 0.9848 | 0 | 0.1737 | 0.0026 | 0.0302 | 0.9995 |
S-85 | 0.9962 | 0 | 0.0872 | 0.0003 | 0.0076 | 0.9999 |
S-90 | 1.000 | 0 | 0.0000 | 0.0000 | 0.0000 | 1.0000 |
S-95 | 0.9962 | 0 | 0.0872 | 0.0793 | 0.9924 | 0.0941 |
S-100 | 0.9848 | 0 | 0.1737 | 0.1413 | 0.9699 | 0.1986 |
S-105 | 0.9659 | 0 | 0.2588 | 0.1853 | 0.9330 | 0.3085 |
S-110 | 0.9397 | 0 | 0.3420 | 0.2115 | 0.8830 | 0.4190 |
S-115 | 0.9063 | 0 | 0.4226 | 0.2212 | 0.8214 | 0.5257 |
S-120 | 0.8660 | 0 | 0.5000 | 0.2165 | 0.7500 | 0.6250 |
S-125 | 0.8192 | 0 | 0.5736 | 0.2004 | 0.6710 | 0.7139 |
S-130 | 0.7660 | 0 | 0.6428 | 0.1759 | 0.5868 | 0.7904 |
S-135 | 0.7071 | 0 | 0.7071 | 0.1465 | 0.5000 | 0.8536 |
S-140 | 0.6428 | 0 | 0.7660 | 0.1152 | 0.4132 | 0.9033 |
S-145 | 0.5736 | 0 | 0.8192 | 0.0850 | 0.3290 | 0.9405 |
S-150 | 0.5000 | 0 | 0.8660 | 0.0580 | 0.2500 | 0.9665 |
120° | 125° | 130° | 135° | 140° | 150° | ||
---|---|---|---|---|---|---|---|
ua | 0.2165 | 0.2004 | 0.1759 | 0.1465 | 0.1152 | 0.0580 | |
va | 0.7500 | 0.6710 | 0.5868 | 0.5000 | 0.4132 | 0.2500 | |
wa | 0.6250 | 0.7139 | 0.7904 | 0.8536 | 0.9033 | 0.9665 | |
∑5° | Ub | 2.9576 | 3.1579 | 3.3338 | 3.4803 | 3.5955 | 3.7385 |
∑5° | Vb | 14.8497 | 15.5207 | 16.1075 | 16.6075 | 17.0207 | 17.5997 |
∑5° | Wb | 15.4833 | 16.1972 | 16.9876 | 17.8411 | 18.7445 | 20.6515 |
∑10° | Ub | 1.5097 | - | 1.6856 | - | 1.8008 | 1.8588 |
∑10° | Vb | 7.6029 | - | 8.1897 | - | 8.6029 | 8.8529 |
∑10° | Wb | 8.1378 | - | 8.9282 | - | 9.8316 | 10.7981 |
∑15° | Ub | 1.0166 | - | - | 1.1631 | - | 1.2211 |
∑15° | Vb | 5.1830 | - | - | 5.6830 | - | 5.9330 |
∑15 | Wb | 5.6847 | - | - | 6.5383 | - | 7.5048 |
∑20° | Ub | 0.8058 | - | - | - | 0.9210 | - |
∑20° | Vb | 4.4698 | - | - | - | 4.8830 | - |
∑20° | Wb | 3.9990 | - | - | - | 4.9023 | - |
∑25° | Ub | - | 0.6865 | - | - | - | 0.7445 |
∑25° | Vb | - | 3.9424 | - | - | - | 4.1924 |
∑25° | Wb | - | 3.3392 | - | - | - | 4.3058 |
∑30° | Ub | 0.4910 | - | - | - | - | 0.5490 |
∑30° | Vb | 2.7500 | - | - | - | - | 2.0000 |
∑30° | Wb | 3.2165 | - | - | - | - | 4.1830 |
∑40° | Ub | 0.3950 | - | - | - | - | - |
∑40° | Vb | 2.3670 | - | - | - | - | - |
∑40° | Wb | 2.4149 | - | - | - | - | - |
‘a’ | ‘b’ | 0° | 1° | 2° | 3° | 4° | 5° | 6° | 7° | 8° | 9° | 10° |
---|---|---|---|---|---|---|---|---|---|---|---|---|
∑5° | 120° | 1.043 | 1.084 | 1.127 | 1.171 | 1.216 | 1.264 | 1.312 | 1.363 | 1.415 | 1.470 | 1.526 |
∑5° | 130° | 1.055 | 1.097 | 1.141 | 1.186 | 1.233 | 1.282 | 1.333 | 1.385 | 1.439 | 1.495 | 1.554 |
∑5° | 140° | 1.101 | 1.146 | 1.192 | 1.239 | 1.289 | 1.340 | 1.393 | 1.449 | 1.506 | 1.565 | 1.627 |
∑5° | 150° | 1.173 | 1.220 | 1.269 | 1.320 | 1.373 | 1.427 | 1.484 | 1.543 | 1.604 | 1.668 | 1.734 |
∑10° | 120° | 1.070 | 1.112 | 1.155 | 1.200 | 1.246 | 1.293 | 1.342 | 1.393 | 1.446 | 1.500 | 1.557 |
∑10° | 130° | 1.090 | 1.133 | 1.178 | 1.224 | 1.272 | 1.321 | 1.372 | 1.425 | 1.480 | 1.537 | 1.596 |
∑10° | 140° | 1.143 | 1.188 | 1.235 | 1.284 | 1.334 | 1.386 | 1.440 | 1.496 | 1.555 | 1.615 | 1.678 |
∑10° | 150° | 1.220 | 1.268 | 1.318 | 1.369 | 1.423 | 1.479 | 1.537 | 1.597 | 1.659 | 1.724 | 1.791 |
∑15° | 120° | 1.097 | 1.139 | 1.182 | 1.227 | 1.273 | 1.320 | 1.370 | 1.421 | 1.473 | 1.528 | 1.584 |
∑15° | 135° | 1.150 | 1.195 | 1.241 | 1.289 | 1.339 | 1.390 | 1.443 | 1.498 | 1.555 | 1.614 | 1.675 |
∑15° | 150° | 1.265 | 1.314 | 1.365 | 1.417 | 1.472 | 1.528 | 1.587 | 1.648 | 1.711 | 1.776 | 1.844 |
∑20° | 120° | 0.895 | 0.931 | 0.969 | 1.009 | 1.049 | 1.091 | 1.135 | 1.180 | 1.227 | 1.275 | 1.325 |
∑20° | 140° | 1.004 | 1.045 | 1.087 | 1.130 | 1.176 | 1.223 | 1.271 | 1.322 | 1.374 | 1.429 | 1.485 |
∑25° | 125° | 0.847 | 0.883 | 0.919 | 0.957 | 0.997 | 1.038 | 1.080 | 1.124 | 1.169 | 1.216 | 1.265 |
∑25° | 150° | 1.027 | 1.068 | 1.110 | 1.155 | 1.200 | 1.248 | 1.297 | 1.348 | 1.401 | 1.456 | 1.514 |
∑30° | 120° | 1.170 | 1.211 | 1.254 | 1.298 | 1.344 | 1.391 | 1.439 | 1.489 | 1.540 | 1.592 | 1.647 |
∑30° | 150° | 2.092 | 2.180 | 2.272 | 2.368 | 2.469 | 2.575 | 2.685 | 2.800 | 2.920 | 3.045 | 3.176 |
∑40° | 120° | 1.020 | 1.059 | 1.098 | 1.140 | 1.182 | 1.226 | 1.271 | 1.318 | 1.367 | 1.417 | 1.468 |
‘a’ | ‘b’ | −35° | −36° | −37° | −38° | −39° | −40° | −41° | −42° | −43° | −44° | −45° |
---|---|---|---|---|---|---|---|---|---|---|---|---|
∑5° | 120° | 1.0074 | 1.0066 | 1.0059 | 1.0051 | 1.0044 | 1.0037 | 1.0029 | 1.0022 | 1.0015 | 1.0007 | 1.0000 |
∑5° | 130° | 1.0094 | 1.0085 | 1.0075 | 1.0066 | 1.0056 | 1.0047 | 1.0037 | 1.0028 | 1.0019 | 1.0009 | 1.0000 |
∑5° | 140° | 1.0171 | 1.0154 | 1.0136 | 1.0119 | 1.0102 | 1.0085 | 1.0068 | 1.0051 | 1.0034 | 1.0017 | 1.0000 |
∑5° | 150° | 1.0285 | 1.0256 | 1.0227 | 1.0198 | 1.0169 | 1.0141 | 1.0112 | 1.0084 | 1.0056 | 1.0028 | 1.0000 |
∑10° | 120° | 1.0121 | 1.0108 | 1.0096 | 1.0084 | 1.0072 | 1.0060 | 1.0048 | 1.0036 | 1.0024 | 1.0012 | 1.0000 |
∑10° | 130° | 1.0153 | 1.0138 | 1.0122 | 1.0107 | 1.0091 | 1.0076 | 1.0061 | 1.0045 | 1.0030 | 1.0015 | 1.0000 |
∑10° | 140° | 1.0238 | 1.0213 | 1.0189 | 1.0165 | 1.0141 | 1.0117 | 1.0094 | 1.0070 | 1.0047 | 1.0023 | 1.0000 |
∑10° | 150° | 1.0355 | 1.0319 | 1.0282 | 1.0246 | 1.0210 | 1.0175 | 1.0139 | 1.0104 | 1.0069 | 1.0035 | 1.0000 |
∑15° | 120° | 1.0164 | 1.0147 | 1.0131 | 1.0114 | 1.0098 | 1.0081 | 1.0065 | 1.0049 | 1.0032 | 1.0016 | 1.0000 |
∑15° | 135° | 1.0250 | 1.0224 | 1.0199 | 1.0173 | 1.0148 | 1.0123 | 1.0098 | 1.0074 | 1.0049 | 1.0024 | 1.0000 |
∑15° | 150° | 1.0421 | 1.0378 | 1.0334 | 1.0291 | 1.0249 | 1.0207 | 1.0165 | 1.0123 | 1.0082 | 1.0041 | 1.0000 |
∑20° | 120° | 0.9806 | 0.9825 | 0.9845 | 0.9864 | 0.9884 | 0.9903 | 0.9923 | 0.9942 | 0.9961 | 0.9981 | 1.0000 |
∑20° | 140° | 1.0007 | 1.0006 | 1.0006 | 1.0005 | 1.0004 | 1.0003 | 1.0003 | 1.0002 | 1.0001 | 1.0001 | 1.0000 |
∑25° | 125° | 0.9712 | 0.9741 | 0.9770 | 0.9799 | 0.9827 | 0.9856 | 0.9885 | 0.9914 | 0.9942 | 0.9971 | 1.0000 |
∑25° | 150° | 1.0047 | 1.0042 | 1.0038 | 1.0033 | 1.0028 | 1.0023 | 1.0019 | 1.0014 | 1.0009 | 1.0005 | 1.0000 |
∑30° | 120° | 1.0280 | 1.0251 | 1.0222 | 1.0194 | 1.0166 | 1.0138 | 1.0110 | 1.0082 | 1.0055 | 1.0027 | 1.0000 |
∑30° | 150° | 1.1328 | 1.1185 | 1.1044 | 1.0906 | 1.0771 | 1.0637 | 1.0506 | 1.0377 | 1.0250 | 1.0124 | 1.0000 |
∑40° | 120° | 1.0035 | 1.0032 | 1.0028 | 1.0025 | 1.0021 | 1.0018 | 1.0014 | 1.0011 | 1.0007 | 1.0004 | 1.0000 |
Angle a | Angle b | 120° | 125° | 130° | 135° | 140° |
---|---|---|---|---|---|---|
∑5° | 130° | 0.3935/0.2025 | ||||
∑5° | 140° | 0.1373/0.0085 | 0.2132/0.0319 | |||
∑5° | 150° | 0.0183/0.0010 | 0.0323/0.0025 | 0.1328/0.0529 | ||
∑10° | 130° | 0.3442/0.2095 | ||||
∑10° | 140° | 0.1283/0.0211 | 0.1902/0.0778 | |||
∑10° | 150° | 0.0104/0.0029 | 0.0246/0.0090 | 0.1224/0.0952 | ||
∑15° | 135° | 0.1683/0.0863 | ||||
∑15° | 150° | 0.0585/0.0055 | 0.0443/0.0499 | |||
∑20° | 140° | 0.0265/0.00002 | ||||
∑25° | 150° | 0.0018/0.00001 | ||||
∑30° | 150° | 0.00005/0.0006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namli, O.C.; Utku, F.S. Approximation of the Role of Mineralized Collagen Fibril Orientation in the Mechanical Properties of Bone: A Computational Study on Dehydrated Osteonal Lamellar Bone. Minerals 2024, 14, 1107. https://doi.org/10.3390/min14111107
Namli OC, Utku FS. Approximation of the Role of Mineralized Collagen Fibril Orientation in the Mechanical Properties of Bone: A Computational Study on Dehydrated Osteonal Lamellar Bone. Minerals. 2024; 14(11):1107. https://doi.org/10.3390/min14111107
Chicago/Turabian StyleNamli, Onur Cem, and Feride Sermin Utku. 2024. "Approximation of the Role of Mineralized Collagen Fibril Orientation in the Mechanical Properties of Bone: A Computational Study on Dehydrated Osteonal Lamellar Bone" Minerals 14, no. 11: 1107. https://doi.org/10.3390/min14111107
APA StyleNamli, O. C., & Utku, F. S. (2024). Approximation of the Role of Mineralized Collagen Fibril Orientation in the Mechanical Properties of Bone: A Computational Study on Dehydrated Osteonal Lamellar Bone. Minerals, 14(11), 1107. https://doi.org/10.3390/min14111107