Characterization of Incremental Markings in the Sagittal Otolith of the Pacific Sardine (Sardinops sagax) Using Different Imaging Modalities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Whole Otolith Ageing
2.3. Otolith Surface Imaging
2.4. Embedding, Sectioning and Polishing of Otoliths
2.5. Imaging of Polished Sectional Block Surfaces of Otoliths
2.6. Light Microscopic (LM) Imaging of Otolith Ground Sections
2.7. Image Processing, Counting, and Comparison of Incremental Features
2.8. Synchrotron microComputed Tomography (MicroCT)
3. Results
3.1. Otolith Surface Structure and Variation of Growth Rate
3.2. Recording Structures—Daily Increments
3.3. Recording Structures—Annual Increments
3.4. Three-Dimensional Examination of Increment Structure
3.5. Fluorochrome-Labeled Otolith
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klevezal, G.A. Recording Structures of Mammals; Balkema: Rotterdam, The Netherlands, 1996. [Google Scholar]
- Nanci, A. (Ed.) Ten Cate’s Oral Histology: Development, Structure, and Function, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Naji, S.; Rendu, W.; Gourichon, L. (Eds.) Cementum in Anthropology; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Peharda, M.; Schöne, B.R.; Black, B.A.; Corrège, T. Advances in sclerochronology research in the last decade. Palaeogeo. Palaeoclim. Palaeoecol. 2021, 570, 110371. [Google Scholar] [CrossRef]
- Stringer, C.A.; Prendergast, A.L. Freshwater mollusc sclerochronology: Trends, challenges and future directions. Earth-Sci. Rev. 2023, 247, 104621. [Google Scholar] [CrossRef]
- Natanson, L.J.; Skomal, G.B.; Hoffmann, S.L.; Porter, M.F.; Goldman, K.J.; Serra, D. Age and growth of sharks: Do vertebral band pairs record age? Mar. Freshw. Res. 2018, 69, 1440–1452. [Google Scholar] [CrossRef]
- Francillon-Vieillot, H.; Buffrénil V de Castanet, J.; Géraudie, J.; Meunier, F.J.; Sire, J.Y.; Zylberberg, L.; de Ricqlès, A. Microstructure and mineralization of vertebrate skeletal tissues. In Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends; Carter, J.G., Ed.; Van Nostrand Reinhold: New York, NY, USA, 1990; Volume 1, pp. 471–530. [Google Scholar]
- Oschmann, W. Sclerochronology: Editorial. Int. J. Earth Sci. 2009, 98, 1–2. [Google Scholar] [CrossRef]
- Campana, S.E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 1999, 188, 263–297. [Google Scholar] [CrossRef]
- Campana, S.E. Otolith science entering the 21st century. Mar. Freshw. Res. 2005, 56, 485–495. [Google Scholar] [CrossRef]
- James, K.C.; Dorval, E.; Erisman, B.E. Validation of periodicity of growth band formation in Pacific sardine (Sardinops sagax) from a captive growth experiment. Mar. Biol. 2024, 171, 105. [Google Scholar] [CrossRef]
- Schulz-Mirbach, T.; Ladich, F.; Plath, M.; Heß, M. Enigmatic ear stones: What we know about the functional role and evolution of fish otoliths. Biol. Rev. 2019, 94, 457–482. [Google Scholar] [CrossRef] [PubMed]
- Retzius, G. Das Gehörorgan der Wirbelthiere. I. Das Gehörorgan der Fische und Amphibien; Samson & Wallin: Stockholm, Sweden, 1881; pp. 1–222, 35 plates. [Google Scholar]
- Wohlfahrt, T.A. Das Ohrlabyrinth der Sardine (Clupea pilchardus Walb.) und seine Beziehungen zur Schwimmblase und Seitenlinie. Z. Morphol. Ökol. Tiere 1936, 31, 371–410. [Google Scholar] [CrossRef]
- Degens, E.T.; Deuser, W.F.G.; Haedrich, R.L. Molecular structure and composition of fish otoliths. Mar. Biol. 1969, 2, 105–113. [Google Scholar] [CrossRef]
- Borelli, G.; Mayer-Gostan, N.; Merle, P.L.; De Pontual, H.; Boeuf, G.; Allemand, D.; Payan, P. Composition of biomineral organic matrices with special emphasis on turbot (Psetta maxima) otolith and endolymph. Calcif. Tiss. Int. 2003, 72, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, Y.W.; Xu, Y.; Thiessen, K.D.; Kramer, K.K. Mechanisms of otoconia and otolith development. Dev. Dyn. 2015, 244, 239–253. [Google Scholar] [CrossRef]
- Dunkelberger, D.A.; Dean, J.M.; Watabe, N. The ultrastructure of the otolithic membrane and otolith in the juvenile mummichog, Fundulus heteroclitus. J. Morphol. 1980, 163, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Popper, A.N.; Hoxter, B. The fine structure of the sacculus and lagena of teleost fish. Hear. Res. 1981, 5, 245–263. [Google Scholar] [CrossRef] [PubMed]
- Panella, G. Fish otoliths: Daily growth layers and periodical patterns. Science 1971, 173, 1124–1127. [Google Scholar] [CrossRef] [PubMed]
- Mugiya, Y.; Watabe, N.; Yamada, J.; Dean, J.M.; Dunkelberger, D.G.; Shimizu, M. Diurnal rhythm in otolith formation in the goldfish, Carassius auratus. Comp. Biochem. Physiol. 1981, 68A, 659–662. [Google Scholar] [CrossRef]
- Campana, S.E.; Neilson, J.D. Microstructure of fish otoliths. Can. J. Fish. Aquatic. Sci. 1985, 42, 1014–1032. [Google Scholar] [CrossRef]
- Campana, S.E. Measurement and interpretation of the microstructure of fish otoliths. In Otolith Microstructure Examination and Analysis; Stevenson, D.K., Campana, S.E., Eds.; Canadian Special Publication of Fisheries and Aquatic Sciences; Fisheries and Oceans Canada: Ottawa-Ontario, BC, Canada, 1992; Volume 117, pp. 59–71. [Google Scholar]
- Campana, S.E. Lunar cycles of otolith growth in the juvenile starry flounder Platichthys stellatus. Mar. Biol. 1984, 80, 239–246. [Google Scholar] [CrossRef]
- Gauldie, R.W. Function, form and time-keeping properties of fish otoliths. Comp. Biochem. Physiol. 1988, 91A, 395–402. [Google Scholar] [CrossRef]
- Morales-Nin, B. Review of the growth regulation processes of otolith daily increment formation. Fish. Res. 2000, 46, 53–67. [Google Scholar] [CrossRef]
- Mugiya, Y. Phase difference between calcification and organic matrix formation in the diurnal growth of otoliths in the rainbow trout, Salmo gairdneri. Fish. Bull. 1987, 85, 395–401. [Google Scholar]
- Gauldie, R.W.; Nelson, D.G.A. Aragonite twinning and neuroprotein secretion are the cause of daily growth rings in fish otoliths. Comp. Biochem. Physiol. 1988, 97A, 461–474. [Google Scholar] [CrossRef]
- Reis-Santos, R.; Gillanders, B.M.; Sturrock, A.M.; Izzo, C.; Oxman, D.S.; Lueders-Dumont, J.A.; Hüssy, K.; Tanner, S.E.; Rogers, T.; Doubleday, Z.A.; et al. Reading the biomineralized book of life: Expanding otolith biogeochemical research and applications for fisheries and ecosystem-based management. Rev. Fish Biol. Fish. 2023, 33, 411–449. [Google Scholar] [CrossRef]
- Buckmeier, D.L.; Sakaris, P.C.; Schill, D.J. Validation of annual and daily increment in calcified structures and verification of age estimates. In Age and Growth of Fishes: Principles and Techniques; Quist, M.C., Isermann, D.A., Eds.; American Fisheries Society: Bethesda, MD, USA, 2017; pp. 33–79. [Google Scholar]
- Jones, C.M. Age and growth. In Fishery Science: The Unique Contribution of Early Life Stages; Fuiman, L.A., Werner, R.G., Eds.; Blackwell Scientific Publications: Oxford, UK, 2002; pp. 33–63. [Google Scholar]
- Secor, D.H.; Dean, J.M.; Laban, E.H. Manual for Otolith Removal and Preparation for Microstructural Examination; Technical Report 91-1; University of South Carolina, Branch Institute for Marine Biology and Coastal Research: Columbia, SC, USA, 1991. [Google Scholar]
- Beckman, D.W.; Wilson, C.A. Seasonal timing of opaque zone formation in fish otoliths. In Recent Developments in Fish Otolith Research; Secor, D.H., Dean, J.M., Campana, S.E., Eds.; University of South Carolina Press: Columbia, SC, USA, 1995; pp. 27–43. [Google Scholar]
- Hüssy, K.; Krüger-Johnsen, M.; Thomsen, T.B.; Heredia, B.D.; Næraa, T.; Limburg, K.E.; Heimbrand, Y.; McQueen, K.; Haase, S.; Krumme, U.; et al. It’s elemental, my dear Watson: Validating seasonal patterns in otolith chemical chronologies. Can. J. Fish. Aquatic. Sci. 2021, 78, 551–556. [Google Scholar] [CrossRef]
- Beamish, R.J.; McFarlane, G.A. The forgotten requirement for age validation in fisheries biology. Trans. Am. Fish. Soc. 1983, 112, 735–743. [Google Scholar] [CrossRef]
- Dorval, E.; McDaniel, J.D.; Macewicz, B.J.; Porzio, D.L. Changes in growth and maturation parameters of Pacific sardine Sardinops sagax collected off California during a period of stock recovery from 1994 to 2010. J. Fish. Biol. 2015, 87, 286–310. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, P.T.; Zwolinski, J.P.; Hill, K.T.; Crone, P.R. Assessment of the Pacific sardine resource in 2020 for U.S. Management in 2020–2021; NOAA Technical Memorandum NMFS-SWFSC-628; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2020.
- Butler, J.L. Comparisons of the Larval and Juvenile Growth and Larval Mortality of Pacific Sardine and Northern Anchovy and Implications for Species Interaction. PhD Thesis, University of California San Diego, San Diego, CA, USA, 1987. [Google Scholar]
- Barnes, J.T.; Foreman, T.J. Recent evidence for the formation of annual growth increments in the otoliths of young Pacific sardines (Sardinops sagax). Calif. Dept. Fish Game 1994, 80, 29–30. [Google Scholar]
- Hay, V.; Berland, S.; Medjoubi, K.; Somogyi, A.; Mennesson, M.I.; Keith, P.; Lord, C. Unmasking pipefish otolith using synchrotron-based scanning X-ray fluorescence. Sci. Rep. 2023, 13, 4794. [Google Scholar] [CrossRef] [PubMed]
- Yaremko, M.L. Age Determination in Pacific Sardine, Sardinops sagax; NOAA Technical Memorandum NMFS-SWFSC-223; National Oceanic and Atmospheric Administration: Washington, DC, USA, 1996.
- Fitch, J.E. Age composition of the southern California catch of Pacific mackerel 1939–40 through 1950–51. Calif. Dept. Fish Game 1951, 83, 1–73. [Google Scholar]
- Boyde, A.; Jones, S.J. Backscattered electron imaging of dental tissues. Anat. Embryol. 1983, 168, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Skedros, J.G.; Bloebaum, R.D.; Bachus, K.N.; Boyce, T.M. The meaning of graylevels in backscattered electron images of bone. J. Biomed. Mater. Res. 1993, 27, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, V.; Tekawade, A.; Duchkov, A.; Shevchenko, P.; De Carlo, F. Real-time streaming tomographic reconstruction with on-demand data capturing and 3D zooming to regions of interest. J. Synchrotron. Rad. 2022, 29, 816–828. [Google Scholar] [CrossRef] [PubMed]
- Paganin, D.; Mayo, S.C.; Gureyev, T.E.; Miller, P.R.; Wilkins, S.W. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 2002, 206, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, V. TomocuPy—Efficient GPU-based tomographic reconstruction with asynchronous data processing. J. Synch. Rad. 2023, 30, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Meth. 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Ahlstrom, E.H. Distribution and abundance of eggs of the Pacific Sardine, 1952–1956. Fish. Bull. 1959, 60, 185–213. [Google Scholar]
- Panella, G. Otolith growth patterns: An aid in age determination in temperate and tropical fishes. In Ageing of Fish; Bagenal, T.B., Ed.; Unwin Brothers Limited: London, UK, 1974; pp. 28–39. [Google Scholar]
- De Buffrénil, V.; Quilhac, A. Basic processes in bone growth. In Vertebrate Skeletal Histology and Paleohistology; de Buffrénil, V., de Ricqles, A.J., Zylberberg, L., Padian, K., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 193–220. [Google Scholar]
- Rack, A.; (ESRF, Grenoble, France). Personal communication, 2024.
- Nikitin, V.; (APS, Argonne National Laboratory, Lemon, IL, USA). Personal communication, 2024.
- Bromage, T.G. Enamel incremental periodicity in the pig-tailed macaque: A polychrome fluorescent labeling study of dental hard tissues. Am. J. Phys. Anthropol. 1991, 86, 205–214. [Google Scholar] [CrossRef]
- Van Gaalen, S.M.; Kruyt, M.C.; Geuze, R.E.; de Bruijin, J.D.; Alblas, J.; Dhert, W.J.A. Use of fluorochrome labels in in vivo bone tissue engineering research. Tiss. Eng. Part B Rev. 2010, 16, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Emken, S.; Witzel, C.; Kierdorf, U.; Frölich, K.; Kierdorf, H. Characterization of short-period and long-period incremental markings in porcine enamel and dentine–Results of a fluorochrome labelling study in wild boar and domestic pigs. J. Anat. 2021, 239, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Kierdorf, H.; Kierdorf, U.; Frölich, K.; Witzel, C. Lines of evidence–Incremental markings in molar enamel of Soay sheep as revealed by a fluorochrome labeling and backscattered electron imaging study. PLoS ONE 2013, 8, e74597. [Google Scholar] [CrossRef]
Authors/Methods | Incremental Zones | Discontinuous Zones |
---|---|---|
Mugiya et al. [21] | calcium-dominant zones | matrix-dominant zones |
Dunkelberger et al. [18] | calcified layers | layers of organic matrix/interlamellar matrix |
Hay et al. [40] (XRF spectromicroscopy) | light (L) zones (low sulfur content) | dark (D) zones (high sulfur content) |
Campana and Neilson [22] (SEM-SE images of etched surfaces) | lightly etched zones | deeply etched zones |
Reflected light images of polished block surfaces | broader, translucent zones | narrower, opaque zones |
SEM-BSE images of polished block surfaces | broader, bright zones | narrower, dark zones |
Transmitted light and reflected plain light (bright background) images of thin ground sections | broader, bright zones | narrower, dark zones |
Polarized transmitted light images of thin ground sections | broader, bright zones | narrower, dark zones |
Sample Number | Date Collected | Standard Length (mm) | Age | Otolith Radius (mm) |
---|---|---|---|---|
4 | 21 August 2016 | 190 | 1 | 1.35 |
7 | 21 July 2017 | 223 | 6 | 1.59 |
13 | 2 August 2017 | 196 | 2 | 1.36 |
14 | 9 August 2017 | 103 | 0 | 0.86 |
83 | 3 February 2016 | 185 | 1 | 1.43 |
Otolith | Number of Low Density Zones | Distance (µm) | Average Low Density Zone Periodicity (µm/low Density Zone) | Average Width (Range) of Low Density Zones (µm) | Average Width (Range) of High Density Zones (µm) |
---|---|---|---|---|---|
#4 | 44 | 405.79 | 9.23 | 3.22 (1.55–5.39) | 5.25 (2.07–8.42) |
#7 | 138 | 1440.96 | 10.44 | 2.26 (1.38–4.63) | 5.46 (1.38–11.11) |
#13 | 75 | 668.53 | 8.91 | 2.98 (2.07–4.63) | 5.35 (2.49–15.46) |
#14 | 49 | 370.55 | 7.56 | 2.47 (2.07–3.52) | 5.11 (2.07–8.42) |
#83 | 82 | 725.94 | 8.85 | 2.17 (1.55–3.52) | 3.68 (1.55–9.87) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
James, K.C.; Kierdorf, U.; Cooley, V.; Nikitin, V.; Stock, S.R.; Kierdorf, H. Characterization of Incremental Markings in the Sagittal Otolith of the Pacific Sardine (Sardinops sagax) Using Different Imaging Modalities. Minerals 2024, 14, 705. https://doi.org/10.3390/min14070705
James KC, Kierdorf U, Cooley V, Nikitin V, Stock SR, Kierdorf H. Characterization of Incremental Markings in the Sagittal Otolith of the Pacific Sardine (Sardinops sagax) Using Different Imaging Modalities. Minerals. 2024; 14(7):705. https://doi.org/10.3390/min14070705
Chicago/Turabian StyleJames, Kelsey C., Uwe Kierdorf, Victoria Cooley, Viktor Nikitin, Stuart R. Stock, and Horst Kierdorf. 2024. "Characterization of Incremental Markings in the Sagittal Otolith of the Pacific Sardine (Sardinops sagax) Using Different Imaging Modalities" Minerals 14, no. 7: 705. https://doi.org/10.3390/min14070705
APA StyleJames, K. C., Kierdorf, U., Cooley, V., Nikitin, V., Stock, S. R., & Kierdorf, H. (2024). Characterization of Incremental Markings in the Sagittal Otolith of the Pacific Sardine (Sardinops sagax) Using Different Imaging Modalities. Minerals, 14(7), 705. https://doi.org/10.3390/min14070705