Genesis of the Bailugou Vein-Type Zinc-Lead-Silver Deposit, Eastern Qinling Orogen, China: Constraints from Ore Geology and Fluid Inclusions
Abstract
:1. Introduction
2. Geological Setting
2.1. Stratigraphy
2.2. Igneous Rocks
2.3. Structures
3. Ore Geology
3.1. Ore Bodies
3.2. Mineral Assemblages
3.3. Alteration and Mineralized Stages
4. Sampling and Analytical Methods for Fluid Inclusions
5. Results
5.1. Petrography and Types of Fluid Inclusions
5.2. Composition from Laser Raman Spectroscopy Detection
5.3. Microthermometry
6. Discussion
6.1. Fluid Salinity, Density, Pressure, and Ore-Forming Depth
6.1.1. Fluid Salinity and Density Estimated by FIs
6.1.2. Ore-Forming Pressure and Depth
6.2. Temperature of Mineralization
6.2.1. Characteristic Temperature Revealed by Solid Solution Separation Structure
6.2.2. Homogenization Temperature of Fluid Inclusions
6.2.3. Equilibrium Temperature from Sulfur Isotope
6.3. Origin, Evolution, and Precipitation Mechanism of Ore-Forming Fluids
6.3.1. Fluid Immiscibility, Mixture, and Boiling
6.3.2. Genesis of the Bailugou Vein-Type Zinc-Lead-Silver Deposit
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, R.; Weed, W.H. The Nature of Ore Deposits; McGraw-Hill: New York, NY, USA, 1909; p. 685. [Google Scholar]
- Lindgren, W. Mineral Deposits; McGraw-Hill: New York, NY, USA, 1933; p. 930. [Google Scholar]
- Hammer, D.F.; Peterson, D.W. Geology of the Magma Mine Area, Arizona. In Ore Deposits of the United States; Ridge, J.D., Ed.; The American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc.: New York, NY, USA, 1968; Volume 1933–1967, pp. 1282–1310. [Google Scholar]
- Rye, R.O.; Sawkins, F. Fluid inclusion and stable isotope studies on the Casapalca Ag-Pb-Zn-Cu deposit, Central Andes, Peru. Econ. Geol. 1974, 87, 225–262. [Google Scholar] [CrossRef]
- Guilbert, J.M.; Park, C.F. The Geology of Ore Deposits; Freeman: San Francisco, CA, USA, 1986; p. 985. [Google Scholar]
- Graybeal, F.T.; Smith, D.M., Jr.; Vikre, P.G. The geology of silver deposits. In Handbook of Strata-Bound and Stratiform Ore Deposits; Wolf, K.H., Ed.; Springer: Berlin/Heidelberg, Germany, 1986; Volume 14, pp. 1–184. [Google Scholar]
- Keith, J.D.; Whitney, J.A.; Hattori, K.; Ballantyne, G.H.; Christiansen, E.H.; Barr, D.L.; Cannan, T.M.; Hook, C.J. The role of magmatic sulfides mafic alkaline magmas in the Bingham Tintic Mining Districts Utah. J. Petrol. 1997, 38, 1679–1690. [Google Scholar] [CrossRef]
- Kissin, S.A.; Mango, H. Silver vein deposits. In Treatise on Geochemistry, 2nd ed.; Elsevier: Oxford, UK, 2014; pp. 425–432. [Google Scholar]
- Im, H.; Jeong, J.; Shin, D. Genetic environment of W skarn and Pb-Zn vein mineralization associated with the Imog granite in the Taebaeksan Mineralized District, South Korea. Ore Geol. Rev. 2020, 126, 103721. [Google Scholar] [CrossRef]
- Beaudoin, G.; Sangster, D.F. A descriptive model for silver-lead-zinc veins in clastic metasedimentary terranes. Econ. Geol. 1992, 87, 1005–1021. [Google Scholar] [CrossRef]
- Lynch, J.V.G.; Longstaffe, F.J.; Nesbitt, B.E. Stable isotopic and fluid inclusion indications of large-scale hydrothermal paleo flow, boiling, and fluid mixing in the Keno Hill Ag-Pb-Zn district, Yukon Territory, Canada. Geochim. Cosmochim. Acta 1990, 54, 1045–1059. [Google Scholar] [CrossRef]
- Leach, D.L.; Landis, G.P.; Hofstra, A.H. Metamorphic origin of the Coeur d’Alene base-and precious-metal veins in the Belt basin, Idaho and Montana. Geology 1988, 16, 122–125. [Google Scholar] [CrossRef]
- Leach, D.L.; Hofstra, A.H.; Church, S.E.; Snee, L.W.; Vaughn, R.B.; Zartman, R.E. Evidence for Proterozoic and Late Cretaceous-Early Tertiary ore-forming events in the Coeur d’Alene district, Idaho and Montana. Econ. Geol. 1998, 93, 347–359. [Google Scholar] [CrossRef]
- Johnson, C.A.; Cardellach, E.; Tritlla, J.; Hanan, B.B. Cierco Pb-Zn-Ag vein deposits: Isotopic and fluid inclusion evidence for formation during the Mesozoic extension in the Pyrenees of Spain. Econ. Geol. 1996, 91, 497–506. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Sui, Y.H. Isotope geochemistry of the Tieluping silver deposit, Henan, China: A case study of orogenic silver deposits and related tectonic setting. Miner. Depos. 2004, 39, 560–575. [Google Scholar] [CrossRef]
- Qi, J.P.; Chen, Y.J.; Ni, P.; Lai, Y.; Ding, J.Y.; Song, Y.W.; Tang, G.J. Fluid inclusion constraints on the origin of the Lengshuibeigou Pb-Zn-Ag deposit, Henan province. Acta Petrol. Sin. 2007, 23, 2119–2130, (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.; Yang, Y.; Hu, H.Z.; Wang, Z.G.; Li, G.P.; Li, Z.L. C-S-Pb isotope geochemistry of the Yindonggou orogenic type silver deposit in Henan Province. Acta Petrol. Sin. 2009, 25, 2833–2842, (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.; Yang, Y.; Lu, Y.H. Lead isotope geochemistry of the Weishancheng gold-silver ore belt, Henan Province, China: Implications for ore genesis. Acta Petrol. Sin. 2009, 25, 444–454, (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.; Chen, Y.J.; Yang, Y.; Deng, J. Lead isotope systematics of the Weishancheng Au–Ag belt, Tongbai Mountains, central China: Implication for ore genesis. Int. Geol. Rev. 2011, 53, 656–676. [Google Scholar] [CrossRef]
- Li, Z.K.; Li, J.W.; Zhao, X.F.; Zhou, M.F.; Selby, D.; Bi, S.J.; Sui, J.X.; Zhao, Z.J. Crustal-extension Ag-Pb-Zn veins in the Xiong’ershan district, southern North China Craton: Constraints from the Shagou Deposit. Econ. Geol. 2013, 108, 1703–1729. [Google Scholar] [CrossRef]
- Han, J.S.; Yao, J.M.; Chen, H.Y.; Deng, X.H.; Ding, J.Y. Fluid inclusion and stable isotope study of the Shagou Ag-Pb-Zn deposit, Luoning, Henan province, China: Implications for the genesis of an orogenic lode Ag-Pb-Zn system. Ore Geol. Rev. 2014, 62, 199–210. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.J.; Su, Q.W.; Zhang, X.; Xiang, S.H.; Wang, Q.S. Geology and genesis of the Xiaguan Ag–Pb–Zn orefield in Qinling orogen, Henan province, China: Fluid. inclusion and isotope constraints. Ore Geol. Rev. 2016, 76, 79–93. [Google Scholar] [CrossRef]
- Chen, X.L.; Shao, Y.J.; Lai, C.; Wang, C. Genesis of the Longmendian Ag–Pb–Zn Deposit in Henan (Central China): Constraints from Fluid Inclusions and H–C–O–S–Pb Isotopes. Geofluids 2020. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.J.; Zhang, J.; Zhang, C. Ore geology, fluid inclusions and four–stage hydrothermal mineralization of the Shangfanggou giant Mo–Fe deposit in Eastern Qinling, central China. Ore Geol. Rev. 2013, 55, 146–161. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.J.; Deng, X.H. Mineralization mechanisms in the Shangfanggou giant porphyry-skarn Mo-Fe deposit of the east Qinling, China: Constraints from H–O–C–S–Pb isotopes. Ore Geol. Rev. 2017, 81 Pt 2, 535–547. [Google Scholar] [CrossRef]
- Qi, J.P.; Song, Y.W.; Li, S.Q.; Chen, F.K. Single-grain Rb-Sr isotopic composition of the Xigou Pb-Zn-Ag deposit, Luanchuan, Henan province. Acta Petrol. Sin. 2009, 25, 2843–2854, (In Chinese with English Abstract). [Google Scholar]
- Qi, J.P. Geology, Geochemistry and Genesis of Vein-Type Zn-Pb-Silver Deposits in Luanchuan, Henan. Ph.D. Thesis, Peking University, Beijing, China, 2006; pp. 1–133, (In Chinese with English Abstract). [Google Scholar]
- Fyfe, W.S.; Price, N.J.; Thompson, A.B. Fluids in the Earth’s Crust; Elsevier: Amsterdam, The Netherlands, 1978; p. 383. [Google Scholar]
- Etheridge, M.A.; Wall, V.J. The role of the fluid phase during regional metamorphism and deformation. J. Metamorph. Geol. 1983, 1, 205–226. [Google Scholar] [CrossRef]
- Thompson, A.B.; Connolly, J.A.D. Migration of metamorphic fluid: Some aspects of mass and heat transfer. Earth-Sci. Rev. 1992, 32, 107–121. [Google Scholar] [CrossRef]
- Taylor, H.P., Jr. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Taylor, H.P., Jr. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1997; pp. 229–302. [Google Scholar]
- Arndt, N.; Ganino, C. Hydrothermal deposits. In Metals and Society, An Introduction to Economic Geology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 73–112. [Google Scholar]
- Steven, M.; Heather, A.S.; Timothy, B. Active fault and shear processes and their implications for mineral deposit formation and discovery. J. Struct. Geol. 2010, 32, 151–165. [Google Scholar] [CrossRef]
- Duan, S.G.; Xue, C.J.; Liu, G.Y.; Yan, C.H.; Feng, Q.W.; Song, Y.W.; Gao, B.Y. Geology, fluid inclusions and stable isotopic geochemistry of Bailugou Pb–Zn deposit in Luanchuan area, Henan Province. Miner. Depos. 2010, 29, 810–825, (In Chinese with English Abstract). [Google Scholar]
- Duan, S.G.; Xue, C.J.; Liu, G.Y.; Yan, C.H.; Feng, Q.W.; Song, Y.W.; Tu, Q.J.; Gao, Y.; Gao, B.Y. Ceology and sulfur isotope geochemistry of lead-zinc deposits in Luanchuan district,Henan Province, China. Earth Sci. Front. 2010, 17, 375–384, (In Chinese with English Abstract). [Google Scholar]
- Duan, S.G.; Xue, C.J.; Feng, Q.W.; Gao, B.Y.; Liu, G.Y.; Yan, C.H.; Song, Y.W. Geology, fluid inclusions and S, Pb isotopic geochemistry of the Chitudian Pb- Zn deposit in Luanchuan, Henan Province. Geol. China 2011, 38, 427–441, (In Chinese with English Abstract). [Google Scholar]
- Duan, S.G.; Xue, C.J.; Chi, G.X.; Liu, G.Y.; Yan, C.H.; Feng, Q.W. Ore geology, fluid inclusion, and S- and Pb-isotopic constraints on the genesis of the Chitudian Zn–Pb deposit, southern margin of the North China Craton. Resour. Geol. 2011, 61, 224–240. [Google Scholar] [CrossRef]
- Cao, H.W.; Zhang, S.T.; Santosh, M.; Zheng, L.; Tang, L.; Li, D.; Zhang, X.H.; Zhang, Y.H. The Luanchuan Mo–W–Pb–Zn–Ag magmatic–hydrothermal system in the East Qinling metallogenic belt, China: Constrains on metallogenesis from C–H–O–S–Pb isotope compositions and Rb–Sr isochron ages. J. Asian Earth Sci. 2015, 111, 751–780. [Google Scholar] [CrossRef]
- Zhang, H.Q. Geochemical characteristics and geological significance of the Bailugou Pb–Zn–Ag deposit in Henan Province. Miner. Explor. 2021, 12, 2069–2075, (In Chinese with English Abstract). [Google Scholar]
- Xu, Y.; Wang, G.; Gao, M.; Yang, W.; Yang, S.; Yun, H.; Wu, P.; Guo, N.; Feng, Y. Genesis of the Shibaogou Mo–Pb–Zn deposit in the Luanchuan ore district, China: Constraints from geochronology, fluid inclusion, and H–O–S–Pb isotopes. Front. Earth Sci. 2023, 10, 1032183. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Zhang, H.; Zhao, T.P.; Deng, X.H.; Wang, Y.; Ni, Z.Y. Molybdenum deposits in East Qinling. Earth Sci. Front. 2007, 14, 186–198, (In Chinese with English Abstract). [Google Scholar]
- Hu, S.X.; Lin, Q.L.; Chen, Z.M.; Li, S.M. Geology and Metallogeny of the Collision Belt Between North China Plates; Nanjing University Press: Nanjing, China, 1988; p. 558. (In Chinese) [Google Scholar]
- Lü, W.D.; Sun, W.Z. Metallogenic condition of lead and zinc deposit in Lushi-Lanchuan terrain. Miner. Resour. Geol. 2004, 18, 507–516, (In Chinese with English Abstract). [Google Scholar]
- Yan, C.H. Study on Inner Structure of Lead-Zinc-Silver Mineralization System in Eastern Qinling; Geological Publishing House: Beijing, China, 2004; p. 144, (In Chinese with English Abstract). [Google Scholar]
- Lu, S.N.; Li, H.K.; Li, H.M.; Song, B.; Wang, S.Y.; Zhou, H.Y.; Chen, Z.H. U-Pb isotopic ages and their significance of Alkaline Granite in the southern margin of the North China Craton. Geol. Bull. China 2003, 22, 762–768, (In Chinese with English Abstract). [Google Scholar]
- Yan, C.H.; Liu, G.Y.; Peng, Y.; Song, Y.W.; Wang, J.Z.; Zhao, R.J.; Zeng, X.Y.; Lü, W.D.; Yao, X.N.; Ma, H.W.; et al. The Metallogenic Regularity of Lead-Zinc Ore in the Southwest Hernan Province; Geological Publishing House: Beijing, China, 2009; p. 369, (In Chinese with English Abstract). [Google Scholar]
- Roedder, E. Fluid inclusions. Reviews in mineralogy. Miner. Soc. Am. 1984, 12, 644. [Google Scholar]
- Diamond, L.W. Review of the systematics of CO2–H2O fluid inclusions. Lithos 2001, 55, 69–99. [Google Scholar] [CrossRef]
- Burke, E.A.J. Raman microspectrometry of fluid inclusions. Lithos 2001, 55, 139–158. [Google Scholar] [CrossRef]
- Bozzo, A.T.; Chen, H.S.; Kass, J.R.; Barduhn, A.J. The properties of hydrates of chlorine and carbon dioxide. Desalination 1975, 16, 303–320. [Google Scholar] [CrossRef]
- Potter, R.W.; Clynne, M.A.; Brown, D.L. Freezing point depression of aqueous Sodium Chloride Solutions. Econ. Geol. 1978, 73, 284–285. [Google Scholar] [CrossRef]
- Hall, D.L.; Sterner, S.M.; Bodner, R.J. Freezing point depression of NaCl-KCl-H2O solutions. Econ. Geol. 1988, 83, 197–202. [Google Scholar] [CrossRef]
- Bodnar, R.J. Reviced equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Sterner, S.M.; Hall, D.L.; Bodnar, R.J. Synthetic fluid inclusions—V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochim. Cosmochim. Acta 1988, 52, 989–1005. [Google Scholar] [CrossRef]
- Brown, P.E. FLINCOR: A microcomputer program for the reduction and investigation of fluid-inclusion data. Am. Mineral. 1989, 74, 1390–1393. [Google Scholar]
- Brown, P.E.; Lamb, W.M. P-V-T properties of fluids in the system H2O-CO2-NaCl: New graphical presentations and implications for fluid inclusion studies. Geochim. Cosmochim. Acta 1989, 53, 1209–1221. [Google Scholar] [CrossRef]
- Haas, J.L. Physical properties of the coexisting phases and thermochemical properties of the H2O component in boiling NaCl solutions. US Geol. Surv. Bull. 1976, 1421A, 73. [Google Scholar]
- Bodnar, R.J. A method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids. Econ. Geol. 1983, 78, 535–542. [Google Scholar] [CrossRef]
- Bischoff, J.L. Densities of liquids and vapors in boiling NaCl-H2O solutions: A PVTX summary from 300 °C to 500 °C. Amer. J. Sci. 1991, 291, 309–338. [Google Scholar] [CrossRef]
- Bowers, T.S.; Helgeson, H.C. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta 1983, 47, 1247–1275. [Google Scholar] [CrossRef]
- Wickham, S.M.; Peters, M.T.; Fricke, H.C.; O’Neil, J.R. Identification of magmatic and meteoric fluid sources and upward- and downward-moving infiltration fronts in a metamorphic core complex. Geology 1993, 21, 81–84. [Google Scholar] [CrossRef]
- Famin, V.; Philippot, P.; Jolivet, L.; Agard, P. Evolution of Hydrothermal Regime along a Crustal Shear Zone; Tectonics: Tinos Island, Greece, 2004; Volume 23, pp. 1–23. [Google Scholar]
- Siebenaller, L.; Boiron, M.C.; Vanderhaeghe, O.; Hibsch, C.; Jessell, M.W.; André-Mayer, A.S.; France-Lanord, C.; Photiades, A. Fluid record of rock exhumation across the brittle ductile transition during formation of a metamorphic core complex (Naxos Island, Cyclades, Greece). J. Metamorph. Geol. 2013, 31, 313–338. [Google Scholar] [CrossRef]
- Paul, B.B.; Philip, M.B. Chalcopyrite disease in sphalerite; pathology and epidemiology. Am. Mineral. 1987, 72, 451–467. [Google Scholar]
- Shang, J.; Lu, J.W.; Peng, X.L.; Zhang, Y. Mineragraphy; Geological Publishing House: Beijing, China, 2007; p. 156, (In Chinese with English Abstract). [Google Scholar]
- Yang, Y.; Chen, H.; Guo, N.N.; Wu, D.H.; Pang, Z.S.; Chen, Y.J. Isotope Geochemistry and Metallogenic Model of the Bailugou Vein-Type Zn-Pb-Ag Deposit, Eastern Qinling Orogen, China. Minerals, 2024; submitted. [Google Scholar]
- Sakai, H. Isotopic properties of sulfur compounds in hydrothermal processes. Geochem. J. 1968, 2, 29–49. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R.O. Isotopes of Sulfur and Carbon. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley-Interscience: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Bao, Z.W.; Zeng, Q.S.; Zhao, T.P.; Yuan, Z.L. Geochemistry and petrogenesis of the ore related Nannihu and Shangfanggou granite porphyries from east Qinling belt of molybdenum mineralization. Acta Petrol. Sin. 2009, 25, 2523–2536, (In Chinese with English Abstract). [Google Scholar]
- Fogel, R.A.; Rutherford, M.J. The solubility of carbon dioxide in rhyolitic melts: A quantitative FTIR study. Am. Mineral. 1990, 75, 1311–1326. [Google Scholar]
- Giggenbach, W.F. The origin and evolution of fluids in magmatic-hydrothermal systems. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Kidston Gold Mines Company Report; Kidston Gold Mines Company: Einasleigh, QLD, Australia, 1997; p. 82. [Google Scholar]
- Lowenstern, J. B A review of the contrasting behavior of two magmatic volatiles: Chlorine and carbon dioxide. J. Geochem. Explor. 2000, 69–70, 287–290. [Google Scholar] [CrossRef]
- Lowestern, J.B. Carbon dioxide in magmas and implications for hydrothermal systems. Miner. Depos. 2001, 36, 490–502. [Google Scholar] [CrossRef]
- Chen, Y.J.; Ni, P.; Fan, H.R.; Pirajno, F.; Lai, Y.; Su, W.C.; Zhang, H. Diagnostic fluid inclusions of different types hydrothermal gold deposits. Acta Petrol. Sin. 2007, 23, 2085–2108, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.F. The Temporal-Spital Evolution of Mesozoic Granitoids in the Xiong’ershan Area and Their Relationships to Molybdenum-Gold Mineralization. Ph. D. Dissertation, University of Geosciences, Beijing, China, 2005; pp. 1–135, (In Chinese with English Summary). [Google Scholar]
- Ye, H.S. The Mesozoic tectonic evolution and Pb-Zn-Ag metallogeny in the southern margin of North China Craton. Ph.D. Dissertation, Chinese Academy of Geological Sciences, Beijing, China, 2006; pp. 1–225, (In Chinese with English Summary). [Google Scholar]
- Chen, Y.J.; Sui, Y.H.; Pirajno, F. Exclusive evidences for CMF model and a case of orogenic silver deposits: Isotope geochemistry of the Tieluping silver deposit, east Qinling orogen. Acta Petrol. Sin. 2003, 19, 551–568, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.J.; Pirajno, F.; Sui, Y.H. Geology and D–O–C isotope systematics of the Tieluping silver deposit, Henan, China: Implications for ore genesis. Acta Geol. Sin. 2005, 79, 106–119, (In Chinese with English Abstract). [Google Scholar]
- Chen, Y.J.; Pirajno, F.; Qi, J.P.; Li, J.; Wang, H.H. Ore geology, fluid geochemistry and genesis of the Shanggong gold deposit, eastern Qinling Orogen, China. Resour. Geol. 2006, 56, 99–116. [Google Scholar] [CrossRef]
- Yang, F.; Santosh, M.; Kim, S.W. Mesozoic magmatism in the eastern North China Craton: Insights on tectonic cycles associated with progressive craton destruction. Gondwana Res. 2018, 60, 153–178. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.-J.; Santosh, M.; Pirajno, F. Late Mesozoic granitoids in the Qinling Orogen, central China, and tectonic significance. Earth. Sci. Rev. 2018, 182, 141–173. [Google Scholar] [CrossRef]
- Xue, F.; Wang, G.W.; Santosh, M.; Yang, F.; Shen, Z.W.; Kong, L.; Guo, N.; Zhang, X.; Jia, W. Geochemistry and geochronology of ore-bearing and barren intrusions in the Luanchuan ore fields of East Qinling metallogenic belt, China: Diverse tectonic evolution and implications for mineral exploration. J. Asian Earth Sci. 2018, 157, 57–77. [Google Scholar] [CrossRef]
- Xue, F.; Santosh, M.; Tsunogae, T.; Yang, F. Geochemical and isotopic imprints of early cretaceous mafic and felsic dyke suites track lithosphere- asthenosphere interaction and craton destruction in the North China Craton. Lithos 2019, 326–327, 174–199. [Google Scholar] [CrossRef]
- Xue, F.; Santosh, M.; Tsunogae, T.; Yang, F.; Zhou, H. The Genesis of high Ba-Sr adakitic rocks: Insights from an Early Cretaceous volcanic suite in the central North China Craton. Geol. J. 2020, 55, 5398–5416. [Google Scholar] [CrossRef]
- Tang, L.; Hu, X.K.; Santosh, M.; Zhang, S.T.; Spencer, C.J.; Jeon, H.; Zhao, Y.; Cao, H.-W. Multistage processes linked to tectonic transition in the Genesis of orogenic gold deposit: A case study from the Shanggong lode deposit, East Qinling, China. Ore Geol. Rev. 2019, 111, 102998. [Google Scholar] [CrossRef]
- Yang, F.; Xue, F.; Santosh, M.; Wang, G.; Kim, S.W.; Shen, Z.; Jia, W.; Zhang, X. Late Mesozoic magmatism in the East Qinling Orogen, China and its tectonic implications. Geosci. Front. 2019, 10, 1803–1821. [Google Scholar] [CrossRef]
- Yang, F.; Santosh, M.; Tang, L. Extensive crustal melting during craton destruction: Evidence from the Mesozoic magmatic suite of Junan, eastern North China Craton. J. Asian Earth Sci. 2018, 157, 119–140. [Google Scholar] [CrossRef]
- Zhang, G.W.; Meng, Q.R.; Yu, Z.P.; Li, J.; Wang, Y.; Liu, H.; Chen, X.; Zhao, M.; Wu, T.; Xu, L.; et al. Orogenesis and dynamics of Qinling orogen. Sci. China 1996, 26, 193–200. (In Chinese) [Google Scholar]
Stage | Sample no. | Host | Type | Size | Vapor | TmCO2 | Tmcla | ThCO2 | Tms | Thtot 2 | Tmice | Salinity 3 | Density of CO2 | Bulk Density | Pressure | Lithostatic Depth | Hydrostatic Depth | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Minerals | (μm) | (vol.%) | (°C) | (°C) | (°C) 1 | (°C) | (°C) | Counts | (°C) | (wt%NaCl eqv). | Counts | (g/cm3) 4 | (g/cm3) 5 | (MPa) 6 | (km) 7 | (km) | |||
1 | BGL-5 | Qtz | W | 4–10 | 5–30 | 115.6–345.3 | 29 | −8.3 to −0.8 | 1.4–12.0 | 17 | 0.67–0.98 | 2–122 | 0.01–0.45 | 0.02–1.25 | |||||
BGL-5 | Qtz | C | 5–19 | 30–80 | −61.6 to −60.2 | 4.5–6.7 | 27.2–30.6 | 251.5–341.5 | 8 | 6.2–9.7 | 8 | 0.56–0.67 | 0.74–0.93 | 740–1157 | 2.70–4.22 | 7.55–11.81 | |||
BGL-5 | Qtz | S | 4–16 | 5–10, 20–30 | 185.2–258.3 | 117.5–275.4 | 5 | 31.2–35.2 | 4 | 1.07–1.28 | 9–32 | 0.03–0.12 | 0.09–0.32 | ||||||
BLC-30 | Qtz | W | 5–15 | 5–30, 60 | 219.1–396.1 | 6 | −13.8 to −4.8 | 7.6–17.6 | 3 | 0.76–0.92 | 21–183 | 0.08–0.67 | 0.22–1.86 | ||||||
BLC-30 | Qtz | C | 7–21 | 5, 95 | −57.1 to −33.6 | −21.3 to −19.5 | −8 to −5.2 | 236.9–268.3 | 3 | ||||||||||
BLC-30 | Qtz | S | 4–13 | 5–30 | 101.2–320.8 | 213.5–482.7 | 12 | 28.0–39.8 | 12 | 0.89–1.15 | 1–76 | 0–0.28 | 0.01–0.77 | ||||||
BLC-13 | Qtz | W | 7–38 | 5–30 | 219.4–311.2 | 2 | −9.7 to −6.7 | 10.1–13.6 | 3 | 0.84–1.08 | 0–91 | 0–0.33 | 0–0.93 | ||||||
BLC-13 | Qtz | S | 11–17 | 30–60 | >560 | 252.4–407.2 | 3 | ||||||||||||
2 | BLC-33 | Qtz | W | 4–13 | 5–30, 60 | 145.5–333.5 | 28 | −15.5 to −4.0 | 6.4–19.0 | 12 | 0.83–0.98 | 4–119 | 0.01–0.44 | 0.44–1.22 | |||||
BLC-33 | Qtz | C | 5–14 | 5–30 | 4.8–8.0 | 24.3–26.2 | 230.1–327.0 | 7 | 3.9–9.4 | 4 | 0.69 | 0.93 | 744 | 2.71 | 7.59 | ||||
BP-8 | Qtz | W | 4–18 | 5–30 | 208.7–247.5 | 32 | −10.8 to −3.3 | 5.4–14.8 | 29 | 0.85–0.96 | 17–36 | 0.06–0.13 | 0.18–0.36 | ||||||
BP-8 | Qtz | S | 10–13 | 5–10 | >400 | 180.2–239.7 | 2 | ||||||||||||
3 | BGL-12 | Dol | W | 5–11 | 5–30, 60 | 228.5–301.2 | 7 | −7.1 to −4.6 | 7.3–10.6 | 6 | 0.82–0.91 | 25–68 | 0.09–0.25 | 0.26–0.69 | |||||
BJD-2 | Dol | W | 4–34 | 5–30, 60 | 106.2–281.2 | 18 | −7.2 to −2.7 | 4.5–10.7 | 11 | 0.78–0.91 | 24–64 | 0.09–0.23 | 0.25–0.65 | ||||||
BP-8 | Dol | W | 4–51 | 5–30, 60 | 110.1–272.4 | 22 | −8.0 to 0.0 | 0–11.7 | 21 | 0.77–0.97 | 1–54 | 0.01–0.20 | 0.01–0.56 | ||||||
4 | B1471 | Cc | W | 42–88 | 20–30 | 120.8–194.6 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Guo, N.; Chen, H.; Wu, D.; Pang, Z.; Chen, Y. Genesis of the Bailugou Vein-Type Zinc-Lead-Silver Deposit, Eastern Qinling Orogen, China: Constraints from Ore Geology and Fluid Inclusions. Minerals 2024, 14, 1119. https://doi.org/10.3390/min14111119
Yang Y, Guo N, Chen H, Wu D, Pang Z, Chen Y. Genesis of the Bailugou Vein-Type Zinc-Lead-Silver Deposit, Eastern Qinling Orogen, China: Constraints from Ore Geology and Fluid Inclusions. Minerals. 2024; 14(11):1119. https://doi.org/10.3390/min14111119
Chicago/Turabian StyleYang, Yan, Nana Guo, Hui Chen, Donghao Wu, Zhenshan Pang, and Yanjing Chen. 2024. "Genesis of the Bailugou Vein-Type Zinc-Lead-Silver Deposit, Eastern Qinling Orogen, China: Constraints from Ore Geology and Fluid Inclusions" Minerals 14, no. 11: 1119. https://doi.org/10.3390/min14111119
APA StyleYang, Y., Guo, N., Chen, H., Wu, D., Pang, Z., & Chen, Y. (2024). Genesis of the Bailugou Vein-Type Zinc-Lead-Silver Deposit, Eastern Qinling Orogen, China: Constraints from Ore Geology and Fluid Inclusions. Minerals, 14(11), 1119. https://doi.org/10.3390/min14111119