Tectonic Inversion in Sediment-Hosted Copper Deposits: The Luangu Area, West Congo Basin, Republic of the Congo
Abstract
:1. Introduction
2. Geological Setting
3. New Structural Codes Based on Both Structural Regimes and Faulting Criteria
4. Results
4.1. Primary and Weathering Structures in the Cupriferous Units
4.2. Results and Analyses on Ore-Controlling Structures
4.2.1. L1
4.2.2. L2
4.2.3. L3
4.2.4. LE
5. Discussion
5.1. The Significance of the New Codes Series Used for Structural Analysis
5.2. Models for Regional Distribution and Evolution of the Luangu Deposits
- Stage A: Rift valley basin period
- Stage B: Pan-African orogenic period
- Stage C: Assembly and rifting of Gondwanaland
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dewaele, S.; Muchez, P.; Vets, J.; Fernandez-Alonzo, M.; Tack, L. Multiphase origin of the Cu–Co ore deposits in the western part of the Lufilian fold-and-thrust belt, Katanga (Democratic Republic of Congo). J. Afr. Earth Sci. 2006, 46, 455–469. [Google Scholar] [CrossRef]
- De Oliveira, S.B.; Bertossi, L.G. 3D structural and geological modeling of the Kwatebala Cu–Co deposit, Tenke-Fungurume district, Democratic Republic of Congo. J. Afr. Earth Sci. 2023, 199, 104825. [Google Scholar] [CrossRef]
- Misra, K.C. Sediment-Hosted Stratiform Copper (SSC) Deposits. In Understanding Mineral Deposits; Misra, K.C., Ed.; Springer: Dordrecht, The Netherlands, 2000; pp. 539–572. [Google Scholar]
- Curzi, M.; Aldega, L.; Billi, A.; Boschi, C.; Carminati, E.; Vignaroli, G.; Viola, G.; Bernasconi, S.M. Fossil chemical-physical (dis)equilibria between paleofluids and host rocks and their relationship to the seismic cycle and earthquakes. Earth-Sci. Rev. 2024, 254, 104801. [Google Scholar] [CrossRef]
- Williams, B.J.; Blenkinsop, T.G.; Lilly, R.; Thompson, M.P.; Ila’ava, P. Foliation boudinage structures in the Mount Isa Cu system. Aust. J. Earth Sci. 2023, 70, 972–989. [Google Scholar] [CrossRef]
- Williams, B.J.; Blenkinsop, T.G. Strain in sulphide filled foliation boudinage structures at the Mount Isa Cu deposit, Australia. J. Struct. Geol. 2024, 179, 105034. [Google Scholar] [CrossRef]
- Fossen, H. Structural Geology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2016; pp. 1–524. [Google Scholar]
- Hou, Q.L.; Cheng, N.N.; Shi, M.Y.; Lu, X. The union of various rock deformation criteria at different structural levels and its further development. Acta Petrol. Sin. 2018, 34, 1792–1800. Available online: http://www.ysxb.ac.cn/search (accessed on 18 October 2024). (In Chinese with English Abstract).
- Zheng, Y.D.; Wang, T.; Ma, M.B.; Davis, G.A. Maximum effective moment criterion and the origin of low-angle normal faults. J. Struct. Geol. 2004, 26, 271–285. [Google Scholar] [CrossRef]
- Curzi, M.; Aldega, L.; Bernasconi, S.M.; Berra, F.; Billi, A.; Boschi, C.; Franchini, S.; Van der Lelij, R.; Viola, G.; Carminati, E. Architecture and evolution of an extensionally-inverted thrust (Mt. Tancia Thrust, Central Apennines): Geological, structural, geochemical, and K–Ar geochronological constraints. J. Struct. Geol. 2020, 136, 104059. [Google Scholar] [CrossRef]
- Mfere, A.P.A.; Delpomdor, F.; Proust, J.-N.; Boudzoumou, F.; Callec, Y.; Préat, A. Facies and architecture of the SCIc Formation (Schisto-Calcaire Group), Republic of Congo, in the Niari-Nyanga and Comba subbasins of the Neoproterozoic West Congo Basin after the Marinoan glaciation event. J. Afr. Earth Sci. 2020, 166, 103776. [Google Scholar] [CrossRef]
- Delpomdor, F.; Schröder, S.; Préat, A.; Lapointe, P.; Blanpied, C. Sedimentology and chemostratigraphy of the late Neoproterozoic carbonate ramp sequences of the Hüttenberg Formation (northwestern Namibia) and the C5 Formation (western central Democratic Republic of Congo): Record of the late post-Marinoan marine transgression on the margin of the Congo Craton. S. Afr. J. Geol. 2018, 121, 23–42. [Google Scholar] [CrossRef]
- Souza, M.E.; de Souza Martins, M.; Queiroga, G.N.; Leite, M.; Oliveira, R.G.; Dussin, I.; Pedrosa-Soares, A.C. Paleoenvironment, sediment provenance and tectonic setting of Tonian basal deposits of the Macaúbas basin system, Araçuaí orogen, southeast Brazil. J. S. Am. Earth Sci. 2019, 96, 102393. [Google Scholar] [CrossRef]
- Delpomdor, F.; Kant, F.; Préat, A. Neoproterozoic uppermost Haut-Shiloango Subgroup (West Congo Supergroup, Democratic Republic of Congo): Misinterpreted stromatolites and implications for sea-level fluctuations before the onset of the Marinoan glaciation. J. Afr. Earth Sci. 2014, 90, 49–63. [Google Scholar] [CrossRef]
- Danderfer Filho, A.; Lana, C.C.; Nalini Júnior, H.A.; and Costa, A.F.O. Constraints on the Statherian evolution of the intraplate rifting in a Paleo-Mesoproterozoic paleocontinent: New stratigraphic and geochronology record from the eastern São Francisco craton. Gondwana Res. 2015, 28, 668–688. [Google Scholar] [CrossRef]
- De Castro, M.P.; Queiroga, G.; Martins, M.; Alkmim, F.; Pedrosa-Soares, A.; Dussin, I.; Souza, M.E. An Early Tonian rifting event affecting the São Francisco-Congo paleocontinent recorded by the Lower Macaúbas Group, Araçuaí Orogen, SE Brazil. Precambrian Res. 2019, 331, 105351. [Google Scholar] [CrossRef]
- Nikis, N.; Putter, T. Recherches Géo-Archéologiques Dans Les Zones Cuprifères Du Bassin Du Niari En République Du Congo. Nyame Akuma 2015, 84, 142–153. (In French) [Google Scholar] [CrossRef]
- Tack, L.; Wingate, M.T.D.; Liégeois, J.P.; Fernandez-Alonso, M.; Deblond, A. Early Neoproterozoic magmatism (1000–910 Ma) of the Zadinian and Mayumbian Groups (Bas-Congo): Onset of Rodinia rifting at the western edge of the Congo craton. Precambrian Res. 2001, 110, 277–306. [Google Scholar] [CrossRef]
- Garzanti, E.; Vermeesch, P.; Vezzoli, G.; Andò, S.; Botti, E.; Limonta, M.; Dinis, P.; Hahn, A.; Baudet, D.; De Grave, J.; et al. Congo River sand and the equatorial quartz factory. Earth-Sci. Rev. 2019, 197, 102918. Available online: https://hdl.handle.net/1854/LU-8641851 (accessed on 18 October 2024). [CrossRef]
- De Putter, T.; Nikis, N. Le cuivre du Niari, une ressource ancienne et prisée. Études géologique et archéologique des mines de cuivre-plomb-zinc du Bassin du Niari (République du Congo). Sci. Connect. 2016, 50, 35–39. (In French) [Google Scholar] [CrossRef]
- Eeckhout, S.; De Grave, J.; Van den Haute, P. Geology and petrology of the felsic intrusions in the metasedimentary and metavolcanic rocks of the early Neoproterozoic Zadinian Group around Matadi (Lower-Congo region, D.R. Congo). In A State Affair: Privatising Congo’s Copper Sector; The Carter Center: Atlanta, GA, USA, 2017; pp. 1–104. Available online: https://lib.ugent.be/en/catalog/rug01:002163635 (accessed on 18 October 2024).
- Kampunzu, A.B.; Kapenda, D.; Manteka, B. Basic magmatism and geotectonic evolution of the Pan African belt in central Africa: Evidence from the Katangan and West Congolian segments. Tectonophysics 1991, 190, 363–371. [Google Scholar] [CrossRef]
- De Waele, B.; Johnson, S.P.; Pisarevsky, S.A. Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton: Its role in the Rodinia puzzle. Precambrian Res. 2008, 160, 127–141. [Google Scholar] [CrossRef]
- Begg, G.C.; Griffin, W.L.; Natapov, L.M.; O’Reilly, S.Y.; Grand, S.P.; O’Neill, C.J.; Hronsky, J.M.A.; Djomani, Y.P.; Swain, C.J.; Deen, T.; et al. The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. Geosphere 2009, 5, 23–50. [Google Scholar] [CrossRef]
- Fernandez-Alonso, M.; Cutten, H.; De Waele, B.; Tack, L.; Tahon, A.; Baudet, D.; Barritt, S.D. The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): The result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events. Precambrian Res. 2012, 216–219, 63–86. [Google Scholar] [CrossRef]
- De Wit, M.J.; Linol, B. Precambrian Basement of the Congo Basin and Its Flanking Terrains. In Geology and Resource Potential of the Congo Basin; de Wit, M.J., Guillocheau, F., de Wit, M.C.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 19–37. [Google Scholar] [CrossRef]
- Ball, S.H.; Shaler, M.K. A Central African Glacier of Triassic Age. J. Geol. 1910, 18, 681–701. Available online: https://www.jstor.org/stable/30081323 (accessed on 18 October 2024). [CrossRef]
- Frimmel, H.E.; Tack, L.; Basei, M.S.; Nutman, A.P.; Boven, A. Provenance and chemostratigraphy of the Neoproterozoic West Congolian Group in the Democratic Republic of Congo. J. Afr. Earth Sci. 2006, 46, 221–239. [Google Scholar] [CrossRef]
- Vicat, J.-P.; Gioan, P.; Caby, R. Occurrence of greenschist facies metamorphism in the Bouenza sequence of the south-eastern border of the Chaillu Massif, Congo. Comptes Rendus De L’académie Des Sci. Série II Mécanique Phys. Chim. Astron. 1991, 312, 517–522. Available online: https://www.researchgate.net/publication/313104753 (accessed on 18 October 2024).
- Rademakers, F.W.; Nikis, N.; De Putter, T.; Degryse, P. Copper Production and Trade in the Niari Basin (Republic of Congo) During the 13th to 19th Centuries ce: Chemical and Lead Isotope Characterization. Archaeometry 2018, 60, 1251–1270. [Google Scholar] [CrossRef]
- Hanson, R.E. Proterozoic geochronology and tectonic evolution of southern Africa. Geol. Soc. Lond. Spec. Publ. 2003, 206, 427–463. [Google Scholar] [CrossRef]
- Loemba, A.P.R.; Ferreira, A.; Ntsiele, L.J.E.P.; Opo, U.F.; Bazebizonza Tchiguina, N.C.; Nkodia, H.M.D.V.; Klausen, M.; Boudzoumou, F. Archean crustal generation and Neoproterozoic partial melting in the Ivindo basement, NW Congo craton, Republic of Congo: Petrology, geochemistry and zircon U–Pb geochronology constraints. J. Afr. Earth Sci. 2023, 200, 104852. [Google Scholar] [CrossRef]
- Kröner, A.; Stern, B. Pan-African Orogeny. In Encyclopedia of Geology; Elsevier: Amsterdam, The Netherlands, 2004; Volume 1, pp. 1–12. [Google Scholar] [CrossRef]
- Monié, P.; Bosch, D.; Bruguier, O.; Vauchez, A.; Rolland, Y.; Nsungani, P.; Buta Neto, A. The Late Neoproterozoic/Early Palaeozoic evolution of the West Congo Belt of NW Angola: Geochronological (U-Pb and Ar-Ar) and petrostructural constraints. Terra Nova 2012, 24, 238–247. [Google Scholar] [CrossRef]
- Delvaux, D.; Maddaloni, F.; Tesauro, M.; Braitenberg, C. The Congo Basin: Stratigraphy and subsurface structure defined by regional seismic reflection, refraction and well data. Glob. Planet. Chang. 2021, 198, 103407. [Google Scholar] [CrossRef]
- White, R.; McKenzie, D. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. J. Geophys. Res. Solid Earth 1989, 94, 7685–7729. [Google Scholar] [CrossRef]
- Haapala, I.; Frindt, S.; Kandara, J. Cretaceous Gross Spitzkoppe and Klein Spitzkoppe stocks in Namibia: Topaz-bearing A-type granites related to continental rifting and mantle plume. Lithos 2007, 97, 174–192. [Google Scholar] [CrossRef]
- Pérez-Díaz, L.; Eagles, G. Constraining South Atlantic growth with seafloor spreading data. Tectonics 2014, 33, 1848–1873. [Google Scholar] [CrossRef]
- Bah, B.; Lacombe, O.; Beaudoin, N.E.; Zeboudj, A.; Gout, C.; Girard, J.-P.; Teboul, P.-A. Paleostress evolution of the West Africa passive margin: New insights from calcite twinning paleopiezometry in the deeply buried syn-rift TOCA formation (Lower Congo basin). Tectonophysics 2023, 863, 229997. [Google Scholar] [CrossRef]
- Sieberer, A.K.; Willingshofer, E.; Klotz, T.; Ortner, H.; Pomella, H. Inversion of extensional basins parallel and oblique to their boundaries: Inferences from analogue models and field observations from the Dolomites Indenter, European eastern Southern Alps. Solid Earth 2023, 14, 647–681. [Google Scholar] [CrossRef]
- Curzi, M.; Viola, G.; Zuccari, C.; Aldega, L.; Billi, A.; van der Lelij, R.; Kylander-Clark, A.; Vignaroli, G. Tectonic Evolution of the Eastern Southern Alps (Italy): A Reappraisal From New Structural Data and Geochronological Constraints. Tectonics 2024, 43, e2023TC008013. [Google Scholar] [CrossRef]
- Japas, M.S.; Gómez, A.L.R.; Rubinstein, N.A. Unravelling the hydro-mechanical evolution of a porphyry-type deposit by using vein structures. Ore Geol. Rev. 2021, 133, 104074. [Google Scholar] [CrossRef]
- Tassara, S.; Ague, J.J. A role for crustal assimilation in the formation of copper-rich reservoirs at the base of continental arcs. Econ. Geol. 2022, 117, 1481–1496. [Google Scholar] [CrossRef]
- Andersson, J.B.H.; Bauer, T.E.; Lynch, E.P. Evolution of structures and hydrothermal alteration in a Palaeoproterozoic supracrustal belt: Constraining paired deformation–fluid flow events in an Fe and Cu–Au prospective terrain in northern Sweden. Solid Earth 2020, 11, 547–578. [Google Scholar] [CrossRef]
- Twiss, R.J.; Moores, E.M. Structural Geology, 2nd ed.; W. H. Freeman: New York, NY, USA, 2007; pp. 1–736. [Google Scholar]
- Trompette, R.; Boudzoumou, F. Palaeogeographic significance of stromatolitic buildups on late proterozoic platforms: The example of the West Congo basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1988, 66, 101–112. [Google Scholar] [CrossRef]
- Nkodia, H.M.D.V.; Miyouna, T.; Kolawole, F.; Boudzoumou, F.; Loemba, A.P.R.; Bazebizonza Tchiguina, N.C.; Delvaux, D. Seismogenic Fault Reactivation in Western Central Africa: Insights From Regional Stress Analysis. Geochem. Geophys. Geosystems 2022, 23, e2022GC010377. [Google Scholar] [CrossRef]
- Syverson, D.D.; Awolayo, A.N.; Tutolo, B.M. Seafloor spreading and the delivery of sulfur and metals to Earth’s oceans. Geology 2023, 51, 1168–1172. [Google Scholar] [CrossRef]
Craton Texture | Unit | Rock Assemblage (and Thickness) | Time | Tectonic Setting | References |
---|---|---|---|---|---|
Mpioka Subgroup | Alternating sandstone-clayey sediments | ~540 Ma, ~1000 m | Late orogenic related | [11] | |
Schisto-Calcaire Subgroup | I–V carbonate-dominated subgroups | ~630–580 Ma, ~1100 m | Related to the rifting of the basin. | [11] | |
Upper diamictite formation | Diamictite | ~640–635 Ma; ~150 m | Related To the Macaúbas Rift II: Cryogeonian | [12,13,14] | |
Haut Shiloango Subgroup | III clast-supported conglomerates and breccias | ~678–640 Ma; ~1050 m | |||
II nodular wackestone | |||||
I alternating limestones and claystones | |||||
Lower diamictite formation | Diamictite with basalt sheets | ~694–678 Ma; ~400 m | |||
Sansikwa Subgroup | Continental rift basin fill intruded with dolerite sills | Earlier than 694 Ma ~1650 m | |||
Nonconformity | |||||
Basement (Before Early Neoproterozic) | Lufu granite | 917 ± 14 Ma | Related To the Macaúbas Rift I: Tonian | [13] | |
Gangila Meta basalt | 920 ± 8 Ma | ||||
Inga metarhyolite | 924 ± 25 Ma | ||||
Yelala metaconglomerate | ~930 Ma | ||||
Kimezian Basement | ~2.1 Ga | [15,16] |
Mines | GPS | Ductile Shearing | Extensile Fractures | Shear Fractures |
---|---|---|---|---|
L1, Northwest Luangu | +13°55′50″–04°19′30″ | Layer-parallel sliding; stretch lineations | Veinlet stockworks, | Silication alteration in wall rocks, iron stained |
L2, Central West Luangu | +13°55′50″–04°20′15″ | Layer-parallel sliding; folding | Fissures with malachite veins | Silication alteration in wall rocks, iron stained |
L3, Southwest Luangu | +13°56′00″–04°21′15″ | Layer-parallel sliding; folding | Disseminated | Silication alteration in wall rocks |
LE, Northeast Luangu | +13°59′00″–04°19′25″ | Layer-parallel sliding; folding | Stockworks | Fault zone with silication alteration |
Stress Regime | Related Structures in Outcrops | Codes and 2αf | Related Reports | |
---|---|---|---|---|
Extensional | Detachment or layer-parallel sliding plane; normal faults, extensional veins/fractures, vein structures/tensile fractures | EC | <90° | [42,43] |
ET | ~0° | |||
EM | ~110° | |||
Strike-Slip or Extrusion | Strike-slip faults, releasing/restraining bends, dilational jogs, vein structures/tensile fractures | SC | <90° | [44] |
ST | ~0° | |||
SM | ~110° | |||
Compressional | Thrust or reverse faults, folds, duplexes, imbricate thrust systems; sulfide-filled foliation boudinage structures, vein structures/tensile fractures | CC | <90° | [5,6] |
CT | ~0° | |||
CM | ~110° |
Mine Site | Coded Results | Contraction and Extrusion Share the Z Axis or Not? | Extension and Extrusion Share the X Axis or Not? | Is Y Axis in Contraction Parallel the X Axis in Extension? |
---|---|---|---|---|
L1, Northwest Luangu | EM; SC; CT, CC | Deduced YES | Deduced YES | YES by CC and EM from Figure 8F |
L2, Central West Luangu | EM, ET, EC; SM; CM | YES from Figure 9E | Deduced YES | Deduced YES |
L3, Southwest Luangu | EM; ST, SC; CM | YES from Figure 10C,E | YES from Figure 10B,C | YES from Figure 10B,E |
LE, Northeast Luangu | EM; SM, SC; CM, CT, CC | Deduced YES | Deduced YES | YES from Figure 11A,B |
Mine Site | Results | Extension | Strike-Slip | Contraction | Preservation Assessment | |||
---|---|---|---|---|---|---|---|---|
Ductile | Brittle | Ductile | Brittle | Ductile | Brittle | |||
EM | ET/EC | SM | ST/SC | CM | CT/CC | |||
L1, Northwest Luangu | EM; SC; CT, CC | √ | - | - | √ | - | √ | Good |
L2, Central West Luangu | EM, ET, EC; SM; CM | √ | √ | √ | - | √ | - | Limited |
L3, Southwest Luangu | EM; ST, SC; CM | √ | - | - | √ | √ | - | Limited |
LE, Northeast Luangu | EM; SM, SC; CM, CT, CC | √ | - | √ | √ | √ | √ | Limited |
Ore preservation assessment | Best | Best | Good | Better | Bad | Good | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Cheng, S.; Wang, G.; Defliese, W.F.; Liu, Z. Tectonic Inversion in Sediment-Hosted Copper Deposits: The Luangu Area, West Congo Basin, Republic of the Congo. Minerals 2024, 14, 1061. https://doi.org/10.3390/min14111061
Zhang H, Cheng S, Wang G, Defliese WF, Liu Z. Tectonic Inversion in Sediment-Hosted Copper Deposits: The Luangu Area, West Congo Basin, Republic of the Congo. Minerals. 2024; 14(11):1061. https://doi.org/10.3390/min14111061
Chicago/Turabian StyleZhang, Hongyuan, Shenghong Cheng, Gongwen Wang, William F. Defliese, and Zhenjiang Liu. 2024. "Tectonic Inversion in Sediment-Hosted Copper Deposits: The Luangu Area, West Congo Basin, Republic of the Congo" Minerals 14, no. 11: 1061. https://doi.org/10.3390/min14111061
APA StyleZhang, H., Cheng, S., Wang, G., Defliese, W. F., & Liu, Z. (2024). Tectonic Inversion in Sediment-Hosted Copper Deposits: The Luangu Area, West Congo Basin, Republic of the Congo. Minerals, 14(11), 1061. https://doi.org/10.3390/min14111061