Sorption Properties of Bentonite-Based Organoclays with Amphoteric and Nonionic Surfactants in Relation to Polycyclic Aromatic Hydrocarbons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Organoclays
- Surfactant 1—Sodium cocoiminodipropionate;
- Surfactant 2—Lauramine oxide, C12–C14;
- Surfactant 3—Cocamide diethethanolamine;
- Surfactant 4—Disodium cocoamphodiacetate;
- Surfactant 5—Alkylpolyglucoside C8–C10.
2.2. Adsorption of PAHs
2.2.1. Experiment Design
2.2.2. Study of the Mechanisms of Adsorption of PAHs
2.2.3. Chromatographic Analysis
- X—mass concentration of individual PAH in the extract, ng/g;
- Sx—Peak area of the determined PAHs, MV × s;
- Ve—volume of extract, cm3;
- A—Relative calibration coefficient, mV × s × cm3/μg;
- Cc—Correction factor considers sample preparation losses;
- M—weight of the sample taken for analysis, g.
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Components and Synthesized Organoclays
3.2. Adsorption of PAHs by Synthesized Organoclays
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Sorbents | S, % | KL, g−1 μg | Qmax, μg g−1 | ΔG, kJ∙L∙mol−1 | RL | KF, µg g−1 | Average Rank |
---|---|---|---|---|---|---|---|
Benzo(a)pyrene | |||||||
Bentonite | 6 | 6 | 6 | 6 | 6 | 6 | 6.0 |
organoclay with surfactant 1 | 1 | 2 | 2 | 2 | 2 | 3 | 1.8 |
organoclay with surfactant 2 | 4 | 4 | 3 | 4 | 4 | 4 | 3.8 |
organoclay with surfactant 3 | 2 | 5 | 1 | 5 | 5 | 1 | 3.6 |
organoclay with surfactant 4 | 3 | 1 | 5 | 1 | 1 | 5 | 2.2 |
organoclay with surfactant 5 | 5 | 3 | 4 | 3 | 3 | 2 | 3.6 |
Naphthalene | |||||||
Bentonite | 6 | 2 | 3 | 2 | 2 | 6 | 3.0 |
organoclay with surfactant 1 | 5 | 2 | 4 | 2 | 2 | 3 | 3.0 |
organoclay with surfactant 2 | 1 | 2 | 1 | 2 | 2 | 1 | 1.6 |
organoclay with surfactant 3 | 4 | 2 | 5 | 2 | 2 | 4 | 3.0 |
organoclay with surfactant 4 | 3 | 2 | 2 | 2 | 2 | 2 | 2.2 |
organoclay with surfactant 5 | 2 | 1 | 6 | 1 | 1 | 5 | 2.2 |
References
- Kasimov, N.S.; Vlasov, D.V. Technophilicity of Chemical Elements at the Beginning of the XXI Century. Bull. Mosc. Univ. Epis. Geogr. 2012, 1, 15–22. [Google Scholar]
- Tsibart, A.S.; Gennadiev, A.N. Polycyclic aromatic hydrocarbons in soils: Sources, behavior, indication value (review). Eurasian Soil Sci. 2013, 46, 788. [Google Scholar] [CrossRef]
- IARC. List of Classifications, Volumes 1–123. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2020; Available online: https://monographs.iarc.fr/list-of-classifications-volumes/ (accessed on 19 January 2024).
- ATSDR. Minimal Risk Levels (MRLs) List [Electronic Resource]. Electronic Data. Agency for Toxic Substances and Disease Registry. 2020. Available online: https://www.atsdr.cdc.gov/mrls/mrllist.asp#15tag (accessed on 19 January 2024).
- ATSDR. Toxicological Profile for Polycyclic Aromatic Hydrocarbons. Agency for Toxic Substances and Disease Registry (ATSDR); U.S. Department of Health and Human Services: Washington, DC, USA, 1995; 487p. [Google Scholar]
- San Pin 1.2.3685-21; Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors for Humans. Federal Service for Supervision in the Field of Protection Consumer Rights and Human Well-Being: Moscow, Russia, 2021; 988p. (In Russian)
- Maliszewska-Kordybach, B.; Smreczak, B.; Klimkowicz-Pawlas, A.; Terelak, H. Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere 2008, 73, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, H.; Yuan, Z.; Wang, S.; Chen, A.; He, B. Concentration, exchange and source identification of polycyclic aromatic hydrocarbons in soil, air and tree bark from the Middle-Lower Yangtze Plain, China. Atmos. Pollut. Res. 2019, 10, 1276–1283. [Google Scholar] [CrossRef]
- Lu, L.; Ni, R. Bibliometric analysis of global research on polycyclic aromatic hydrocarbons and health risk between 2002 and 2021. Environ. Sci. Pollut. Res. 2022, 29, 84034–84048. [Google Scholar] [CrossRef]
- Dudnikova, T.; Sushkova, S.; Minkina, T.; Barbashev, A.; Ferreira, C.S.S.; Antonenko, E.; Shuvaev, E.; Bakoeva, G. Main factors in polycyclic aromatic hydrocarbons accumulations in the long-term technogenic contaminated soil. Eurasian J. Soil Sci. 2023, 12, 282–289. [Google Scholar] [CrossRef]
- Dudnikova, T.; Minkina, T.; Sushkova, S.; Barbashev, A.; Antonenko, E.; Konstantinova, E.; Shuvaev, E.; Nevidomskaya, D.; Ivantsov, A.; Bakoeva, G.; et al. Background content of polycyclic aromatic hydrocarbons during monitoring of natural and anthropogenically transformed landscapes in the coastal area soils. Water 2023, 15, 2424. [Google Scholar] [CrossRef]
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ. Technol. Innov. 2020, 17, 100526. [Google Scholar] [CrossRef]
- Ye, X.; Kang, S.; Wang, H.; Li, H.; Zhang, Y.; Wang, G.; Zhao, H. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils. J. Hazard. Mater. 2015, 289, 210–218. [Google Scholar] [CrossRef]
- Perelomov, L.; Mandzhieva, S.; Minkina, T.; Atroshchenko, Y.; Perelomova, I.; Bauer, T.; Pinsky, D.; Barakhov, A. The synthesis of organoclays based on clay minerals with different structural expansion capacities. Minerals 2021, 11, 707. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Li, M.; Zhang, W.; Wang, Y.; Xian, Q. The effects of co-existing acridine on adsorption-desorption behavior of carbazole in soils: Co-sorption and mechanism insight. J. Hazard. Mater. 2024, 470, 134205. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S. A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J. Mol. Liq. 2017, 241, 1091–1113. [Google Scholar] [CrossRef]
- Dhar, A.K.; Himu, H.A.; Bhattacharjee, M.; Mostufa, M.G.; Parvin, F. Insights on applications of bentonite clays for the removal of dyes and heavy metals from wastewater: A review. Environ. Sci. Pollut. Res. 2023, 30, 5440–5474. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Ramontja, J. Recent modifications of bentonite clay for adsorption applications. Focus Sci. 2016, 2, 1–10. [Google Scholar] [CrossRef]
- Wijesooriya, M.M.; Wijesekara, H.; Bolan, N.; Rajapaksha, A.U.; Vithanage, M. Clays and Clay Minerals: Long-Lasting Applications in Environmental Remediation. In Clay Composites: Environmental Applications; Springer Nature: Singapore, 2023; pp. 3–28. [Google Scholar] [CrossRef]
- Todaro, F.; Barjoveanu, G.; De Gisi, S.; Teodosiu, C.; Notarnicola, M. Sustainability assessment of reactive capping alternatives for the remediation of contaminated marine sediments. J. Clean. Prod. 2021, 286, 124946. [Google Scholar] [CrossRef]
- Wiles, M.C.; Huebner, H.J.; McDonald, T.J.; Donnelly, K.C.; Phillips, T.D. Matrix-immobilized organoclay for the sorption of polycyclic aromatic hydrocarbons and pentachlorophenol from groundwater. Chemosphere 2005, 59, 1455–1464. [Google Scholar] [CrossRef]
- Lamichhane, S.; Krishna, K.B.; Sarukkalige, R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere 2016, 148, 336–353. [Google Scholar] [CrossRef]
- Cheng, H.; Hu, E.; Hu, Y. Impact of mineral micropores on transport and fate of organic contaminants: A review. J. Contam. Hydrol. 2012, 129, 80–90. [Google Scholar] [CrossRef]
- Gertsen, M.; Perelomov, L.; Kharkova, A.; Burachevskaya, M.; Hemalatha, S.; Atroshchenko, Y. Removal of Lead Cations by Novel Organoclays Derived from Bentonite and Amphoteric and Nonionic Surfactants. Toxics 2024, 12, 713. [Google Scholar] [CrossRef]
- Yuan, M.; Tong, S.; Zhao, S.; Jia, C.Q. Adsorption of polycyclic aromatic hydrocarbons from water using petroleum coke-derived porous carbon. J. Hazard. Mater. 2010, 181, 1115–1120. [Google Scholar] [CrossRef]
- Eeshwarasinghe, D.; Loganathan, P.; Vigneswaran, S. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere 2019, 223, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zeng, G.; Tang, L.; Wang, J.; Wan, J.; Liu, Y.; Yu, J.; Yi, H.; Ye, S.; Deng, R. Sorption, transport and biodegradation–an insight into bioavailability of persistent organic pollutants in soil. Sci. Total Environ. 2018, 610, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wang, X.; Chen, C.; Zhu, L. Removal of polycyclic aromatic hydrocarbons from surfactant solutions by selective sorption with organo-bentonite. Chem. Eng. J. 2013, 233, 251–257. [Google Scholar] [CrossRef]
- Satouh, S.; Martín, J.; Orta, M.D.M.; Medina-Carrasco, S.; Messikh, N.; Bougdah, N.; Santos, J.L.; Aparicio, I.; Alonso, E. Adsorption of polycyclic aromatic hydrocarbons by natural, synthetic and modified clays. Environments 2021, 8, 124. [Google Scholar] [CrossRef]
- Brown, T.J.; Idoine, N.E.; Wrighton, C.E.; Raycraft, E.R.; Hobbs, S.F.; Shaw, R.A.; Everett, P.; Deady, E.A.; Kresse, C. World Mineral Production 2015–2019; World Mineral Statistics; British Geological Survey: Nottingham, UK, 2021; 96p. [Google Scholar]
- Yu, H.; Huang, G.H.; An, C.J.; Wei, J. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil–water system. J. Hazard. Mater. 2011, 190, 883–890. [Google Scholar] [CrossRef]
- Gao, Y.; Xiong, W.; Ling, W.; Wang, X.; Li, Q. Impact of exotic and inherent dissolved organic matter on sorption of phenanthrene by soils. J. Hazard. Mater. 2007, 140, 138–144. [Google Scholar] [CrossRef]
- Rusmin, R.; Sarkar, B.; Liu, Y.; McClure, S.; Naidu, R. Structural evolution of chitosan–palygorskite composites and removal of aqueous lead by composite beads. Appl. Surf. Sci. 2015, 353, 363–375. [Google Scholar] [CrossRef]
- HDPE F 16.1:2.2:2.3:3.62-09; Quantitative Chemical Analysis of Soils. Method of Measurements of Mass Fractions of Polycyclic Aromatic Hydrocarbons in Soils, Bottom Sediments, Sewage Sludge and Production and Consumption Wastes by High-Performance Liquid Chromatography. Standartinform: Moscow, Russia, 2009; 11p. (In Russian)
- Mozgawa, W.; Krol, M.; Bajda, T. IR spectra in the studies of anion sorption on natural sorbents. J. Mol. Struct. 2011, 993, 109–114. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Hu, S.; Lu, C.; Yao, H. Responses of kinetics and capacity of phenanthrene sorption on sediments to soil organic matter releasing. Environ. Sci. Pollut. Res. 2014, 21, 8271–8283. [Google Scholar] [CrossRef]
- Xu, H.; Qu, X.; Li, H.; Gu, C.; Zhu, D. Sorption of Tetracycline to Varying-Sized Montmorillonite Fractions. J. Environ. Qual. 2014, 43, 2079–2085. [Google Scholar] [CrossRef]
- Zhao, L.; Bian, J.; Zhang, Y.; Zhu, L.; Liu, Z. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals. Chemosphere 2014, 114, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhou, W. Partitioning of polycyclic aromatic hydrocarbons to solid-sorbed nonionic surfactants. Environ. Pollut. 2008, 152, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Long, Y.; Zhang, Y.; Zhu, Y.; Wang, H.; Wu, H.; Lu, W. Effect of a mixed anionic-nonionic surfactant adsorption on bentonite structure and on distribution of pentachlorophenol. Appl. Clay Sci. 2012, 69, 93–98. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, G.; Mu, S.; An, C.; Chen, X. Immobilization of phenanthrene onto gemini surfactant modified sepiolite at solid/aqueous interface: Equilibrium, thermodynamic and kinetic studies. Sci. Total Environ. 2017, 598, 619–627. [Google Scholar] [CrossRef]
- Moyo, F.; Tandlich, R.; Wilhelmi, B.S.; Balaz, S. Sorption of hydrophobic organic compounds on natural sorbents and organoclays from aqueous and non-aqueous solutions: A mini-review. Int. J. Environ. Res. Public Health 2014, 11, 5020–5048. [Google Scholar] [CrossRef]
- Silva, I.A.; Sousa, F.K.A.; Menezes, R.R.; Neves, G.A.; Santana, L.N.L.; Ferreira, H.C. Modification of bentonites with nonionic surfactants for use in organic-based drilling fluids. Appl. Clay Sci. 2014, 95, 371–377. [Google Scholar] [CrossRef]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D. 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 1960, 111, 3973–3993. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivie, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Minkina, T.; Vasilyeva, G.; Popileshko, Y.; Bauer, T.; Sushkova, S.; Fedorenko, A.; Antonenko, E.; Pinskii, D.; Mazarji, M.; Ferreira, C.S.S. Sorption of benzo [a] pyrene by Chernozem and carbonaceous sorbents: Comparison of kinetics and interaction mechanisms. Environ. Geochem. Health 2022, 44, 133–148. [Google Scholar] [CrossRef]
- Changchaivong, S.; Khaodhiar, S. Adsorption of naphthalene and phenanthrene on dodecylpyridinium-modified bentonite. Appl. Clay Sci. 2009, 43, 317–321. [Google Scholar] [CrossRef]
- Gianotti, V.; Benzi, M.; Croce, G.; Frascarolo, P.; Gosetti, F.; Mazzucco, E.; Bottaro, M.; Gennaro, M.C. The use of clays to sequestrate organic pollutants. Leaching experiments. Chemosphere 2008, 73, 1731–1736. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.J.; Wu, P.; Liu, D.; Hu, J.; Cao, Y.; Liu, T.Z.; Okoli, C.P.; Li, L. Adsorption of polycyclic aromatic hydrocarbons from aqueous solution by organic montmorillonite sodium alginate nanocomposites. Chemosphere 2020, 251, 126074. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Haripavan, N.; Basha, S.R.; Babu, G.V. Removal of ammonia and nitrates from contaminated water by using solid waste bio-adsorbents. Curr. Res. Chem. Biol. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Saeedi, M.; Li, L.Y.; Grace, J.R. Effect of co-existing heavy metals and natural organic matter on sorption/desorption of polycyclic aromatic hydrocarbons in soil: A review. Pollution 2020, 6, 1–24. [Google Scholar] [CrossRef]
- Zhu, D.; Herbert, B.E.; Schlautman, M.A.; Carraway, E.R.; Hur, J. Cation–π bonding: A new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces. J. Environ. Qual. 2004, 33, 1322–1330. [Google Scholar] [CrossRef]
- Kara, A.; Demirbel, E. Kinetic, isotherm and thermodynamic analysis on adsorption of Cr (VI) ions from aqueous solutions by synthesis and characterization of magnetic-poly (divinylbenzene-vinylimidazole) microbeads. Water Air Soil Pollut. 2012, 223, 2387–2403. [Google Scholar] [CrossRef]
- Diagboya, P.N.; Dikio, E.D. Scavenging of aqueous toxic organic and inorganic cations using novel facile magneto-carbon black-clay composite adsorbent. J. Clean. Prod. 2018, 180, 71–80. [Google Scholar] [CrossRef]
- Bonin, J.L.; Simpson, M.J. Sorption of steroid estrogens to soil and soil constituents in single-and multi-sorbate systems. Environ. Toxicol. Chem. 2007, 26, 2604–2610. [Google Scholar] [CrossRef]
- El-Nahhal, Y.Z.; Safi, J.M. Adsorption of phenanthrene on organoclays from distilled and saline water. J. Colloid Interf. Sci. 2004, 269, 265–273. [Google Scholar] [CrossRef]
- Onwuka, K.E.; Igwe, J.C.; Enenwa, N.E.; Aghalibe, C.U. A study of pyrene adsorption behavior onto oraganoclays in aqueous solution. industrial wastewater. Int. J. Prev. Control Ind. Pollut. 2020, 6, 1–14. [Google Scholar]
Name | Structural Formula | Formula |
---|---|---|
Amphoteric Surfactants | ||
Disodium cocoamphodiacetate | n = 6, 8, 10, 12, 14, 16 | Imidazolium, 1-[2-(carboxymethoxy)ethyl]-1-(carboxymethyl)-4,5-dihydro-2-norcoalkyl, hydroxides, sodium salts |
Properties: Clear liquid with a faint odor. Cocoamphodiacetate disodium is compatible with all surfactants and tolerant to electrolytes. It is a water-soluble amphoteric surfactant with mild foaming, cleansing, and conditioning properties. | ||
Sodium Cocoiminodipropionate | β-alanine, N-(2-carboxyethyl)-, N-cocoalkyl derivatives, disodium salts | |
Properties: High-foaming PAH, inhibitor of corrosion of iron and other metals. Stable in the entire pH range; is an effective hydrotropic. It has a synergistic effect with non-ionic surfactants providing high degreasing and dispersing ability. It is available in the form of a 30% solution and aqueous. | ||
Nonionic PAHs | ||
Lauraminoxide, C12-C14 | Lauryl-Myristyl Dimethylamine Oxide; Dodecyl dimethylamine N-oxide (C12) | |
Properties: It is a tertiary amine oxide formed because of the formal oxidation of an amino group. It is compatible with all types of surfactants and activates an antistatic effect. It plays the role of a plant metabolite and detergent. It is an emulsifier, foaming agent, foam stabilizer, and thickener. | ||
Cocamid dietanolamine | n = 6, 8, 10, 12, 14, 16 | CH3(CH2)nC(=O)N(CH2CH2OH)2, n ~ 6–18; coconut oil diethanolamine condensate; diethanolamide |
Properties: It is a mixture of diethanolamides of fatty acids that are part of coconut oil, which consists of approximately 48.2% lauric acid, 18% myristic acid, 8.5% palmitic acid, 8% caprylic acid, 7% capric acid, 6% oleic acid, 2.3% stearic acid, and 2% linoleic acid. Cocamide diethanolamine or cocamide DEA is a diethanolamide produced by reacting to a mixture of coconut oil fatty acids with diethanolamine. It is a viscous liquid that is used as a foaming agent in bath products and as an emulsifier in cosmetics. | ||
Alkylpolyglucoside C8-C10 | C6H11O5-O-(CH2)7-9-CH3; Mixture of C8-10-alkyl glucoside oligomers | |
Properties: Alkylpolyglucoside 70%. It is made from vegetable starch and fatty alcohols of palm oil. It shows excellent solubility, stability, and surface and interfacial activity in concentrated salt and alkaline solutions. It can be used as a binder in concentrated surfactants. It is a good hydrotrope, wetting agent, and dispersant. |
# | Phase Name | Formula | Space Group | Crystal System |
---|---|---|---|---|
1 | Montmorillonite | Al0.86Fe0.1HLi0.08Mg0.14O10Si3.9 | C 1 2/m 1 (12) | monoclinic |
2 | Quartz | SiO2 | P 31 2 1 S (-1) | trigonal (hexagonal axes) |
3 | Feldspar | CaAl2Si2O8 | C-1 (-1) | triclinic (anorthic) |
Wave Number of the Band, cm−1 | Structural Fragment |
---|---|
3634 | ν * free -OH groups |
2512 | chelated H-bridge -OH |
1796 | CO32 |
1638 | δ -OH |
1428 | νas O-C-O CO32− |
1244 | ν Si-O in layered silicates |
1197 | νas O-Si-O |
1111 | ν Al-O в Al2O3 |
918 | δ Al-O-H |
879 | δasCO32− |
838 | νs Si-O-Si |
798 | νs Si-O-Si |
669 | ν Si-O-Al |
645 | ν Si-O-Al |
499 | δ Si-O in tetrahedra O-Si-O |
448 | δ Si-O-Fe |
439 | δ Si-O in tetrahedra O-Si-O |
431 | δ Si-O in tetrahedra O-Si-O |
426 | δ Si-O in tetrahedra O-Si-O |
Initial Concentration of PAHs in Solution, μg mL−1 | Bentonite | Organoclay with Surfactant 1 | Organoclay with Surfactant 2 | Organoclay with Surfactant 3 | Organoclay with Surfactant 4 | Organoclay with Surfactant 5 |
---|---|---|---|---|---|---|
Benzo(a)pyrene | ||||||
10 | 5.3 | 96.8 | 88.7 | 91.7 | 89.0 | 47.4 |
30 | 19.9 | 73.9 | 68.5 | 70.3 | 86.5 | 82.8 |
50 | 17.1 | 74.2 | 66.1 | 67.3 | 71.7 | 75.7 |
60 | 14.8 | 68.3 | 65.0 | 67.2 | 65.7 | 70.2 |
80 | 12.4 | 61.7 | 59.3 | 65.1 | 51.2 | 56.6 |
90 | 11.8 | 54.0 | 53.4 | 60.0 | 45.0 | 52.8 |
100 | 11.0 | 53.2 | 45.9 | 55.4 | 40.8 | 50.5 |
Naphthalene | ||||||
10 | 2.1 | 0.1 | 7.8 | 1.2 | 0.3 | 9.6 |
30 | 3.4 | 2.8 | 6.8 | 3.9 | 5.6 | 9.5 |
50 | 3.7 | 4.2 | 6.5 | 4.9 | 6.5 | 6.8 |
60 | 3.9 | 4.7 | 6.6 | 4.9 | 6.7 | 6.0 |
80 | 3.7 | 4.2 | 6.3 | 4.3 | 5.4 | 4.8 |
90 | 3.4 | 3.9 | 5.8 | 3.9 | 5.0 | 4.2 |
100 | 3.0 | 3.6 | 5.0 | 3.7 | 4.6 | 3.8 |
Sorbents | Langmuir | Freundlich | ||||||
---|---|---|---|---|---|---|---|---|
KL, L∙mmol−1 | Qmax, mmol kg−1 | R2 | ΔG, kJ∙L∙mol−1 | Rl | KF, L∙mmol−1 | 1/n | R2 | |
Benzo(a)pyrene | ||||||||
Bentonite | 4.1 | 0.08 | 0.920 | −3.50 | 0.38 | 0.09 | 0.63 | 0.869 |
organoclay with surfactant 1 | 21.3 | 0.26 | 0.924 | −7.58 | 0.11 | 0.39 | 0.36 | 0.945 |
organoclay with surfactant 2 | 17.2 | 0.25 | 0.936 | −7.04 | 0.13 | 0.39 | 0.41 | 0.904 |
organoclay with surfactant 3 | 10.0 | 0.36 | 0.951 | −5.71 | 0.20 | 0.58 | 0.52 | 0.952 |
organoclay with surfactant 4 | 78.4 | 0.17 | 0.984 | −10.81 | 0.03 | 0.25 | 0.24 | 0.812 |
organoclay with surfactant 5 | 21.1 | 0.25 | 0.766 | −7.55 | 0.11 | 0.41 | 0.41 | 0.685 |
Naphthalene | ||||||||
Bentonite | 1.0 | 0.07 | 0.538 | 0.00 | 0.56 | 0.03 | 0.87 | 0.955 |
organoclay with surfactant 1 | 1.0 | 0.07 | 0.855 | 0.00 | 0.56 | 0.04 | 0.99 | 0.928 |
organoclay with surfactant 2 | 1.0 | 0.10 | 0.971 | 0.00 | 0.56 | 0.05 | 0.75 | 0.960 |
organoclay with surfactant 3 | 1.0 | 0.07 | 0.939 | 0.00 | 0.56 | 0.04 | 0.85 | 0.930 |
organoclay with surfactant 4 | 1.0 | 0.09 | 0.918 | 0.00 | 0.56 | 0.05 | 0.79 | 0.891 |
organoclay with surfactant 5 | 5.0 | 0.04 | 0.955 | −3.98 | 0.20 | 0.04 | 0.41 | 0.856 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudnikova, T.; Burachevskaya, M.; Minkina, T.; Mandzhieva, S.; Zamulina, I.; Perelomov, L.; Gertsen, M. Sorption Properties of Bentonite-Based Organoclays with Amphoteric and Nonionic Surfactants in Relation to Polycyclic Aromatic Hydrocarbons. Minerals 2024, 14, 1132. https://doi.org/10.3390/min14111132
Dudnikova T, Burachevskaya M, Minkina T, Mandzhieva S, Zamulina I, Perelomov L, Gertsen M. Sorption Properties of Bentonite-Based Organoclays with Amphoteric and Nonionic Surfactants in Relation to Polycyclic Aromatic Hydrocarbons. Minerals. 2024; 14(11):1132. https://doi.org/10.3390/min14111132
Chicago/Turabian StyleDudnikova, Tamara, Marina Burachevskaya, Tatyana Minkina, Saglara Mandzhieva, Inna Zamulina, Leonid Perelomov, and Maria Gertsen. 2024. "Sorption Properties of Bentonite-Based Organoclays with Amphoteric and Nonionic Surfactants in Relation to Polycyclic Aromatic Hydrocarbons" Minerals 14, no. 11: 1132. https://doi.org/10.3390/min14111132
APA StyleDudnikova, T., Burachevskaya, M., Minkina, T., Mandzhieva, S., Zamulina, I., Perelomov, L., & Gertsen, M. (2024). Sorption Properties of Bentonite-Based Organoclays with Amphoteric and Nonionic Surfactants in Relation to Polycyclic Aromatic Hydrocarbons. Minerals, 14(11), 1132. https://doi.org/10.3390/min14111132