Investigating the Timing of Carbonate Precipitations and Their Potential Impact on Fossil Preservation in the Hell Creek Formation
Abstract
:1. Introduction
2. Geologic Setting
2.1. Hell Creek Formation near Glendive, MT
2.2. Fossil Assemblage
2.3. Regional Geology and Diagenetic Stages
3. Materials and Methods
3.1. Section Measurement
3.2. Thin Section Petrography
3.3. Stable Isotope Geochemistry
4. Results
4.1. Stratigraphic Measurement
4.2. Fossil Assemblage
4.3. Thin Section Petrography
4.3.1. Channel Sandstone
4.3.2. Bone-Bearing Sandstone
4.3.3. Concretion
4.3.4. Fossil Bones
4.4. Stable Isotope Geochemistry
5. Discussion
5.1. Concretions in Bone-Bearing Sandstone
5.2. Concretion in Channel Sandstone
5.3. Potential Impact on Fossil Preservation
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Depositional Environment Interpretation
Code | Facies | Sedimentary Structure | Interpretation |
---|---|---|---|
St | Sand; very fine to medium | Grouped trough cross-lamination | Migration of 3D dunes |
Sm | Sand; very fine to fine | Massive or faint lamination | Suspension settling, bioturbated |
Fl | Sand, Silt and Mud | Fine wavy lamination | Suspension settling, weak traction current |
Fm | Mud, silt | Massive | Suspension settling, bioturbated |
C | Coal | Plant, mud films | Standing body of water, low sediment input |
Appendix A.2. Trough Cross-Stratified Sandstone
Appendix A.3. Massive Sandstone (Lithofacies: Sm)
Appendix A.4. Massive Mudrock (Lithofacies: Fm)
Appendix A.5. Interlaminated Very Fine-Grained Sandstone and Mudrock (Lithofacies: Fl)
Appendix A.6. Lignitic Coal (Lithofacies: C)
Appendix A.7. Facies Association
Appendix A.8. Facies Association 1
Appendix A.9. Facies Association 2
Appendix A.10. Overall Interpretation
References
- Schweitzer, M.H.; Wittmeyer, J.L.; Horner, J.R. Soft Tissue and Cellular Preservation in Vertebrate Skeletal Elements from the Cretaceous to the Present. Proc. R. Soc. B. 2007, 274, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zheng, W.; Moyer, A.E.; O’Connor, J.K.; Wang, M.; Zheng, X.; Wang, X.; Schroeter, E.R.; Zhou, Z.; Schweitzer, M.H. Molecular Evidence of Keratin and Melanosomes in Feathers of the Early Cretaceous Bird Eoconfuciusornis. Proc. Natl. Acad. Sci. USA 2016, 113, E7900–E7907. [Google Scholar] [CrossRef] [PubMed]
- Bailleul, A.M.; Zheng, W.; Horner, J.R.; Hall, B.K.; Holliday, C.M.; Schweitzer, M.H. Evidence of Proteins, Chromosomes and Chemical Markers of DNA in Exceptionally Preserved Dinosaur Cartilage. Natl. Sci. Rev. 2020, 7, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.M.; Henderson, D.M.; Vinther, J.; Fletcher, I.; Sistiaga, A.; Herrera, J.; Summons, R.E. An Exceptionally Preserved Three-Dimensional Armored Dinosaur Reveals Insights into Coloration and Cretaceous Predator-Prey Dynamics. Curr. Biol. 2017, 27, 2514–2521.e3. [Google Scholar] [CrossRef]
- Wiemann, J.; Menéndez, I.; Crawford, J.M.; Fabbri, M.; Gauthier, J.A.; Hull, P.M.; Norell, M.A.; Briggs, D.E.G. Fossil Biomolecules Reveal an Avian Metabolism in the Ancestral Dinosaur. Nature 2022, 606, 522–526. [Google Scholar] [CrossRef]
- Kohn, M.J.; McKay, M.P.; Knight, J.L. Dining in the Pleistocene—Who’s on the Menu? Geology 2005, 33, 649–652. [Google Scholar] [CrossRef]
- Heuser, A.; Tütken, T.; Gussone, N.; Galer, S.J.G. Calcium Isotopes in Fossil Bones and Teeth—Diagenetic versus Biogenic Origin. Geochim. Cosmochim. Acta 2011, 75, 3419–3433. [Google Scholar] [CrossRef]
- Cullen, T.M.; Longstaffe, F.J.; Wortmann, U.G.; Huang, L.; Fanti, F.; Goodwin, M.B.; Ryan, M.J.; Evans, D.C. Large-Scale Stable Isotope Characterization of a Late Cretaceous Dinosaur-Dominated Ecosystem. Geology 2020, 48, 546–551. [Google Scholar] [CrossRef]
- Suarez, C.A.; Ludvigson, G.A.; Gonzalez, L.A.; Fiorillo, A.R.; Flaig, P.P.; McCarthy, P.J. Use of Multiple Oxygen Isotope Proxies for Elucidating Arctic Cretaceous Palaeo-Hydrology. Geol. Soc. Lond. Spec. Publ. 2013, 382, 185–202. [Google Scholar] [CrossRef]
- Passey, B.H.; Levin, N.E. Triple Oxygen Isotopes in Meteoric Waters, Carbonates, and Biological Apatites: Implications for Continental Paleoclimate Reconstruction. Rev. Mineral. Geochem. 2021, 86, 429–462. [Google Scholar] [CrossRef]
- Morad, S. Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution. In Carbonate Cementation in Sandstones; Morad, S., Ed.; Wiley: Hoboken, NJ, USA, 1998; pp. 1–26. ISBN 978-0-632-04777-2. [Google Scholar]
- Cope, J.C.W.; Curtis, C.D. Palaeobiology Meets Geochemistry: Concretions as Tombs. J. Geol. Soc. 2000, 157, 163–164. [Google Scholar] [CrossRef]
- Kendall, C.; Eriksen, A.M.H.; Kontopoulos, I.; Collins, M.J.; Turner-Walker, G. Diagenesis of Archaeological Bone and Tooth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 491, 21–37. [Google Scholar] [CrossRef]
- Schweitzer, M.H.; Johnson, C.; Zocco, T.G.; Horner, J.R.; Starkey, J.R. Preservation of Biomolecules in Cancellous Bone of Tyrannosaurus Rex. J. Vertebr. Paleontol. 1997, 17, 349–359. [Google Scholar] [CrossRef]
- Mozley, P.S.; Burns, S.J. Burns Oxygen and Carbon Isotopic Composition of Marine Carbonate Concretions: An Overview. J. Sediment. Res. 1993, 63, 73–83. [Google Scholar] [CrossRef]
- Hedges, R.E.M. Bone Diagenesis: An Overview of Processes. Archaeometry 2002, 44, 319–328. [Google Scholar] [CrossRef]
- Boggs, S. Principles of Sedimentology and Stratigraphy; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006; p. 662. [Google Scholar]
- Ullmann, P.V.; Pandya, S.H.; Nellermoe, R. Patterns of Soft Tissue and Cellular Preservation in Relation to Fossil Bone Tissue Structure and Overburden Depth at the Standing Rock Hadrosaur Site, Maastrichtian Hell Creek Formation, South Dakota, USA. Cretac. Res. 2019, 99, 1–13. [Google Scholar] [CrossRef]
- Fricke, H.C.; Pearson, D.A. Stable Isotope Evidence for Changes in Dietary Niche Partitioning among Hadrosaurian and Ceratopsian Dinosaurs of the Hell Creek Formation, North Dakota. Paleobiology 2008, 34, 534–552. [Google Scholar] [CrossRef]
- During, M.A.; Smit, J.; Voeten, D.F.; Berruyer, C.; Tafforeau, P.; Sanchez, S.; Stein, K.H.; Verdegaal-Warmerdam, S.J.; van der Lubbe, J.H. The Mesozoic Terminated in Boreal Spring. Nature 2022, 603, 91–94. [Google Scholar] [CrossRef]
- Belt, E.S.; Hicks, J.F.; Murphy, D.A. A Pre-Lancian Regional Unconformity and Its Relationship to Hell Creek Paleogeography in South-Eastern Montana. Rocky Mt. Geol. 1997, 31, 1–26. [Google Scholar]
- Fastovsky, D.E. Paleoenvironments of Vertebrate-Bearing Strata during the Cretaceous-Paleogene Transition, Eastern Montana and Western North Dakota. Palaios 1987, 2, 282. [Google Scholar] [CrossRef]
- Johnson, K.R.; Hickey, L.J. Megafloral Change across the Cretaceous/Tertiary Boundary in the Northern Great Plains and Rocky Mountains, U.S.A. In Geological Society of America Special Papers; Geological Society of America: Boulder, CO, USA, 1990; Volume 247, pp. 433–444. ISBN 978-0-8137-2247-4. [Google Scholar]
- Hartman, J.H.; Butler, R.D.; Weiler, M.W.; Schumaker, K.K.; Wilson, G.; Clemens, W.; Horner, J. Context, Naming, and Formal Designation of the Cretaceous Hell Creek Formation Lectostratotype, Garfield County, Montana; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2014; Volume 503. [Google Scholar]
- Zaleha, M.J. The Hell Creek Formation (Maastrichtian), Glendive Area, Montana: Sedimentology, Paleoenvironments, and Provenance and Their Stratigraphic and Taphonomic Implications. Ph.D. Thesis, Ohio University, Athens, OH, USA, 1988. [Google Scholar]
- Hicks, J.F.; Johnson, K.R.; Obradovich, J.D.; Tauxe, L.; Clark, D.; Hartman, J. Magnetostratigraphy and Geochronology of the Hell Creek and Basal Fort Union Formations of Southwestern North Dakota and a Recalibration of the Age of the Cretaceous-Tertiary Boundary. Geol. Soc. Am. Spec. Pap. 2002, 361, 35–55. [Google Scholar]
- Lund, S.P.; Hartman, J.H.; Banerjee, S.K. Magnetostratigraphy of Interfingering Upper Cretaceous–Paleocene Marine and Continental Strata of the Williston Basin, North Dakota and Montana. In The Hell Creek Formation and the Cretaceous-Tertiary Boundary in the Northern Great Plains: An Integrated Continental Record of the End of the Cretaceous; Geological Society of America: Boulder, CO, USA, 2002; ISBN 978-0-8137-2361-7. [Google Scholar]
- Sheehan, P.M.; Fastovsky, D.E.; Hoffmann, R.G.; Berghaus, C.B.; Gabriel, D.L. Sudden Extinction of the Dinosaurs: Latest Cretaceous, Upper Great Plains, USA. Science 1991, 254, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Fastovsky, D.E.; Bercovici, A. The Hell Creek Formation and Its Contribution to the Cretaceous–Paleogene Extinction: A Short Primer. Cretac. Res. 2016, 57, 368–390. [Google Scholar] [CrossRef]
- Johnson, K.R.; Nichols, D.J.; Hartman, J.H. Hell Creek Formation: A 2001 Synthesis. Geol. Soc. Am. Spec. Pap. 2002, 361, 503–510. [Google Scholar]
- Fowler, D. The Hell Creek Formation, Montana: A Stratigraphic Review and Revision Based on a Sequence Stratigraphic Approach. Geosciences 2020, 10, 435. [Google Scholar] [CrossRef]
- Surdam, R.C.; MacGowan, D.B.; Dunn, T.L. Diagenetic Pathways of Sandstone and Shale Sequences. Rocky Mt. Geol. 1989, 27, 21–31. [Google Scholar]
- Hagen, E.S.; Surdam, R.C. Thermal Evolution of Laramide-Style Basins: Constraints from the Northern Bighorn Basin, Wyoming and Montana. In Thermal History of Sedimentary Basins; Naeser, N.D., McCulloh, T.H., Eds.; Springer: New York, NY, USA, 1989; pp. 277–295. ISBN 978-1-4612-8124-5. [Google Scholar]
- Koch, P.L.; Tuross, N.; Fogel, M.L. The Effects of Sample Treatment and Diagenesis on the Isotopic Integrity of Carbonate in Biogenic Hydroxylapatite. J. Archaeol. Sci. 1997, 24, 417–429. [Google Scholar] [CrossRef]
- Pfretzschner, H.-U. Collagen Gelatinization: The Key to Understand Early Bone-Diagenesis. Palaeontogr. Abt. A Palaozool. 2006, 278, 135–148. [Google Scholar] [CrossRef]
- Coniglio, M.; Myrow, P.; White, T. Stable Carbon and Oxygen Isotope Evidence of Cretaceous Sea-Level Fluctuations Recorded in Septarian Concretions from Pueblo, Colorado, U.S.A. J. Sediment. Res. 2000, 70, 700–714. [Google Scholar] [CrossRef]
- Smith, M.E.; McNeill, D.F.; Murray, S.T.; Swart, P.K. Internal Isotopic Variability of Neogene Carbonate Concretions: Constraining Formational Growth Mechanisms and Isotopic Disequilibrium. Sedimentology 2023, 70, 1553–1579. [Google Scholar] [CrossRef]
- Marchand, A.M.E.; Macaulay, C.I.; Haszeldine, R.S.; Fallick, A.E. Pore Water Evolution in Oilfield Sandstones: Constraints from Oxygen Isotope Microanalyses of Quartz Cement. Chem. Geol. 2002, 191, 285–304. [Google Scholar] [CrossRef]
- Gautier, D.L.; Claypool, G.E. Interpretation of Methanic Diagenesis in Ancient Sediments by Analogy with Processes in Modern Diagenetic Environments: Part 1. Concepts and Principles; American Association of Petroleum Geologists: Tulsa, OK, USA, 1984. [Google Scholar]
- Pfretzschner, H.-U.; Tütken, T. Rolling Bones–Taphonomy of Jurassic Dinosaur Bones Inferred from Diagenetic Microcracks and Mineral Infillings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 310, 117–123. [Google Scholar] [CrossRef]
- Jans, M.M.E.; Nielsen-Marsh, C.M.; Smith, C.I.; Collins, M.J.; Kars, H. Characterisation of Microbial Attack on Archaeological Bone. J. Archaeol. Sci. 2004, 31, 87–95. [Google Scholar] [CrossRef]
- Trueman, C.N.; Martill, D.M. The Long–Term Survival of Bone: The Role of Bioerosion. Archaeometry 2002, 44, 371–382. [Google Scholar] [CrossRef]
- Braithwaite, C.J.R. Displacive Calcite and Grain Breakage in Sandstones. J. Sediment. Res. 1989, 59, 258–266. [Google Scholar] [CrossRef]
- Bosio, G.; Gioncada, A.; Gariboldi, K.; Bonaccorsi, E.; Collareta, A.; Pasero, M.; Di Celma, C.; Malinverno, E.; Urbina, M.; Bianucci, G. Mineralogical and Geochemical Characterization of Fossil Bones from a Miocene Marine Konservat-Lagerstätte. J. S. Am. Earth Sci. 2021, 105, 102924. [Google Scholar] [CrossRef]
- Miall, A.D. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Harms, J.C.; Southard, J.B.; Southard, J.B.; Walker, R.G. Structure and Sequence in Clastic Rocks; SEPM (Society for Sedimentary Geology): Claremore, OK, USA, 1982; ISBN 978-1-56576-238-1. [Google Scholar]
- Jones, B.G.; Rust, B.R. Massive Sandstone Facies in The Hawkesbury Sandstone, A Triassic Fluvial Deposit Near Sydney, Australia. J. Sediment. Res. 1983, 53, 1249–1259. [Google Scholar] [CrossRef]
- Miall, A.D. Architectural-Element Analysis: A New Method of Facies Analysis Applied to Fluvial Deposits. Earth-Sci. Rev. 1985, 22, 261–308. [Google Scholar] [CrossRef]
- Reading, H.G. (Ed.) Sedimentary Environments: Processes, Facies and Stratigraphy; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Miall, A.D. Lithofacies Types and Vertical Profile Models in Braided River Deposits: A Summary. 1977, pp. 597–604. Available online: https://archives.datapages.com/data/dgs/005/005001/597_cspgsp0050597.htm (accessed on 20 September 2024).
- McCabe, P.J. Depositional Environments of Coal and Coal-Bearing Strata. In Sedimentology of Coal and Coal-Bearing Sequences; Rahmani, R.A., Flores, R.M., Eds.; Wiley: Hoboken, NJ, USA, 1985; pp. 11–42. ISBN 978-0-632-01286-2. [Google Scholar]
- Collinson, J.D.; Lewin, J. (Eds.) Anastomosed Fluvial Deposits: Modern Examples from Western Canada. In Modern and ancient fluvial systems; Wiley: Hoboken, NJ, USA, 1983; pp. 155–168. ISBN 978-0-632-00997-8. [Google Scholar]
- Rust, B.R. Depositional Models for Braided Alluvium. 1977, pp. 605–625. Available online: https://archives.datapages.com/data/dgs/005/005001/605_cspgsp0050605.htm (accessed on 20 September 2024).
- Bridge, J.S. Facies Models Revisited; Posamentier, H.W., Walker, R.G., Eds.; SEPM (Society for Sedimentary Geology): Claremore, OK, USA, 2006; ISBN 978-1-56576-121-6. [Google Scholar]
Sample | δ13C (VPDB) | δ18O (VSMOW) |
---|---|---|
Dark Concretion | −7.5 | 16.4 |
Light Concretion | 2.1 | 25.9 |
Spheroidal Concretion | −22.4 | 17.8 |
Cortex Bone | −4.4 | 20.6 |
Cancellous Bone | −4.1 | 20.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamura, D. Investigating the Timing of Carbonate Precipitations and Their Potential Impact on Fossil Preservation in the Hell Creek Formation. Minerals 2024, 14, 1133. https://doi.org/10.3390/min14111133
Yamamura D. Investigating the Timing of Carbonate Precipitations and Their Potential Impact on Fossil Preservation in the Hell Creek Formation. Minerals. 2024; 14(11):1133. https://doi.org/10.3390/min14111133
Chicago/Turabian StyleYamamura, Daigo. 2024. "Investigating the Timing of Carbonate Precipitations and Their Potential Impact on Fossil Preservation in the Hell Creek Formation" Minerals 14, no. 11: 1133. https://doi.org/10.3390/min14111133
APA StyleYamamura, D. (2024). Investigating the Timing of Carbonate Precipitations and Their Potential Impact on Fossil Preservation in the Hell Creek Formation. Minerals, 14(11), 1133. https://doi.org/10.3390/min14111133