Controls on Soft Tissue and Cellular Preservation in Late Eocene and Oligocene Vertebrate Fossils from the White River and Arikaree Groups of Nebraska, South Dakota, and Wyoming
Abstract
:1. Introduction
2. Background
2.1. Cellular and Soft Tissue Preservation in Vertebrate Fossils
2.2. Sedimentology of the White River Group
2.3. Stratigraphic and Paleopedological Context of the Sharps Formation
3. Methods
3.1. Field Collection
3.2. Demineralization and Soft Tissue Analysis
3.3. Thin Section Preparation and Microscopy
3.4. Mineralogy and Crystallinity Analysis
4. Results
4.1. Demineralization Products and Bone Apatite Crystallinity
4.2. Bone and Secondary Mineral Micromorphology and Diagenetic History
5. Discussion
5.1. Trends in Soft Tissue Preservation
5.2. Bone Histology and Post-Depositional Conditions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Terry, D.O., Jr. Paleopedology of the Chadron Formation of Northwestern Nebraska: Implications for paleoclimatic change in the North American midcontinent across the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 168, 1–38. [Google Scholar] [CrossRef]
- Prothero, D.R.; Emry, R.J. The Terrestrial Eocene-Oligocene Transition in North America; Cambridge University Press: New York, NY, USA, 2005; 708p. [Google Scholar]
- Zanazzi, A.; Kohn, M.J.; MacFadden, B.J.; Terry, D.O. Large temperature drop across the Eocene–Oligocene transition in central North America. Nature 2007, 445, 639. [Google Scholar] [CrossRef] [PubMed]
- Benton, R.C.; Terry, D.O., Jr.; Evanoff, E.; McDonald, H.G. The White River Badlands: Geology and Paleontology; Indiana University Press: Bloomington, IN, USA, 2015; 222p. [Google Scholar]
- Terry, D.O., Jr. Stratigraphy, depositional environments, and fossil resources of the Chadron Formation in the South Unit of Badlands National Park, South Dakota. In Partners Preserving our Past, Planning our Future: Proceedings for the Fifth Conference on Fossil Resources, Dakoterra; Martin, J.E., Hoganson, J.W., Benton, R.C., Eds.; South Dakota School of Mines & Technology: Rapid City, SD, USA, 1998; Volume 5, pp. 127–138. [Google Scholar]
- Schweitzer, M.H.; Wittmeyer, J.L.; Horner, J.R.; Toporski, J.K. Soft-tissue vessels and cellular preservation in Tyrannosaurus rex. Science 2005, 307, 1952–1955. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.H.; Wittmeyer, J.L.; Horner, J.R. Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present. Proc. R. Soc. B Biol. Sci. 2007, 274, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Bertazzo, S.; Maidment, S.C.; Kallepitis, C.; Fearn, S.; Stevens, M.M.; Xie, H.N. Fibres and cellular structures preserved in 75-million–year-old dinosaur specimens. Nat. Commun. 2015, 6, 7352. [Google Scholar] [CrossRef] [PubMed]
- Cadena, E.A. Microscopical and elemental FESEM and Phenom ProX-SEM-EDS analysis of osteocyte- and blood vessel-like microstructures obtained from fossil vertebrates of the Eocene Messel Pit, Germany. PeerJ 2016, 4, e1618. [Google Scholar] [CrossRef] [PubMed]
- Wiemann, J.; Fabbri, M.; Yang, T.R.; Stein, K.; Sander, P.M.; Norell, M.A.; Briggs, D.E. Fossilization transforms vertebrate hard tissue proteins into N-heterocyclic polymers. Nat. Commun. 2018, 9, 4741. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, P.V.; Pandya, S.H.; Nellermoe, R. Patterns of soft tissue and cellular preservation in relation to fossil bone tissue structure and overburden depth at the Standing Rock Hadrosaur site, Maastrichtian Hell Creek Formation, South Dakota, USA. Cretac. Res. 2019, 99, 1–13. [Google Scholar] [CrossRef]
- Ullmann, P.V.; Schweitzer, M.H. A statistical meta-analysis of lithologic and other potential controls on fossil bone cellular and soft tissue preservation. Palaios 2023, 38, 246–257. [Google Scholar] [CrossRef]
- Schweitzer, M.H.; Zheng, W.; Cleland, T.; Bern, M. Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules. Bone 2013, 52, 414–423. [Google Scholar] [CrossRef]
- Cleland, T.P.; Schroeter, E.R.; Zamdborg, L.; Zheng, W.; Lee, J.E.; Tran, J.C.; Bern, M.; Duncan, M.B.; Lebleu, V.S.; Ahlf, D.R.; et al. Mass spectrometry and antibody-based characterization of blood vessels from Brachylophosaurus canadensis. J. Proteome Res. 2015, 14, 5252–5262. [Google Scholar] [CrossRef] [PubMed]
- Cadena, E.A.; Schweitzer, M.H. Variation in osteocytes morphology vs bone type in turtle shell and their exceptional preservation from the Jurassic to the present. Bone 2012, 51, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Cadena, E.A.; Schweitzer, M.H. A pelomedusoid turtle from the Paleocene-Eocene of Colombia exhibiting preservation of blood vessels and osteocytes. J. Herpetol. 2014, 48, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Grandstaff, D.E.; Terry, D.O., Jr. Rare earth element composition of Paleogene vertebrate fossils from Toadstool Geologic Park, Nebraska, USA. Appl. Geochem. 2009, 24, 733–745. [Google Scholar] [CrossRef]
- Terry, D.O., Jr.; Grandstaff, D.E.; Cerruti, A.D.; Lalor, E.F.; Lukens, W.E. Regional variability of geochemical signatures in fossils from the Paleogene White River Sequence of South Dakota, Nebraska, and Wyoming. In Proceedings of the 10th Conference on Fossil Resources, Dakoterra, Rapid City, SD, USA, 13–15 May 2014; Volume 6, pp. 73–75. [Google Scholar]
- Terry, D.O., Jr.; Grandstaff, D.E. The nonmarine Eocene-Oligocene climate transition of the northern Great Plains, USA: Insights from rare earth element signatures of fossil bone. In Proceedings of the 3rd International Paleontological Congress, London, UK, 28 June–3 July 2010; p. 374. [Google Scholar]
- Schweitzer, M.H.; Zheng, W.; Organ, C.L.; Avci, R.; Suo, Z.; Freimark, L.M.; Lebleu, V.S.; Duncan, M.B.; Heiden, M.G.V.; Neveu, J.M.; et al. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 2009, 324, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, J.; Uvdal, P.; Engdahl, A.; Lee, A.H.; Alwmark, C.; Bergquist, K.E.; Nilsson, E.; Ekström, P.; Rasmussen, M.; Douglas, D.A.; et al. Microspectroscopic evidence of Cretaceous bone proteins. PLoS ONE 2011, 6, e19445. [Google Scholar] [CrossRef] [PubMed]
- Boatman, E.M.; Goodwin, M.B.; Holman, H.-Y.; Fakra, S.; Zheng, W.; Gronsky, R.; Schweitzer, M.H. Mechanisms of soft tissue and protein preservation in Tyrannosaurus rex. Sci. Rep. 2019, 9, 15678. [Google Scholar] [CrossRef] [PubMed]
- Surmik, D.; Dulski, M.; Kremer, B.; Szade, J.; Pawlicki, R. Iron-mediated deep-time preservation of osteocytes in a Middle Triassic reptile bone. Hist. Biol. 2019, 33, 186–193. [Google Scholar] [CrossRef]
- Larson, E.E.; Evanoff, E. Depositional Environments, Lithostratigraphy, and Biostratigraphy of the White River and Arikee Groups (Late Eocene to Early Miocene, North America); Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 1998; p. 325. [Google Scholar]
- Voegele, K.K.; Ullmann, P.V.; Boles, Z.M.; Schroeter, E.R.; Zheng, W.; Schweitzer, M.H.; Lacovara, K.J. Soft tissue and biomolecular preservation in vertebrate fossils from glauconitic, shallow marine sediments of the Hornerstown Formation, Edelman Fossil Park, New Jersey. Biology 2022, 11, 1161. [Google Scholar] [CrossRef]
- Hubert, J.F.; Panish, P.T.; Chure, D.J.; Prostak, K.S. Chemistry, microstructure, petrology, and diagenetic model of Jurassic dinosaur bones, Dinosaur National Monument, Utah. J. Sediment. Res. 1996, 66, 531–547. [Google Scholar]
- Elorza, J.; Astibia, H.; Murelaga, X.; Pereda-Suberbiola, X. Francolite as a diagenetic mineral in dinosaur and other Upper Cretaceous reptile bones (Lano, Iberian Peninsula): Microstructural, petrological and geochemical features. Cretac. Res. 1999, 20, 169–187. [Google Scholar] [CrossRef]
- Person, A.; Bocherens, H.; Saliège, J.F.; Paris, F.; Zeitoun Gérard, M. Early diagenetic evolution of bone phosphate: An X-ray diffractometry analysis. J. Archaeol. Sci. 1995, 22, 211–221. [Google Scholar] [CrossRef]
- Trueman, C.N.; Palmer, M.R.; Field, J.; Privat, K.; Ludgate, N.; Chavagnac, V.; Eberth, D.A.; Cifelli, R.; Rogers, R.R. Comparing rates of recrystallisation and the potential for preservation of biomolecules from the distribution of trace elements in fossil bones. Comptes Rendus Palevol 2008, 7, 145–158. [Google Scholar] [CrossRef]
- Retallack, G.J. Late Eocene and Oligocene paleosols from Badlands National Park, South Dakota; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 1983; p. 193. [Google Scholar]
- Terry, D.O., Jr.; Evans, J.E. Pedogenesis and paleoclimatic implications of the Chamberlain Pass Formation, basal White River Group, badlands of South Dakota. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 110, 197–215. [Google Scholar] [CrossRef]
- Tedford, R.H.; Swinehart, J.B.; Hunt, R.M.; Voorhies, M.R. Uppermost White River and lowermost Arikaree rocks and faunas, White River Valley, northwestern Nebraska, and their correlation with South Dakota. Fossiliferous Cenozoic deposits of western South Dakota and northwestern Nebraska. Mus. Geol. South Dak. Sch. Mines Technol. Dakoterra 1985, 2, 335–352. [Google Scholar]
- Mintz, J.S.; Terry, D.O., Jr.; Stinchcomb, G. The Terrestrial Response to the Post Eocene-Oligocene Climatic Transition, Poleslide Member, Brule Formation, Badlands National Park, South Dakota. Geol. Soc. Am. Abstr. Programs 2007, 39, 193. [Google Scholar]
- Stinchcomb, G.; Terry, D.O., Jr.; Mintz, J.S. Paleosols and stratigraphy of the Scenic-Poleslide Member boundary: Implications for pedofacies analysis and regional correlation of the early Oligocene Brule Formation, South Dakota, USA. Geol. Soc. Am. Abstr. Programs 2007, 39, 305. [Google Scholar]
- Griffis, N.; Terry, D.O., Jr. Vertical changes in paleosol morphology within the White River Sequence at Flagstaff Rim, Wyoming: Implications for paleoclimatic change leading up to the Eocene-Oligocene Transition. Geol. Soc. Am. Abstr. Programs 2010, 42, 20. [Google Scholar]
- Cerruti, A.D.; Terry, D.O., Jr.; Grandstaff, D.E. Geochemical Analysis of Fossil Bone from Badlands National Park: A Test of the Rare Earth Element Fingerprinting Method to Combat Fossil Poaching. In Proceedings of the 10th Conference on Fossil Resources, Dakoterra, Rapid City, SD, USA, 13–15 May 2014; Volume 6, pp. 34–36. [Google Scholar]
- Lalor, E.F.; Terry, D.O., Jr.; Grandstaff, D.E.; Cerruti, A.D. The use of nondestructive X-ray fluorescence as a forensic tool for geochemically fingerprinting fossil resources. In Proceedings of the 10th Conference on Fossil Resources, Dakoterra, Rapid City, SD, USA, 13–15 May 2014; 2014; Volume 6, pp. 50–52. [Google Scholar]
- Conwell, C.T.; Terry, D.O., Jr.; Tumarkin-Deratzian, A.R.; Grandstaff, D.E. From bone to stone: The influence of depositional environments on the fossilization of vertebrate bone from the Paleogene White River Group, Badlands National Park, South Dakota. Geol. Soc. Am. Abstr. Programs 2016, 48. [Google Scholar] [CrossRef]
- Lamm, E.T. Preparation and Sectioning of Specimens. In Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation; Padian, K., Lamm, E.T., Eds.; University of California Press: Berkeley, CA, USA, 2013; pp. 55–160. [Google Scholar]
- Garland, A.N. Microscopical analysis of fossil bone. Appl. Geochem. 1989, 4, 215–229. [Google Scholar] [CrossRef]
- Khormali, F.; Abtahi, A.; Stoops, G. Micromorphology of calcitic features in highly calcareous soils of Fars Province, Southern Iran. Geoderma 2006, 132, 31–46. [Google Scholar] [CrossRef]
- Tófalo, O.R.; Pazos, P.J. Paleoclimatic implications (Late Cretaceous–Paleogene) from micromorphology of calcretes, palustrine limestones and silcretes, southern Paraná Basin, Uruguay. J. South Am. Earth Sci. 2010, 29, 665–675. [Google Scholar] [CrossRef]
- Pfretzschner, H.-U.; Tütken, T. Rolling bones—Taphonomy of Jurassic dinosaur bones inferred from diagenetic microcracks and mineral infillings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 310, 117–123. [Google Scholar] [CrossRef]
- Jans, M.M.E. Microbial bioerosion of bone—A review. In Current Developments in Bioerosion; Wisshak, M., Tapanila, L., Eds.; Springer: Berlin, Germany, 2008; pp. 397–413. [Google Scholar]
- Wiersma, K.; Läbe, S.; Sander, P.M. Organic phase preservation in fossil dinosaur and other tetrapod bone from deep time. In Fossilization: Understanding the Material Nature of Ancient Plants and Animals; Gee, C.T., McCoy, V.E., Sander, P.M., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2021; pp. 16–54. [Google Scholar]
- Kibelstis, B.; Terry, D.O., Jr.; Ullmann, P. Assessment of biomechanical function as a possible control on soft tissue preservation in Eocene-Oligocene bones from the White River Group of South Dakota and Nebraska. Geol. Soc. Am. Abstr. Programs 2023, 55. [Google Scholar] [CrossRef]
- Kibelstis, B.; Terry, D.O., Jr.; Ullmann, P. X-ray diffraction analysis of fossil bones from the Paleogene White River Group of South Dakota and Nebraska: Influence of apatite crystallinity on soft tissue preservation. Geol. Soc. Am. Abstr. Programs 2023, 55. [Google Scholar] [CrossRef]
- Gallucci, J.E. Controls on Soft Tissue and Cellular Preservation in Late Eocene and Oligocene Vertebrate Fossils of the White River and Arikaree Groups. Master’s Thesis, Temple University, Philadelphia, PA, USA, 2020; 192p. [Google Scholar]
Specimen | Taxon | Age | Element | Lithology | Osteocytes | Blood Vessels | Fibrous Matrix | CI Value |
---|---|---|---|---|---|---|---|---|
F19-50 | Tortoise | Oligocene | Shell | Channel Sandstone | Absent | Uncommon | Rare | 0.42 |
F19-49 | Mammal | Oligocene | Indet. postcranial | Channel Sandstone | Rare | Frequent | Rare | 0.42 |
F19-28 | Mammal | Oligocene | Indet. Rib | Channel Sandstone | Rare | Uncommon | Rare | 0.42 |
F19-27 | Tortoise | Oligocene | Shell | Channel Sandstone | Abundant | Uncommon | Rare | 0.43 |
F19-24 | Tortoise | Oligocene | Shell | Volcanic Ash | Abundant | Frequent | Rare | 0.50 |
F19-19 | Carnivore | Oligocene | Ulna | Eolian Siltstone | Absent | Uncommon | Rare | 0.46 |
F19-18 | Oreodont | Oligocene | Rib | Eolian Siltstone | Rare | Uncommon | Rare | 0.51 |
F19-10 | Mammal | Oligocene | Indet. rib | Eolian Siltstone | Abundant | Abundant | Rare | 0.40 |
F19-9 | Tortoise | Oligocene | Shell | Volcanic Ash | Rare | Rare | Rare | 0.43 |
F19-8 | Tortoise | Oligocene | Shell | Volcanic Ash | Uncommon | Uncommon | Frequent | 0.53 |
F19-7 | Tortoise | Oligocene | Shell | Eolian Siltstone | Rare | Abundant | Absent | 0.48 |
F19-6 | Tortoise | Oligocene | Shell | Volcanic Ash | Abundant | Uncommon | Rare | 0.60 |
F19-3 | Tortoise | Oligocene | Shell | Eolian Siltstone | Absent | Abundant | Absent | 0.52 |
F19-1 | Mammal | Oligocene | Indet. limb Bone | Eolian Siltstone | Absent | Absent | Absent | 0.53 |
F101 | Tortoise | Oligocene | Shell | Eolian Siltstone | Abundant | Frequent | Abundant | 0.36 |
F47 | Tortoise | Oligocene | Shell | Floodplain Mudstone | Abundant | Frequent | Frequent | 0.28 |
F12-70 | Tortoise | Eocene | Shell | Floodplain Mudstone | Abundant | Uncommon | Uncommon | 0.44 |
F15 | Mammal | Eocene | Indet. Limb | Floodplain Mudstone | Abundant | Uncommon | Rare | 0.32 |
FR09-09 | Mammal | Eocene | Indet. Rib | Floodplain Mudstone | Rare | Rare | Uncommon | 0.46 |
F08-87 | Tortoise | Eocene | Shell | Channel Sandstone | Absent | Frequent | Rare | 0.44 |
F08-80 | Brontothere | Eocene | Rib | Floodplain Mudstone | Abundant | Abundant | Frequent | 0.61 |
F08-77 | Oreodont | Eocene | Stylopodial | Floodplain Mudstone | Absent | Uncommon | Rare | 0.65 |
F08-10 | Brontothere | Eocene | Rib | Floodplain Mudstone | Frequent | Abundant | Uncommon | 0.43 |
F08-09 | Brontothere | Eocene | Femur | Floodplain Mudstone | Abundant | Abundant | Frequent | 0.47 |
F08-08 | Brontothere | Eocene | Indet. Metapodial | Floodplain Mudstone | Uncommon | Abundant | Frequent | 0.37 |
F08-915-R | Brontothere | Eocene | Scapula | Floodplain Mudstone | Rare | Abundant | Uncommon | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallucci, J.E.; Woolslayer, G.; Barker, K.; Kibelstis, B.; Tumarkin-Deratzian, A.R.; Ullmann, P.V.; Grandstaff, D.E.; Terry, D.O., Jr. Controls on Soft Tissue and Cellular Preservation in Late Eocene and Oligocene Vertebrate Fossils from the White River and Arikaree Groups of Nebraska, South Dakota, and Wyoming. Minerals 2024, 14, 497. https://doi.org/10.3390/min14050497
Gallucci JE, Woolslayer G, Barker K, Kibelstis B, Tumarkin-Deratzian AR, Ullmann PV, Grandstaff DE, Terry DO Jr. Controls on Soft Tissue and Cellular Preservation in Late Eocene and Oligocene Vertebrate Fossils from the White River and Arikaree Groups of Nebraska, South Dakota, and Wyoming. Minerals. 2024; 14(5):497. https://doi.org/10.3390/min14050497
Chicago/Turabian StyleGallucci, John E., Grace Woolslayer, Kelsey Barker, Brian Kibelstis, Allison R. Tumarkin-Deratzian, Paul V. Ullmann, David E. Grandstaff, and Dennis O. Terry, Jr. 2024. "Controls on Soft Tissue and Cellular Preservation in Late Eocene and Oligocene Vertebrate Fossils from the White River and Arikaree Groups of Nebraska, South Dakota, and Wyoming" Minerals 14, no. 5: 497. https://doi.org/10.3390/min14050497
APA StyleGallucci, J. E., Woolslayer, G., Barker, K., Kibelstis, B., Tumarkin-Deratzian, A. R., Ullmann, P. V., Grandstaff, D. E., & Terry, D. O., Jr. (2024). Controls on Soft Tissue and Cellular Preservation in Late Eocene and Oligocene Vertebrate Fossils from the White River and Arikaree Groups of Nebraska, South Dakota, and Wyoming. Minerals, 14(5), 497. https://doi.org/10.3390/min14050497