Porphyrin-Based Molecules in the Fossil Record Shed Light on the Evolution of Life
Abstract
:1. Introduction
2. Porphyrins and Other Tetrapyrroles
2.1. Porphyrin Structure and Biological Function
2.2. Role of Porphyrins in Early Life
2.2.1. The Abiotic Formation of Porphyrin and Chemical Origin of Life
2.2.2. This Distribution and Function of Porphyrins as Life Evolves
2.2.3. The Origin of Photosynthesis and the Oxygenation of the Earth
2.2.4. Early Organismal Compensation for Oxygen Toxicity and the Evolution of Multicellularity
2.3. The Diversification of Globin Proteins, and Divergences within Vertebrata
3. Structure and Function of Vertebrate Hemoglobin
3.1. The Physiological Role of Hemoglobin and Its Limitations
3.2. Allosteric Effector Variants
3.3. Adaptation to Hemoglobin in Response to Extreme Environments
Adaptation to Hemoglobin in Transitions to Endothermy
4. Hemes and Hemoglobin in the Fossil Record
4.1. Examples of Molecular Preservation, including Heme and Hemoglobin
4.2. The Preservation Potential of Heme-Based Proteins
4.3. Degradation and Diagenesis of Heme
4.4. Diagenesis of Globin
5. Looking Forward: The Potential Utility of Preserved Hemoglobin
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson, D.R.; Kamataki, T.; Waxman, D.J.; Guengerich, F.P.; Estabrook, R.W.; Feyereisen, R.; Gonzalez, F.J.; Coon, M.J.; Gunsalus, I.C.; Gotoh, O.; et al. The P450 Superfamily: Update on New Sequences, Gene Mapping, Accession Numbers, Early Trivial Names of Enzymes, and Nomenclature. DNA Cell Biol. 1993, 12, 1–51. [Google Scholar] [CrossRef]
- Lindsey, J.S.; Chandrashaker, V.; Taniguchi, M.; Ptaszek, M. Abiotic Formation of Uroporphyrinogen and Coproporphyrinogen from Acyclic Reactants. New J. Chem. 2011, 35, 65–75. [Google Scholar] [CrossRef]
- Hardison, R.C. A Brief History of Hemoglobins: Plant, Animal, Protist, and Bacteria. Proc. Natl. Acad. Sci. USA 1996, 93, 5675–5679. [Google Scholar] [CrossRef] [PubMed]
- Schroeter, E.R.; Cleland, T.P.; Schweitzer, M.H. Deep Time Paleoproteomics: Looking Forward. J. Proteome Res. 2022, 21, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.H. Soft Tissue Preservation in Terrestrial Mesozoic Vertebrates. Annu. Rev. Earth Planet. Sci. 2011, 39, 187–216. [Google Scholar] [CrossRef]
- Greenwalt, D. Blood to Molecules: The Fossil Record of Blood and Its Constituents. In The Evolution and Fossil Record of Parasitism: Coevolution and Paleoparasitological Techniques; De Baets, K., Huntley, J.W., Eds.; Topics in Geobiology; Springer International Publishing: Cham, Switzerland, 2021; pp. 377–416. ISBN 978-3-030-52233-9. [Google Scholar]
- Ocampo, R.; Bauder, C.; Callot, H.J.; Albrecht, P. Porphyrins from Messel Oil Shale (Eocene, Germany): Structure Elucidation, Geochemical and Biological Significance, and Distribution as a Function of Depth. Geochim. Cosmochim. Acta 1992, 56, 745–761. [Google Scholar] [CrossRef]
- Bauder, C.; Ocampo, R.; Callot, H.J.; Albrecht, P. Structural Evidence for Heme Fossils in Messel Oil Shale (FRG). Naturwissenschaften 1990, 77, 378–379. [Google Scholar] [CrossRef]
- Barwise, A.J.G.; Roberts, I. Diagenetic and Catagenetic Pathways for Porphyrins in Sediments. Org. Geochem. 1984, 6, 167–176. [Google Scholar] [CrossRef]
- Schweitzer, M.H.; Marshall, M.; Carron, K.; Bohle, D.S.; Busse, S.C.; Arnold, E.V.; Barnard, D.; Horner, J.R.; Starkey, J.R. Heme Compounds in Dinosaur Trabecular Bone. Proc. Natl. Acad. Sci. USA 1997, 94, 6291–6296. [Google Scholar] [CrossRef] [PubMed]
- Greenwalt, D.E.; Goreva, Y.S.; Siljeström, S.M.; Rose, T.; Harbach, R.E. Hemoglobin-Derived Porphyrins Preserved in a Middle Eocene Blood-Engorged Mosquito. Proc. Natl. Acad. Sci. USA 2013, 110, 18496–18500. [Google Scholar] [CrossRef] [PubMed]
- Wiemann, J.; Yang, T.-R.; Norell, M.A. Dinosaur Egg Colour Had a Single Evolutionary Origin. Nature 2018, 563, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Siljeström, S.; Neubeck, A.; Steele, A. Detection of Porphyrins in Vertebrate Fossils from the Messel and Implications for Organic Preservation in the Fossil Record. PLoS ONE 2022, 17, e0269568. [Google Scholar] [CrossRef]
- Lindgren, J.; Kuriyama, T.; Madsen, H.; Sjövall, P.; Zheng, W.; Uvdal, P.; Engdahl, A.; Moyer, A.E.; Gren, J.A.; Kamezaki, N.; et al. Biochemistry and Adaptive Colouration of an Exceptionally Preserved Juvenile Fossil Sea Turtle. Sci. Rep. 2017, 7, 13324. [Google Scholar] [CrossRef] [PubMed]
- Cleland, T.P.; Schroeter, E.R.; Schweitzer, M.H. Biologically and Diagenetically Derived Peptide Modifications in Moa Collagens. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150015. [Google Scholar] [CrossRef]
- Schroeter, E.R.; Blackburn, K.; Goshe, M.B.; Schweitzer, M.H. Proteomic Method to Extract, Concentrate, Digest and Enrich Peptides from Fossils with Coloured (Humic) Substances for Mass Spectrometry Analyses. R. Soc. Open Sci. 2019, 6, 181433. [Google Scholar] [CrossRef]
- Ntasi, G.; Palomo, I.R.; Marino, G.; Piaz, F.D.; Cappellini, E.; Birolo, L.; Petrone, P. Molecular Signatures Written in Bone Proteins of 79 AD Victims from Herculaneum and Pompeii. Sci. Rep. 2022, 12, 8401. [Google Scholar] [CrossRef]
- Maixner, F.; Overath, T.; Linke, D.; Janko, M.; Guerriero, G.; van den Berg, B.H.J.; Stade, B.; Leidinger, P.; Backes, C.; Jaremek, M.; et al. Paleoproteomic Study of the Iceman’s Brain Tissue. Cell. Mol. Life Sci. 2013, 70, 3709–3722. [Google Scholar] [CrossRef] [PubMed]
- Cleland, T.P.; Schroeter, E.R.; Feranec, R.S.; Vashishth, D. Peptide Sequences from the First Castoroides Ohioensis Skull and the Utility of Old Museum Collections for Palaeoproteomics. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160593. [Google Scholar] [CrossRef]
- Loy, T.H.; Dixon, E.J. Blood Residues on Fluted Points from Eastern Beringia. Am. Antiq. 1998, 63, 21–46. [Google Scholar] [CrossRef]
- Cappellini, E.; Jensen, L.J.; Szklarczyk, D.; Ginolhac, A.; da Fonseca, R.A.R.; Stafford, T.W., Jr.; Holen, S.R.; Collins, M.J.; Orlando, L.; Willerslev, E.; et al. Proteomic Analysis of a Pleistocene Mammoth Femur Reveals More than One Hundred Ancient Bone Proteins. J. Proteome Res. 2012, 11, 917–926. [Google Scholar] [CrossRef]
- Asara, J.M.; Schweitzer, M.H.; Freimark, L.M.; Phillips, M.; Cantley, L.C. Protein Sequences from Mastodon and Tyrannosaurus Rex Revealed by Mass Spectrometry. Science 2007, 316, 280–285. [Google Scholar] [CrossRef]
- Bern, M.; Phinney, B.S.; Goldberg, D. Reanalysis of Tyrannosaurus Rex Mass Spectra. J. Proteome Res. 2009, 8, 4328–4332. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.H.; Zheng, W.; Organ, C.L.; Avci, R.; Suo, Z.; Freimark, L.M.; Lebleu, V.S.; Duncan, M.B.; Vander Heiden, M.G.; Neveu, J.M.; et al. Biomolecular Characterization and Protein Sequences of the Campanian Hadrosaur B. Canadensis. Science 2009, 324, 626–631. [Google Scholar] [CrossRef]
- Boatman, E.M.; Goodwin, M.B.; Holman, H.-Y.N.; Fakra, S.; Zheng, W.; Gronsky, R.; Schweitzer, M.H. Mechanisms of Soft Tissue and Protein Preservation in Tyrannosaurus Rex. Sci. Rep. 2019, 9, 15678. [Google Scholar] [CrossRef] [PubMed]
- Schroeter, E.R.; Ullmann, P.V.; Macauley, K.; Ash, R.D.; Zheng, W.; Schweitzer, M.H.; Lacovara, K.J. Soft-Tissue, Rare Earth Element, and Molecular Analyses of Dreadnoughtus Schrani, an Exceptionally Complete Titanosaur from Argentina. Biology 2022, 11, 1158. [Google Scholar] [CrossRef]
- Schweitzer, M.H.; Suo, Z.; Avci, R.; Asara, J.M.; Allen, M.A.; Arce, F.T.; Horner, J.R. Analyses of Soft Tissue from Tyrannosaurus Rex Suggest the Presence of Protein. Science 2007, 316, 277–280. [Google Scholar] [CrossRef]
- Lindgren, J.; Kaddumi, H.; Polcyn, M. Soft Tissue Preservation in a Fossil Marine Lizard with a Bilobed Tail Fin. Nat. Commun. 2013, 4, 2423. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.N. Chapter II—Physico-Chemical Properties of Porphyrins. In Comprehensive Biochemistry; Florkin, M., Stotz, E.H., Eds.; Pyrrole Pigments, Isoprenoid Compounds and Phenolic Plant Constituents; Elsevier: Amsterdam, The Netherlands, 1963; Volume 9, pp. 34–72. [Google Scholar]
- Falk, J.E. Chapter I—Chemistry and Biochemistry of Porphyrins and Metalloporphyrins. In Comprehensive Biochemistry; Florkin, M., Stotz, E.H., Eds.; Pyrrole Pigments, Isoprenoid Compounds and Phenolic Plant Constituents; Elsevier: Amsterdam, The Netherlands, 1963; Volume 9, pp. 3–33. [Google Scholar]
- Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a Cornerstone of Heterocyclic Chemistry. Chem. Rev. 2004, 104, 2777–2812. [Google Scholar] [CrossRef] [PubMed]
- Lash, T.D. Origin of Aromatic Character in Porphyrinoid Systems. J. Porphyr. Phthalocyanines 2011, 15, 1093–1115. [Google Scholar] [CrossRef]
- Tahoun, M.; Gee, C.T.; McCoy, V.E.; Sander, P.M.; Müller, C.E. Chemistry of Porphyrins in Fossil Plants and Animals. RSC Adv. 2021, 11, 7552–7563. [Google Scholar] [CrossRef]
- Kořený, L.; Oborník, M.; Horáková, E.; Waller, R.F.; Lukeš, J. The Convoluted History of Haem Biosynthesis. Biol. Rev. 2022, 97, 141–162. [Google Scholar] [CrossRef]
- Falk, J.E.; Smith, K.M. (Eds.) Porphyrins and Metalloporphyrins: A New Edition Based on the Original Volume by J. E. Falk; Elsevier Scientific Publishing Co., Ltd.: Amsterdam, The Netherlands; Elsevier Scientific Publishing Co., Ltd.: New York, NY, USA, 1975; ISBN 978-0-444-41375-8. [Google Scholar]
- Granick, S. Evolution of Heme and Chlorophyll. In Evolving Genes and Proteins; Elsevier: New York, NY, USA, 1965; pp. 67–88. ISBN 978-1-4832-2734-4. [Google Scholar]
- Barupala, D.P.; Dzul, S.P.; Riggs-Gelasco, P.J.; Stemmler, T.L. Synthesis, Delivery and Regulation of Eukaryotic Heme and Fe-S Cluster Cofactors. Arch. Biochem. Biophys. 2016, 592, 60–75. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The Evolution of Electron-Transport Chains. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Goldman, A.D.; Weber, J.M.; LaRowe, D.E.; Barge, L.M. Electron Transport Chains as a Window into the Earliest Stages of Evolution. Proc. Natl. Acad. Sci. USA 2023, 120, e2210924120. [Google Scholar] [CrossRef]
- Scott Mathews, F. The Structure, Function and Evolution of Cytochromes. Prog. Biophys. Mol. Biol. 1985, 45, 1–56. [Google Scholar] [CrossRef]
- Hendry, G.A.; Jones, O.T. Haems and Chlorophylls: Comparison of Function and Formation. J. Med. Genet. 1980, 17, 1–14. [Google Scholar] [CrossRef]
- Björn, L.O.; Govindjee. The Evolution of Photosynthesis and Chloroplasts. Curr. Sci. 2009, 96, 1466–1474. [Google Scholar]
- Hodgson, G.W. Geochemistry of Porphyrins—Reactions During Diagenesis. Ann. N. Y. Acad. Sci. 1973, 206, 670–684. [Google Scholar] [CrossRef]
- Ventura, G.T.; Gall, L.; Siebert, C.; Prytulak, J.; Szatmari, P.; Hürlimann, M.; Halliday, A.N. The Stable Isotope Composition of Vanadium, Nickel, and Molybdenum in Crude Oils. Appl. Geochem. 2015, 59, 104–117. [Google Scholar] [CrossRef]
- Aylward, N.; Bofinger, N. Possible origin for porphin derivatives in prebiotic chemistry—A computational study. Orig. Life Evol. Biospheres 2005, 35, 345–368. [Google Scholar] [CrossRef] [PubMed]
- Sleep, N.H. The Hadean-Archaean Environment. Cold Spring Harb. Perspect. Biol. 2010, 2, a002527. [Google Scholar] [CrossRef] [PubMed]
- Kasting, J.F. Earth’s Early Atmosphere. Science 1993, 259, 920–926. [Google Scholar] [CrossRef]
- Jortner, J. Conditions for the Emergence of Life on the Early Earth: Summary and Reflections. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 1877–1891. [Google Scholar] [CrossRef]
- Benner, S.A.; Kim, H.-J.; Kim, M.-J.; Ricardo, A. Planetary Organic Chemistry and the Origins of Biomolecules. Cold Spring Harb. Perspect. Biol. 2010, 2, a003467. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, T.L.; Bryant, D.A.; Macalady, J.L. The Role of Biology in Planetary Evolution: Cyanobacterial Primary Production in Low-oxygen Proterozoic Oceans. Environ. Microbiol. 2016, 18, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.E. From Minerals to Metabolisms: Evidence for Life before Oxygen from the Geological Record. Free Radic. Biol. Med. 2019, 140, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Sperling, E.A.; Wolock, C.J.; Morgan, A.S.; Gill, B.C.; Kunzmann, M.; Halverson, G.P.; Macdonald, F.A.; Knoll, A.H.; Johnston, D.T. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature 2015, 523, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Planavsky, N.J.; McGoldrick, P.; Scott, C.T.; Li, C.; Reinhard, C.T.; Kelly, A.E.; Chu, X.; Bekker, A.; Love, G.D.; Lyons, T.W. Widespread Iron-Rich Conditions in the Mid-Proterozoic Ocean. Nature 2011, 477, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Thomson, L.; Paton, J. Oxygen Toxicity. Paediatr. Respir. Rev. 2014, 15, 120–123. [Google Scholar] [CrossRef]
- Lu, Z.; Imlay, J.A. When Anaerobes Encounter Oxygen: Mechanisms of Oxygen Toxicity, Tolerance and Defence. Nat. Rev. Microbiol. 2021, 19, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Goldman, A.D.; Kacar, B. Cofactors Are Remnants of Life’s Origin and Early Evolution. J. Mol. Evol. 2021, 89, 127–133. [Google Scholar] [CrossRef]
- Stamati, K.; Mudera, V.; Cheema, U. Evolution of Oxygen Utilization in Multicellular Organisms and Implications for Cell Signalling in Tissue Engineering. J. Tissue Eng. 2011, 2, 2041731411432365. [Google Scholar] [CrossRef] [PubMed]
- Popall, R.M.; Bolhuis, H.; Muyzer, G.; Sánchez-Román, M. Stromatolites as Biosignatures of Atmospheric Oxygenation: Carbonate Biomineralization and UV-C Resilience in a Geitlerinema Sp.—Dominated Culture. Front. Microbiol. 2020, 11, 948. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.C.; Sousa, F.L.; Mrnjavac, N.; Neukirchen, S.; Roettger, M.; Nelson-Sathi, S.; Martin, W.F. The Physiology and Habitat of the Last Universal Common Ancestor. Nat. Microbiol. 2016, 1, 16116. [Google Scholar] [CrossRef] [PubMed]
- Simionescu, C.I.; Simionescu, B.C.; Mora, R.; Leancâ, M. Porphyrin-like Compounds Genesis under Simulated Abiotic Conditions. Orig. Life 1978, 9, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, J.S.; Ptaszek, M.; Taniguchi, M. Simple Formation of an Abiotic Porphyrinogen in Aqueous Solution. Orig. Life Evol. Biospheres 2009, 39, 495–515. [Google Scholar] [CrossRef]
- Fox, S.; Strasdeit, H. Abiotic Synthesis of Porphyrins and Other Oligopyrroles on the Early Earth and Earth-like Planets. Eur. Planet. Sci. Congr. 2013, 8, EPSC2013-104. [Google Scholar]
- Pleyer, H.L.; Strasdeit, H.; Fox, S. A Possible Prebiotic Ancestry of Porphyrin-Type Protein Cofactors. Orig. Life Evol. Biospheres 2018, 48, 347–371. [Google Scholar] [CrossRef]
- Fox, S.; Strasdeit, H. A Possible Prebiotic Origin on Volcanic Islands of Oligopyrrole-Type Photopigments and Electron Transfer Cofactors. Astrobiology 2013, 13, 578–595. [Google Scholar] [CrossRef]
- Granick, S. Speculations on the Origins and Evolution of Photosynthesis. Ann. N. Y. Acad. Sci. 1957, 69, 292–308. [Google Scholar] [CrossRef] [PubMed]
- Mauzerall, D. Light, Iron, Sam Granick and the Origin of Life. Photosynth. Res. 1992, 33, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Busch, A.W.U.; Montgomery, B.L. Interdependence of Tetrapyrrole Metabolism, the Generation of Oxidative Stress and the Mitigative Oxidative Stress Response. Redox Biol. 2015, 4, 260–271. [Google Scholar] [CrossRef]
- Olejarz, J.; Iwasa, Y.; Knoll, A.H.; Nowak, M.A. The Great Oxygenation Event as a Consequence of Ecological Dynamics Modulated by Planetary Change. Nat. Commun. 2021, 12, 3985. [Google Scholar] [CrossRef]
- Imlay, J.A. Iron-Sulphur Clusters and the Problem with Oxygen. Mol. Microbiol. 2006, 59, 1073–1082. [Google Scholar] [CrossRef]
- Dismukes, G.C.; Klimov, V.V.; Baranov, S.V.; Kozlov, Y.N.; Das Gupta, J.; Tyryshkin, A. The Origin of Atmospheric Oxygen on Earth: The Innovation of Oxygenic Photosynthesis. Proc. Natl. Acad. Sci. USA 2001, 98, 2170–2175. [Google Scholar] [CrossRef]
- Kleingardner, J.G.; Bren, K.L. Biological Significance and Applications of Heme c Proteins and Peptides. Acc. Chem. Res. 2015, 48, 1845–1852. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.J. Bacterial Respiration: A Flexible Process for a Changing Environment. Microbiol. Read. Engl. 2000, 146 Pt. 3, 551–571. [Google Scholar] [CrossRef]
- Bertini, I.; Cavallaro, G.; Rosato, A. Cytochrome c: Occurrence and Functions. Chem. Rev. 2006, 106, 90–115. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.J.; Richardson, D.J.; Paquete, C.M.; Clarke, T.A. Role of Multiheme Cytochromes Involved in Extracellular Anaerobic Respiration in Bacteria. Protein Sci. 2020, 29, 830–842. [Google Scholar] [CrossRef] [PubMed]
- Castresana, J.; Saraste, M. Evolution of Energetic Metabolism: The Respiration-Early Hypothesis. Trends Biochem. Sci. 1995, 20, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Castresana, J.; Lübben, M.; Saraste, M.; Higgins, D.G. Evolution of Cytochrome Oxidase, an Enzyme Older than Atmospheric Oxygen. EMBO J. 1994, 13, 2516–2525. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chakraborty, S.; Hosseinzadeh, P.; Yu, Y.; Tian, S.; Petrik, I.; Bhagi, A.; Lu, Y. Metalloproteins Containing Cytochrome, Iron–Sulfur, or Copper Redox Centers. Chem. Rev. 2014, 114, 4366–4469. [Google Scholar] [CrossRef]
- Pereira, M.M.; Santana, M.; Teixeira, M. A Novel Scenario for the Evolution of Haem–Copper Oxygen Reductases. Biochim. Biophys. Acta BBA-Bioenerg. 2001, 1505, 185–208. [Google Scholar] [CrossRef]
- Ligrone, R. The Great Oxygenation Event. In Biological Innovations that Built the World: A Four-Billion-Year Journey through Life and Earth History; Ligrone, R., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 129–154. ISBN 978-3-030-16057-9. [Google Scholar]
- Frey, A.D.; Kallio, P.T. Bacterial Hemoglobins and Flavohemoglobins: Versatile Proteins and Their Impact on Microbiology and Biotechnology. FEMS Microbiol. Rev. 2003, 27, 525–545. [Google Scholar] [CrossRef]
- Shestakov, S.V.; Karbysheva, E.A. The Origin and Evolution of Cyanobacteria. Biol. Bull. Rev. 2017, 7, 259–272. [Google Scholar] [CrossRef]
- Evstigneev, V.B. On the Evolution of the Photosynthetic Pigments. Orig. Life 1975, 6, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Olson, J.M. Photosynthesis in the Archean Era. Photosynth. Res. 2006, 88, 109–117. [Google Scholar] [CrossRef]
- Farquhar, J.; Zerkle, A.L.; Bekker, A. Geological Constraints on the Origin of Oxygenic Photosynthesis. Photosynth. Res. 2011, 107, 11–36. [Google Scholar] [CrossRef]
- Holland, H.D. The Oxygenation of the Atmosphere and Oceans. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 903–915. [Google Scholar] [CrossRef] [PubMed]
- Babikov, D. Recombination Reactions as a Possible Mechanism of Mass-Independent Fractionation of Sulfur Isotopes in the Archean Atmosphere of Earth. Proc. Natl. Acad. Sci. USA 2017, 114, 3062–3067. [Google Scholar] [CrossRef] [PubMed]
- Raymond, J.; Segrè, D. The Effect of Oxygen on Biochemical Networks and the Evolution of Complex Life. Science 2006, 311, 1764–1767. [Google Scholar] [CrossRef]
- Schweitzer, M.H.; Zheng, W.; Cleland, T.P.; Goodwin, M.B.; Boatman, E.; Theil, E.; Marcus, M.A.; Fakra, S.C. A Role for Iron and Oxygen Chemistry in Preserving Soft Tissues, Cells and Molecules from Deep Time. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132741. [Google Scholar] [CrossRef] [PubMed]
- Nagababu, E.; Rifkind, J.M. Heme Degradation by Reactive Oxygen Species. Antioxid. Redox Signal. 2004, 6, 967–978. [Google Scholar] [CrossRef]
- Ryter, S.W.; Tyrrell, R.M. The Heme Synthesis and Degradation Pathways: Role in Oxidant Sensitivity: Heme Oxygenase Has Both pro- and Antioxidant Properties. Free Radic. Biol. Med. 2000, 28, 289–309. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.F.; Thake, B.; Martin, W.F. Nitrogenase Inhibition Limited Oxygenation of Earth’s Proterozoic Atmosphere. Trends Plant Sci. 2019, 24, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C. The Biological Chemistry of Hydrogen Peroxide. In Methods in Enzymology; Elsevier: Waltham, MA, USA, 2013; Volume 528, pp. 3–25. ISBN 978-0-12-405881-1. [Google Scholar]
- Zámocký, M.; Hofbauer, S.; Schaffner, I.; Gasselhuber, B.; Nicolussi, A.; Soudi, M.; Pirker, K.F.; Furtmüller, P.G.; Obinger, C. Independent Evolution of Four Heme Peroxidase Superfamilies. Arch. Biochem. Biophys. 2015, 574, 108–119. [Google Scholar] [CrossRef]
- Zamocky, M.; Furtmüller, P.G.; Obinger, C. Evolution of Catalases from Bacteria to Humans. Antioxid. Redox Signal. 2008, 10, 1527–1548. [Google Scholar] [CrossRef] [PubMed]
- Costa, K.M.; Accorsi-Mendonça, D.; Moraes, D.J.A.; Machado, B.H. Evolution and Physiology of Neural Oxygen Sensing. Front. Physiol. 2014, 5, 302. [Google Scholar] [CrossRef] [PubMed]
- Ligrone, R. Eukaryotes. In Biological Innovations That Built the World: A Four-Billion-Year Journey through Life and Earth History; Ligrone, R., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 155–231. ISBN 978-3-030-16057-9. [Google Scholar]
- Ligrone, R. Multicellularity. In Biological Innovations That Built the World: A Four-Billion-Year JOURNEY through Life and Earth History; Ligrone, R., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 251–267. ISBN 978-3-030-16057-9. [Google Scholar]
- Hoy, J.A.; Robinson, H.; Trent, J.T.; Kakar, S.; Smagghe, B.J.; Hargrove, M.S. Plant Hemoglobins: A Molecular Fossil Record for the Evolution of Oxygen Transport. J. Mol. Biol. 2007, 371, 168–179. [Google Scholar] [CrossRef]
- Weber, R.E.; Vinogradov, S.N. Nonvertebrate Hemoglobins: Functions and Molecular Adaptations. Physiol. Rev. 2001, 81, 569–628. [Google Scholar] [CrossRef]
- Suzuki, T.; Imai, K. Evolution of Myoglobin. Cell. Mol. Life Sci. CMLS 1998, 54, 979–1004. [Google Scholar] [CrossRef]
- Götting, M.; Nikinmaa, M. More than Hemoglobin—The Unexpected Diversity of Globins in Vertebrate Red Blood Cells. Physiol. Rep. 2015, 3, e12284. [Google Scholar] [CrossRef]
- Hardison, R.C. Evolution of Hemoglobin and Its Genes. Cold Spring Harb. Perspect. Med. 2012, 2, a011627. [Google Scholar] [CrossRef]
- Runnegar, B. Derivation of the Globins from Type b Cytochromes. J. Mol. Evol. 1984, 21, 33–41. [Google Scholar] [CrossRef]
- Hubbard, S.R.; Hendrickson, W.A.; Lambright, D.G.; Boxer, S.G. X-Ray Crystal Structure of a Recombinant Human Myoglobin Mutant at 2·8 Å Resolution. J. Mol. Biol. 1990, 213, 215–218. [Google Scholar] [CrossRef]
- Zhu, H.; Riggs, A.F. Yeast Flavohemoglobin Is an Ancient Protein Related to Globins and a Reductase Family. Proc. Natl. Acad. Sci. USA 1992, 89, 5015–5019. [Google Scholar] [CrossRef] [PubMed]
- Dröge, J.; Pande, A.; Englander, E.W.; Makałowski, W. Comparative Genomics of Neuroglobin Reveals Its Early Origins. PLoS ONE 2012, 7, e47972. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.; Pedwaydon, J.; Czelusniak, J.; Suzuki, T.; Gotoh, T.; Moens, L.; Shishikura, F.; Walz, D.; Vinogradov, S. An Evolutionary Tree for Invertebrate Globin Sequences. J. Mol. Evol. 1988, 27, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Coates, M.L. Hemoglobin Function in the Vertebrates: An Evolutionary Model. J. Mol. Evol. 1975, 6, 285–307. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.H.; Ghatge, M.S.; Safo, M.K. Hemoglobin: Structure, Function and Allostery. Subcell. Biochem. 2020, 94, 345–382. [Google Scholar] [CrossRef] [PubMed]
- Opazo, J.C.; Sloan, A.M.; Campbell, K.L.; Storz, J.F. Origin and Ascendancy of a Chimeric Fusion Gene: The β/δ-Globin Gene of Paenungulate Mammals. Mol. Biol. Evol. 2009, 26, 1469–1478. [Google Scholar] [CrossRef] [PubMed]
- Pillai, A.S.; Chandler, S.A.; Liu, Y.; Signore, A.V.; Cortez-Romero, C.R.; Benesch, J.L.P.; Laganowsky, A.; Storz, J.F.; Hochberg, G.K.A.; Thornton, J.W. Origin of Complexity in Haemoglobin Evolution. Nature 2020, 581, 480–485. [Google Scholar] [CrossRef]
- Yuan, Y.; Shen, T.-J.; Gupta, P.; Ho, N.T.; Simplaceanu, V.; Tam, T.C.S.; Hofreiter, M.; Cooper, A.; Campbell, K.L.; Ho, C. A Biochemical-Biophysical Study of Hemoglobins from Woolly Mammoth, Asian Elephant, and Humans. Biochemistry 2011, 50, 7350–7360. [Google Scholar] [CrossRef]
- Campbell, K.L.; Roberts, J.E.E.; Watson, L.N.; Stetefeld, J.; Sloan, A.M.; Signore, A.V.; Howatt, J.W.; Tame, J.R.H.; Rohland, N.; Shen, T.-J.; et al. Substitutions in Woolly Mammoth Hemoglobin Confer Biochemical Properties Adaptive for Cold Tolerance. Nat. Genet. 2010, 42, 536–540. [Google Scholar] [CrossRef]
- Manning, L.R.; Russell, J.E.; Padovan, J.C.; Chait, B.T.; Popowicz, A.; Manning, R.S.; Manning, J.M. Human Embryonic, Fetal, and Adult Hemoglobins Have Different Subunit Interface Strengths. Correlation with Lifespan in the Red Cell. Protein Sci. 2007, 16, 1641–1658. [Google Scholar] [CrossRef]
- Perutz, M.F. Stereochemistry of Cooperative Effects in Haemoglobin: Haem–Haem Interaction and the Problem of Allostery. Nature 1970, 228, 726–734. [Google Scholar] [CrossRef]
- de Souza, P.C.; Bonilla-Rodriguez, G.O. Fish Hemoglobins. Braz. J. Med. Biol. Res. 2007, 40, 769–778. [Google Scholar] [CrossRef]
- Ortiz-Prado, E.; Dunn, J.F.; Vasconez, J.; Castillo, D.; Viscor, G. Partial Pressure of Oxygen in the Human Body: A General Review. Am. J. Blood Res. 2019, 9, 1–14. [Google Scholar] [PubMed]
- Brunori, M. Variations on the Theme: Allosteric Control in Hemoglobin. FEBS J. 2014, 281, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Fago, A.; Natarajan, C.; Pettinati, M.; Hoffmann, F.G.; Wang, T.; Weber, R.E.; Drusin, S.I.; Issoglio, F.; Martí, M.A.; Estrin, D.; et al. Structure and Function of Crocodilian Hemoglobins and Allosteric Regulation by Chloride, ATP, and CO2. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2020, 318, R657–R667. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, G.R. Phosphate Compounds in Reptilian and Avian Red Blood Cells; Developmental Changes. Comp. Biochem. Physiol. A Physiol. 1978, 61, 191–202. [Google Scholar] [CrossRef]
- Bartlett, G.R. Phosphate Compounds in Red Cells of Reptiles, Amphibians and Fish. Comp. Biochem. Physiol. A Physiol. 1976, 55, 211–214. [Google Scholar] [CrossRef]
- Ochiai, T.; Gotoh, T.; Shikama, K. Effect of Intracellular Organic Phosphates on the Oxygen Equilibrium Curve of Chicken Hemoglobin. Arch. Biochem. Biophys. 1972, 149, 316–322. [Google Scholar] [CrossRef]
- Komiyama, N.H.; Miyazaki, G.; Tame, J.; Nagai, K. Transplanting a Unique Allosteric Effect from Crocodile into Human Haemoglobin. Nature 1995, 373, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.E.; White, F.N. Oxygen Binding in Alligator Blood Related to Temperature, Diving, and “Alkaline Tide”. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1986, 251, R901–R908. [Google Scholar] [CrossRef]
- Signore, A.V.; Tift, M.S.; Hoffmann, F.G.; Schmitt, T.L.; Moriyama, H.; Storz, J.F. Evolved Increases in Hemoglobin-Oxygen Affinity and the Bohr Effect Coincided with the Aquatic Specialization of Penguins. Proc. Natl. Acad. Sci. USA 2021, 118, e2023936118. [Google Scholar] [CrossRef]
- Storz, J.F. Hemoglobin Function and Physiological Adaptation to Hypoxia in High-Altitude Mammals. J. Mammal. 2007, 88, 24–31. [Google Scholar] [CrossRef]
- Weber, R.E.; Jensen, F.B. Functional Adaptations in Hemoglobins from Ectothermic Vertebrates. Annu. Rev. Physiol. 1988, 50, 161–179. [Google Scholar] [CrossRef]
- Bigham, A.W. Genetics Of Human Origin and Evolution: High-Altitude Adaptations. Curr. Opin. Genet. Dev. 2016, 41, 8–13. [Google Scholar] [CrossRef]
- León-Velarde, F.; Gamboa, A.; Chuquiza, J.A.; Esteba, W.A.; Rivera-Chira, M.; Monge, C.C. Hematological Parameters in High Altitude Residents Living at 4355, 4660, and 5500 Meters Above Sea Level. High Alt. Med. Biol. 2000, 1, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Rollema, H.S.; Bauer, C. The Interaction of Inositol Pentaphosphate with the Hemoglobins of Highland and Lowland Geese. J. Biol. Chem. 1979, 254, 12038–12043. [Google Scholar] [CrossRef]
- Natarajan, C.; Jendroszek, A.; Kumar, A.; Weber, R.E.; Tame, J.R.H.; Fago, A.; Storz, J.F. Molecular Basis of Hemoglobin Adaptation in the High-Flying Bar-Headed Goose. PLoS Genet. 2018, 14, e1007331. [Google Scholar] [CrossRef] [PubMed]
- Clementi, M.E.; Condò, S.G.; Castagnola, M.; Giardina, B. Hemoglobin Function under Extreme Life Conditions. Eur. J. Biochem. 1994, 223, 309–317. [Google Scholar] [CrossRef]
- Schweitzer, M.H.; Marshall, C.L. A Molecular Model for the Evolution of Endothermy in the Theropod-Bird Lineage. J. Exp. Zool. 2001, 291, 317–338. [Google Scholar] [CrossRef]
- Morrison, P.R.; Bernal, D.; Sepulveda, C.A.; Brauner, C.J. The Effect of Temperature on Haemoglobin–Oxygen Binding Affinity in Regionally Endothermic and Ectothermic Sharks. J. Exp. Biol. 2023, 226, jeb244979. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.E.; Campbell, K.L. Temperature Dependence of Haemoglobin-Oxygen Affinity in Heterothermic Vertebrates: Mechanisms and Biological Significance. Acta Physiol. Oxf. Engl. 2011, 202, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Flanders, K.G.; Pessagno, L.R.; Cerda, J.F. Hemoglobin and Myoglobin Stabilization by Heme-Fluoride Complexes. Polyhedron 2021, 203, 115238. [Google Scholar] [CrossRef]
- Collins, M.J.; Waite, E.R.; van Duin, A.C. Predicting Protein Decomposition: The Case of Aspartic-Acid Racemization Kinetics. Philos. Trans. R. Soc. B Biol. Sci. 1999, 354, 51–64. [Google Scholar] [CrossRef]
- Ramesh, P.; Sundaresan, S.S.; Shobana, N.; Vinuchakkaravarthy, T.; Sivakumar, K.; Yasien, S.; Ponnuswamy, M.N.G. Structural Studies of Hemoglobin from Two Flightless Birds, Ostrich and Turkey: Insights into Their Differing Oxygen-Binding Properties. Acta Crystallogr. Sect. Struct. Biol. 2021, 77, 690–702. [Google Scholar] [CrossRef]
- Pace, C.N.; Fu, H.; Fryar, K.L.; Landua, J.; Trevino, S.R.; Shirley, B.A.; Hendricks, M.M.; Iimura, S.; Gajiwala, K.; Scholtz, J.M.; et al. Contribution of Hydrophobic Interactions to Protein Stability. J. Mol. Biol. 2011, 408, 514–528. [Google Scholar] [CrossRef]
- Wedel, M.J. Vertebral Pneumaticity, Air Sacs, and the Physiology of Sauropod Dinosaurs. Paleobiology 2003, 29, 243–255. [Google Scholar] [CrossRef]
- Bernstein, M.H. Ventilation and Respiratory Evaporation in the Flying Crow, Corvus Ossifragus. Respir. Physiol. 1976, 26, 371–382. [Google Scholar] [CrossRef]
- Lingham-Soliar, T. The Evolution of the Feather: Sinosauropteryx, a Colourful Tail. J. Ornithol. 2011, 152, 567–577. [Google Scholar] [CrossRef]
- Norell, M.A.; Clark, J.M.; Chiappe, L.M. Brooding Behavior in a Non-Avian Dinosaur, Oviraptor (Theropoda, Oviraptoridae). Paleontol. Soc. Spec. Publ. 1996, 8, 290. [Google Scholar] [CrossRef]
- Seymour, R.S.; Bennett-Stamper, C.L.; Johnston, S.D.; Carrier, D.R.; Grigg, G.C. Evidence for Endothermic Ancestors of Crocodiles at the Stem of Archosaur Evolution. Physiol. Biochem. Zool. PBZ 2004, 77, 1051–1067. [Google Scholar] [CrossRef]
- Nielsen-Marsh, C.M.; Ostrom, P.H.; Gandhi, H.; Shapiro, B.; Cooper, A.; Hauschka, P.V.; Collins, M.J. Sequence Preservation of Osteocalcin Protein and Mitochondrial DNA in Bison Bones Older than 55 Ka. Geology 2002, 30, 1099–1102. [Google Scholar] [CrossRef]
- Briggs, D.E.G.; Summons, R.E. Ancient Biomolecules: Their Origins, Fossilization, and Role in Revealing the History of Life. BioEssays 2014, 36, 482–490. [Google Scholar] [CrossRef]
- Schroeter, E.R.; DeHart, C.J.; Cleland, T.P.; Zheng, W.; Thomas, P.M.; Kelleher, N.L.; Bern, M.; Schweitzer, M.H. Expansion for the Brachylophosaurus canadensis Collagen I Sequence and Additional Evidence of the Preservation of Cretaceous Protein. J. Proteome Res. 2017, 16, 920–932. [Google Scholar] [CrossRef]
- McCoy, V.E.; Gabbott, S.E.; Penkman, K.; Collins, M.J.; Presslee, S.; Holt, J.; Grossman, H.; Wang, B.; Solórzano Kraemer, M.M.; Delclòs, X.; et al. Ancient Amino Acids from Fossil Feathers in Amber. Sci. Rep. 2019, 9, 6420. [Google Scholar] [CrossRef] [PubMed]
- Cucina, A.; Cunsolo, V.; Di Francesco, A.; Saletti, R.; Zilberstein, G.; Zilberstein, S.; Tikhonov, A.; Bublichenko, A.G.; Righetti, P.G.; Foti, S. Meta-Proteomic Analysis of the Shandrin Mammoth by EVA Technology and High-Resolution Mass Spectrometry: What Is Its Gut Microbiota Telling Us? Amino Acids 2021, 53, 1507–1521. [Google Scholar] [CrossRef] [PubMed]
- Pevzner, P.A.; Kim, S.; Ng, J. Comment on “Protein Sequences from Mastodon and Tyrannosaurus Rex Revealed by Mass Spectrometry”. Science 2008, 321, 1040. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.T.P.; Bandelt, H.-J.; Hofreiter, M.; Barnes, I. Assessing Ancient DNA Studies. Trends Ecol. Evol. 2005, 20, 541–544. [Google Scholar] [CrossRef]
- Buckley, M.; Warwood, S.; Van Dongen, B.; Kitchener, A.C.; Manning, P.L. A Fossil Protein Chimera; Difficulties in Discriminating Dinosaur Peptide Sequences from Modern Cross-Contamination. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170544. [Google Scholar] [CrossRef] [PubMed]
- van der Valk, T.; Pečnerová, P.; Díez-del-Molino, D.; Bergström, A.; Oppenheimer, J.; Hartmann, S.; Xenikoudakis, G.; Thomas, J.A.; Dehasque, M.; Sağlıcan, E.; et al. Million-Year-Old DNA Sheds Light on the Genomic History of Mammoths. Nature 2021, 591, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.H.; Schroeter, E.R.; Cleland, T.P.; Zheng, W. Paleoproteomics of Mesozoic Dinosaurs and Other Mesozoic Fossils. Proteomics 2019, 19, 1800251. [Google Scholar] [CrossRef] [PubMed]
- Cleland, T.P.; Schroeter, E.R.; Zamdborg, L.; Zheng, W.; Lee, J.E.; Tran, J.C.; Bern, M.; Duncan, M.B.; Lebleu, V.S.; Ahlf, D.R.; et al. Mass Spectrometry and Antibody-Based Characterization of Blood Vessels from Brachylophosaurus canadensis. J. Proteome Res. 2015, 14, 5252–5262. [Google Scholar] [CrossRef] [PubMed]
- Brandt, L.Ø.; Schmidt, A.L.; Mannering, U.; Sarret, M.; Kelstrup, C.D.; Olsen, J.V.; Cappellini, E. Species Identification of Archaeological Skin Objects from Danish Bogs: Comparison between Mass Spectrometry-Based Peptide Sequencing and Microscopy-Based Methods. PLoS ONE 2014, 9, e106875. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, J.; Sjövall, P.; Thiel, V.; Zheng, W.; Ito, S.; Wakamatsu, K.; Hauff, R.; Kear, B.P.; Engdahl, A.; Alwmark, C.; et al. Soft-Tissue Evidence for Homeothermy and Crypsis in a Jurassic Ichthyosaur. Nature 2018, 564, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.; Hill, C.L.; Asara, J.M.; Lane, W.S.; Pincus, S.H. Identification of Immunoreactive Material in Mammoth Fossils. J. Mol. Evol. 2002, 55, 696–705. [Google Scholar] [CrossRef]
- Schweitzer, M.H.; Moyer, A.E.; Zheng, W. Testing the Hypothesis of Biofilm as a Source for Soft Tissue and Cell-Like Structures Preserved in Dinosaur Bone. PLoS ONE 2016, 11, e0150238. [Google Scholar] [CrossRef]
- Bryk, A.H.; Wiśniewski, J.R. Quantitative Analysis of Human Red Blood Cell Proteome. J. Proteome Res. 2017, 16, 2752–2761. [Google Scholar] [CrossRef]
- Wadsworth, C.; Buckley, M. Proteome Degradation in Fossils: Investigating the Longevity of Protein Survival in Ancient Bone. Rapid Commun. Mass Spectrom. 2014, 28, 605–615. [Google Scholar] [CrossRef]
- Hobson, D.; Hirsch, J.G. The antibacterial activity of hemoglobin. J. Exp. Med. 1958, 107, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Hallen, H.D.; Long, B.J.N. Resonance Raman Techniques for Complex Biological Systems. In Proceedings of the Ultrafast Nonlinear Imaging and Spectroscopy VII, SPIE, San Diego, CA, USA, 9 September 2019; Volume 11122, pp. 16–25. [Google Scholar]
- Spiro, T.G.; Strekas, T.C. Resonance Raman Spectra of Hemoglobin and Cytochrome c: Inverse Polarization and Vibronic Scattering. Proc. Natl. Acad. Sci. USA 1972, 69, 2622–2626. [Google Scholar] [CrossRef] [PubMed]
- Pawlicki, R.; Nowogrodzka-Zagorska, M. Blood Vessels and Red Blood Cells Preserved in Dinosaur Bones. Ann. Anat.-Anat. Anz. 1998, 180, 73–77. [Google Scholar] [CrossRef]
- Schweitzer, M.H.; Wittmeyer, J.L.; Horner, J.R. Soft Tissue and Cellular Preservation in Vertebrate Skeletal Elements from the Cretaceous to the Present. Proc. R. Soc. B Biol. Sci. 2007, 274, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Poser, J.W.; Price, P.A. A Method for Decarboxylation of Gamma-Carboxyglutamic Acid in Proteins. Properties of the Decarboxylated Gamma-Carboxyglutamic Acid Protein from Calf Bone. J. Biol. Chem. 1979, 254, 431–436. [Google Scholar] [CrossRef]
- Owen, M.; Triffitt, J.T. Extravascular Albumin in Bone Tissue. J. Physiol. 1976, 257, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.J.; Gernaey, A.M.; Nielsen-Marsh, C.M.; Vermeer, C.; Westbroek, P. Slow Rates of Degradation of Osteocalcin: Green Light for Fossil Bone Protein? Geology 2000, 28, 1139. [Google Scholar] [CrossRef]
- San Antonio, J.D.; Schweitzer, M.H.; Jensen, S.T.; Kalluri, R.; Buckley, M.; Orgel, J.P.R.O. Dinosaur Peptides Suggest Mechanisms of Protein Survival. PLoS ONE 2011, 6, e20381. [Google Scholar] [CrossRef]
- Perumal, S.; Antipova, O.; Orgel, J.P.R.O. Collagen Fibril Architecture, Domain Organization, and Triple-Helical Conformation Govern Its Proteolysis. Proc. Natl. Acad. Sci. USA 2008, 105, 2824–2829. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Chiang, C.-C.; Huang, P.-Y.; Chung, C.-Y.; Huang, T.D.; Wang, C.-C.; Chen, C.-I.; Chang, R.-S.; Liao, C.-H.; Reisz, R.R. Evidence of Preserved Collagen in an Early Jurassic Sauropodomorph Dinosaur Revealed by Synchrotron FTIR Microspectroscopy. Nat. Commun. 2017, 8, 14220. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, B.P.; Owan, T.E.; Mohammed, S.F.; Meyer, D.M.; Mills, L.D.; Schalkwijk, C.G.; Redfield, M.M. Advanced Glycation End Products Accumulate in Vascular Smooth Muscle and Modify Vascular but Not Ventricular Properties in Elderly Hypertensive Canines. Circulation 2008, 118, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Michael, J.; Benton, D.A.T.H. Introduction to Paleobiology and the Fossil Record; Wiley-Blackwell: Chichester, UK; Wiley-Blackwell: Hoboken, NJ, USA, 2009; ISBN 978-1-4051-8646-9. [Google Scholar]
- Iniesto, M.; Villalba, I.; Buscalioni, A.D.; Guerrero, M.C.; López-Archilla, A.I. The Effect Of Microbial Mats In The Decay Of Anurans With Implications For Understanding Taphonomic Processes In The Fossil Record. Sci. Rep. 2017, 7, 45160. [Google Scholar] [CrossRef] [PubMed]
- Wiemann, J.; Fabbri, M.; Yang, T.-R.; Stein, K.; Sander, P.M.; Norell, M.A.; Briggs, D.E.G. Fossilization Transforms Vertebrate Hard Tissue Proteins into N-Heterocyclic Polymers. Nat. Commun. 2018, 9, 4741. [Google Scholar] [CrossRef]
- Bennett, B.D.; Gralnick, J.A. Mechanisms of Toxicity by and Resistance to Ferrous Iron in Anaerobic Systems. Free Radic. Biol. Med. 2019, 140, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Dennery, P.A.; Spitz, D.R.; Yang, G.; Tatarov, A.; Lee, C.S.; Shegog, M.L.; Poss, K.D. Oxygen Toxicity and Iron Accumulation in the Lungs of Mice Lacking Heme Oxygenase-2. Available online: https://www.jci.org/articles/view/448/pdf (accessed on 23 May 2023).
- Kumar, S.; Bandyopadhyay, U. Free Heme Toxicity and Its Detoxification Systems in Human. Toxicol. Lett. 2005, 157, 175–188. [Google Scholar] [CrossRef]
- Pleyer, H.L.; Moeller, R.; Fujimori, A.; Fox, S.; Strasdeit, H. Chemical, Thermal, and Radiation Resistance of an Iron Porphyrin: A Model Study of Biosignature Stability. Astrobiology 2022, 22, 776–799. [Google Scholar] [CrossRef]
- Cook, L.P.; Brewer, G.; Wong-Ng, W. Structural Aspects of Porphyrins for Functional Materials Applications. Crystals 2017, 7, 223. [Google Scholar] [CrossRef]
- Perlovich, G.L.; Golubchikov, O.A.; Klueva, M.E. Thermodynamics of Porphyrin Sublimation. J. Porphyr. Phthalocyanines 2000, 4, 699–706. [Google Scholar] [CrossRef]
- Eglinton, G.; Logan, G.A. Molecular Preservation. Philos. Trans. R. Soc. Lond. 1991, 333, 315–328. [Google Scholar]
- Baqué, M.; Backhaus, T.; Meeßen, J.; Hanke, F.; Böttger, U.; Ramkissoon, N.; Olsson-Francis, K.; Baumgärtner, M.; Billi, D.; Cassaro, A.; et al. Biosignature Stability in Space Enables Their Use for Life Detection on Mars. Sci. Adv. 2022, 8, eabn7412. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Eglinton, G.; Fu, J.; Sheng, G. Biological Markers in Chinese Ancient Sediments. 1. Geoporphyrins. Energy Fuels 1992, 6, 215–225. [Google Scholar] [CrossRef]
- Suo, Z.; Avci, R.; Schweitzer, M.H.; Deliorman, M. Porphyrin as an Ideal Biomarker in the Search for Extraterrestrial Life. Astrobiology 2007, 7, 605–615. [Google Scholar] [CrossRef]
- Gueneli, N.; McKenna, A.M.; Ohkouchi, N.; Boreham, C.J.; Beghin, J.; Javaux, E.J.; Brocks, J.J. 1.1-Billion-Year-Old Porphyrins Establish a Marine Ecosystem Dominated by Bacterial Primary Producers. Proc. Natl. Acad. Sci. USA 2018, 115, E6978–E6986. [Google Scholar] [CrossRef] [PubMed]
- Treibs, A. Chlorophyll- und Häminderivate in organischen Mineralstoffen. Angew. Chem. 1936, 49, 682–686. [Google Scholar] [CrossRef]
- Grosjean, E.; Adam, P.; Connan, J.; Albrecht, P. Effects of Weathering on Nickel and Vanadyl Porphyrins of a Lower Toarcian Shale of the Paris Basin. Geochim. Cosmochim. Acta 2004, 68, 789–804. [Google Scholar] [CrossRef]
- Espenson, J.H.; Christensen, R.J. Kinetics and Mechanism of the Demetalation of Iron(III) Porphyrins Catalyzed by Iron(II). Inorg. Chem. 1977, 16, 2561–2564. [Google Scholar] [CrossRef]
- Hodgson, G.W.; Flop, J.; Baker, B. The origin of petroleum porphyrins: Preliminary evidence for protein fragments associated with porphyrins. Geochim. Cosmochim. Acta 1969, 33, 532–535. [Google Scholar] [CrossRef]
- Cleland, T.P.; Schroeter, E.R.; Colleary, C. Diagenetiforms: A New Term to Explain Protein Changes as a Result of Diagenesis in Paleoproteomics. J. Proteomics 2021, 230, 103992. [Google Scholar] [CrossRef]
- van Doorn, N.L.; Wilson, J.; Hollund, H.; Soressi, M.; Collins, M.J. Site-Specific Deamidation of Glutamine: A New Marker of Bone Collagen Deterioration. Rapid Commun. Mass Spectrom. 2012, 26, 2319–2327. [Google Scholar] [CrossRef]
- Brown, D.R. Metalloproteins and Neuronal Death. Met. Integr. Biometal Sci. 2010, 2, 186–194. [Google Scholar] [CrossRef]
- Bush, A.I. The Metallobiology of Alzheimer’s Disease. Trends Neurosci. 2003, 26, 207–214. [Google Scholar] [CrossRef]
- Higby Schweitzer, M.; Horner, J.R. Intravascular Microstructures in Trabecular Bone Tissues of Tyrannosaurus Rex. Ann. Paléontol. 1999, 85, 179–192. [Google Scholar] [CrossRef]
- Awasthi, G.; Srivastava, G.; Das, A. Comparative Evolutionary Analyses of Beta Globin Gene in Eutherian, Dinosaurian and Neopterygii Taxa. J. Vector Borne Dis. 2011, 48, 27–36. [Google Scholar] [PubMed]
- Organ, C.L.; Schweitzer, M.H.; Zheng, W.; Freimark, L.M.; Cantley, L.C.; Asara, J.M. Molecular Phylogenetics of Mastodon and Tyrannosaurus Rex. Science 2008, 320, 499. [Google Scholar] [CrossRef] [PubMed]
- Wiemann, J.; Menéndez, I.; Crawford, J.M.; Fabbri, M.; Gauthier, J.A.; Hull, P.M.; Norell, M.A.; Briggs, D.E.G. Fossil Biomolecules Reveal an Avian Metabolism in the Ancestral Dinosaur. Nature 2022, 606, 522–526. [Google Scholar] [CrossRef]
Taxon | Hemoglobin Properties | Allosteric Effectors of Hemoglobin | ||||||
---|---|---|---|---|---|---|---|---|
Cooperativity | Bohr Effect | ATP | GTP | HCO3– | 2,3–BPG | IP | Cl– | |
Hagfish | X | X | ||||||
Lampreys | X | X | X | |||||
Sharks | X | X | X | X | X | X | X | |
Teleost Fish | X | X | X | X | X | X | ||
Amphibians | X | X | X | X | X | X | ||
Mammals | X | X | X | X | X | X | ||
Turtles | X | X | X | X | X | X | ||
Birds | X | X | X | X | X | X | ||
Crocodilians | X | X | X | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayala, J.D.; Schroeter, E.R.; Schweitzer, M.H. Porphyrin-Based Molecules in the Fossil Record Shed Light on the Evolution of Life. Minerals 2024, 14, 201. https://doi.org/10.3390/min14020201
Ayala JD, Schroeter ER, Schweitzer MH. Porphyrin-Based Molecules in the Fossil Record Shed Light on the Evolution of Life. Minerals. 2024; 14(2):201. https://doi.org/10.3390/min14020201
Chicago/Turabian StyleAyala, Juan D., Elena R. Schroeter, and Mary H. Schweitzer. 2024. "Porphyrin-Based Molecules in the Fossil Record Shed Light on the Evolution of Life" Minerals 14, no. 2: 201. https://doi.org/10.3390/min14020201
APA StyleAyala, J. D., Schroeter, E. R., & Schweitzer, M. H. (2024). Porphyrin-Based Molecules in the Fossil Record Shed Light on the Evolution of Life. Minerals, 14(2), 201. https://doi.org/10.3390/min14020201