Establishing a UG2 Pillar Strength Formula in South African Platinum Mines
Abstract
:1. Introduction
- Upper Group 2 (UG2) chromitite seams;
- Merensky Reef, a pegmatoidal pyroxenite reef.
2. Review of Laboratory and Rock Mass Strength Comparisons
3. Geomechanical Testing of UG2 Chromitite
3.1. Regional Strength Comparison
3.2. Sample Collection
3.3. Procedure for the w/h Ratio Testing
3.4. Test Results
3.5. Comparison Between the Laboratory Tests and Underground Pillars
4. Discussion of Results
- The pillars generally contain widely spaced, steeply dipping joints [20];
- The pillars contain some layers of pyroxenite (Figure 4);
- Metal loading end pieces with a low friction angle on the contact surfaces in the laboratory tests (Appendix A);
- Failure was not allowed to progress into the loading platens in the laboratory tests;
- The effects of draping were excluded from the laboratory tests.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Test Number | Parallelism (mm) | Friction Angle (°) | Diameter (mm) | Length (mm) | w/h Ratio | Strength (MPa) |
---|---|---|---|---|---|---|
BW Chromitite A | 0.020 | 46.8 | 115.0 | 0.41 | 103.0 | |
BW Chromitite B | 0.026 | 54.1 | 147.60 | 0.37 | 98.9 | |
BW Chromitite C | 0.026 | 54.0 | 147.40 | 0.37 | 89.3 | |
BW Chromitite D | 0.026 | 54.2 | 147.20 | 0.37 | 80.0 | |
BW Chromitite E | 0.026 | 54.3 | 147.10 | 0.37 | 87.3 | |
54C1 w_h = 1 | 0.015 | 12 | 54.4 | 52.65 | 1.03 | 125.4 |
54C2 w_h = 1 | 0.010 | 10 | 54.2 | 52.65 | 1.03 | 119.5 |
54C3 w_h = 1 | 0.005 | 13 | 54.0 | 52.40 | 1.03 | 145.1 |
54C4 w_h = 1 | 0.005 | 13 | 54.2 | 52.40 | 1.03 | 124.0 |
54C5 w_h = 1 | 0.005 | 13 | 54.1 | 52.40 | 1.03 | 155.4 |
A0.5 | 54.2 | 26.90 | 2.01 | 189.3 | ||
B0.5 | 20 | 54.2 | 26.90 | 2.01 | 160.2 | |
C0.5 | 20 | 54.2 | 26.90 | 2.01 | 186.7 | |
C1 w_h = 2 | 0.05 | 53.7 | 24.95 | 2.15 | 213.3 | |
C2 w_h = 2 | 0.03 | 18 | 54.3 | 24.95 | 2.18 | 210.6 |
C3 w_h = 2 | 0.03 | 16 | 53.8 | 24.95 | 2.15 | 194.4 |
C4 w_h = 2 | 0.01 | 16 | 53.7 | 24.95 | 2.15 | 218.7 |
C5 w_h = 2 | 0.02 | 17 | 53.6 | 24.95 | 2.15 | 181.0 |
C6 w_h = 2 | 0.03 | 13 | 53.8 | 24.95 | 2.16 | 192.8 |
16C2 w_h = 3 | 0.01 | 14 | 53.8 | 17.75 | 3.03 | 239.1 |
16C3 w_h = 3 | 0.015 | 14 | 53.8 | 17.75 | 3.03 | 232.5 |
16C4 w_h = 3 | 0.025 | 13 | 53.8 | 17.60 | 3.06 | 234.7 |
16C5 w_h = 3 | 0.020 | 11 | 53.8 | 17.60 | 3.06 | 237.3 |
16C6 w_h = 3 | 0.01 | 14 | 53.8 | 17.20 | 3.13 | 204.6 |
12C1 w_h = 4 | 0.02 | 14 | 53.8 | 12.35 | 4.36 | 301.5 |
12C2 w_h = 4 | 0.01 | 14 | 53.8 | 12.35 | 4.36 | 258.2 |
12C3 w_h = 4 | 0.01 | 15 | 53.8 | 12.35 | 4.36 | 290.8 |
12C4 w_h = 4 | 0.03 | 12 | 53.8 | 12.35 | 4.36 | 234.3 |
12C5 w_h = 4 | 0.04 | 14 | 53.8 | 12.35 | 4.36 | 256.4 |
12C6 w_h = 4 | 0.005 | 13 | 53.8 | 12.20 | 4.41 | 309.7 |
8C1 w_h = 6 | 0.005 | 12 | 54.1 | 8.20 | 6.60 | 266.7 |
8C2 w_h = 6 | 0.005 | 14 | 54.2 | 8.50 | 6.37 | 301.3 |
8C3 w_h = 6 | 0.005 | 14 | 54.1 | 8.50 | 6.36 | 314.4 |
8C4 w_h = 6 | 0.005 | 14 | 54.1 | 8.00 | 6.76 | 306.2 |
8C5 w_h = 6 | 0.005 | 13 | 54.0 | 7.90 | 6.84 | 282.5 |
6C1 w_h = 8 | 0.006 | 12 | 54.3 | 6.40 | 8.48 | 323.9 |
6C2 w_h = 8 | 0.02 | 17 | 53.8 | 6.40 | 8.41 | 338.6 |
6C3 w_h = 8 | 0.01 | 15 | 53.8 | 6.40 | 8.41 | 387.0 |
6C4 w_h = 8 | 0.005 | 12 | 54.2 | 6.40 | 8.48 | 425.1 |
6C5 w_h = 8 | 0.015 | 12 | 54.3 | 6.40 | 8.48 | 333.5 |
6C6 w_h = 8 | 0.01 | 12 | 54.3 | 6.40 | 8.48 | 336.3 |
References
- Northam Platinum Limited. Annual Integrated Report. Available online: https://www.northam.co.za/procurement/127-investors-and-media/publications/719-annual-report (accessed on 7 February 2020).
- Watson, B.P.; Lamos, R.A.; Roberts, D.P. PlatMine pillar strength formula for the UG2 Reef. J. S. Afr. Inst. Min. Metall. 2021, 121, 437–448. [Google Scholar] [CrossRef]
- Watson, B.P.; Theron, W.; Fernandes, N.; Kekana, W.O.; Mahlangu, M.P.; Betz, G.; Carpede, A. UG2 pillar strength: Verification of the PlatMine formula. J. S. Afr. Inst. Min. Metall. 2021, 121, 449–456. [Google Scholar] [CrossRef]
- Oates, T.E.; Malan, D.F. A study of UG2 pillar strength using a new pillar database. J. S. Afr. Inst. Min. Metall. 2023, 123, 265–274. [Google Scholar] [CrossRef]
- Watson, B.P.; Maphosa, T.J.; Stacey, T.R.; Theron, W.J.; Fernandes, N.D. Effect of width-to-height ratio on the strength and behaviour of chromitite rock. J. Environ. Earth Sci. 2024, submitted.
- Ulusay, R. (Ed.) Suggested Methods for Rock Failure Criteria: General Introduction. In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Hedley, D.G.F.; Grant, F. Stope pillar design for the Elliot Lake uranium mines. Bull. Can. Inst. Min. Metall. 1972, 65, 37–55. [Google Scholar]
- Salamon, M.D.G.; Munro, A.H. A study of the strength of coal pillars. J. S. Afr. Inst. Min. Metall. 1967, 68, 56–67. [Google Scholar]
- Malan, D.F.; Napier, J.A.L. The design of stable pillars in the Bushveld Complex mines: A problem solved? J. S. Afr. Inst. Min. Met. 2011, 111, 821–836. [Google Scholar]
- Fernandes, N.; University of the Witwatersrand, Johannesburg, Gauteng, South Africa. Personal communication, 2020.
- Stacey, T.R.; Swart, A.H. Practical Rock Engineering Practice for Shallow and Opencast Mines; Safety in Mines Research Advisory Committee: Johannesburg, South Africa, 2001.
- Laubscher, D.H. A geomechanics classification system for the rating of rock mass in mine design. J. S. Afr. Inst. Min. Metall. 1990, 90, 257–273. [Google Scholar]
- Hoek, E.; Brown, E.T. Underground Excavations in Rock; Institution of Mining and Metallurgy: New York, NY, USA, 1980. [Google Scholar]
- Stavrou, A.; Murphy, W. Quantifying the effects of scale and heterogeneity on the confined strength of micro-defected rocks. Int. J. Rock Mech. Min. Sci. 2018, 102, 131–146. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. The compressive strength of hard rock. Tydskrift Vir Natuurwetenskappe 1968, 8, 163–179. [Google Scholar]
- Kong XLiu, Q.; Lu, H. Effects of Rock Specimen Size on Mechanical Properties in Laboratory Testing. J. Geotech. Geoenvironmental Eng. 2021, 147, 753–769. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. In situ strength and deformation characteristics of coal. Eng. Geol. 1968, 2, 325–340. [Google Scholar] [CrossRef]
- York, G.; Canbulat, I. The scale effect, critical rock mass strength and pillar system design. J. S. Afr. Inst. Min. Metall. 1998, 98, 23–45. [Google Scholar]
- Masoumi, H.; Saydam, S.; Hagan, P.C. Incorporating scale effect into a multiaxial failure criterion for intact rock. Int. J. Rock Mech. Min. Sci. 2016, 83, 49–56. [Google Scholar] [CrossRef]
- Esterhuizen, G. Jointing Effects on Pillar Strength. In Proceedings of the 19th Conference on Ground Control in Mining, Morgantown, WV, USA, 8–10 August 2000; pp. 286–290. [Google Scholar]
- Couto, P.M.; Malan, D.F. Bord-and-pillar design for the UG2 Reef containing weak alteration layers. J. S. Afr. Inst. Min. Metall. 2023, 123, 245–252. [Google Scholar] [CrossRef]
- Maphosa, T.J. Optimum Depth for the Introduction of Crush Pillars at Impala Platinum Mine. Master’s Dissertation, School of Mining Engineering, University of Witwatersrand, Johannesburg, South Africa, 2022. [Google Scholar]
- Ulusay, R.; Hudson, J.A. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006; ISRM Turkish Group: Ankara, Turkey, 2007; p. 628. [Google Scholar]
- Wagner, H. Determination of the complete load-deformation characteristics of coal pillars. In Proceedings of the 3rd International Congress on Rock Mechanics, Denver, CO, USA, 1–7 September 1974; ISRM: Lisbon, Portugal, 1974; Volume 2B, pp. 1076–1082. [Google Scholar]
- Bieniawski, Z.T.; van Heerden, W.L. The significance of in situ tests on large rock specimens. Int. J. Rock Mech. Min. Sci. Geomech. 1975, 12, 55–73. [Google Scholar] [CrossRef]
- Ryder, J.A.; Ozbay, M.U. A methodology for designing pillar layouts for shallow mining. In Proceedings of the ISRM Symposium, Static and Dynamic Considerations in Rock Engineering, Mbabane, Swaziland, 5–9 September 1990; p. 30. [Google Scholar]
- Watson, B.P.; Kuijpers, J.S.; Stacey, T.R. Design of Merensky Reef crush pillars. J. S. Afr. Inst. Min. Metall. 2010, 110, 581–591. [Google Scholar]
- Ryder, J.A.; Jager, A.J. A textbook on Rock Mechanics for Tabular Hard Rock Mines; SIMRAC: Johannesburg, South Africa, 2002.
- Nothnagel, S.J.; University of the Witwatersrand, Johannesburg, Gauteng, South Africa. Personal communication, 2020.
- Exchangerates. Available online: http://www.exchangerates.org.uk (accessed on 26 February 2020).
- Van Schalkwyk, L. Northam Platinum Limited Condensed Reviewed Interim Results for the Six Months Ended 31 December 2019. Available online: https://www.northam.co.za/presentations (accessed on 2 March 2020).
- Baxter, R. What’s happening economically and how is this impacting the mining industry? In Proceedings of the Mining in SA Today, Johannesburg, South Africa, 2–10 October 2019; p. 2. [Google Scholar]
- Fernandes, N.; University of the Witwatersrand, Johannesburg, Gauteng, South Africa. Personal communication, 2024.
- Louw, G.; Mooinooi, North West Province, South Africa. Personal communication, 2024.
Sample No. | Strength (MPa) | E (GPa) | ν (45% UCS) |
---|---|---|---|
Chromitite A | 103.0 | 104.4 | 0.35 |
Chromitite B | 98.9 | 99.0 | 0.30 |
Chromitite C | 89.3 | 129.7 | 0.28 |
Chromitite D | 80.0 | 87.3 | 0.43 |
Chromitite E | 87.3 | 89.3 | 0.39 |
Mean | 91.7 | 101.9 | 0.35 |
Standard deviation | 9.2 | 17.0 | 0.06 |
Sample No. | UCS (MPa) | E (GPa) | ν (45% UCS) |
---|---|---|---|
Chromitite | 95.8 | 76.9 | 0.32 |
Pyroxenite | 150.7 | 126.1 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watson, B.; Maphosa, T.; Theron, W.; Fernandes, N.; Stacey, T.; Morgan, A.; Carpede, A.; Betz, G. Establishing a UG2 Pillar Strength Formula in South African Platinum Mines. Minerals 2024, 14, 1161. https://doi.org/10.3390/min14111161
Watson B, Maphosa T, Theron W, Fernandes N, Stacey T, Morgan A, Carpede A, Betz G. Establishing a UG2 Pillar Strength Formula in South African Platinum Mines. Minerals. 2024; 14(11):1161. https://doi.org/10.3390/min14111161
Chicago/Turabian StyleWatson, Bryan, Tatenda Maphosa, Willie Theron, Noel Fernandes, Thomas Stacey, Andrew Morgan, Andrew Carpede, and Gunther Betz. 2024. "Establishing a UG2 Pillar Strength Formula in South African Platinum Mines" Minerals 14, no. 11: 1161. https://doi.org/10.3390/min14111161
APA StyleWatson, B., Maphosa, T., Theron, W., Fernandes, N., Stacey, T., Morgan, A., Carpede, A., & Betz, G. (2024). Establishing a UG2 Pillar Strength Formula in South African Platinum Mines. Minerals, 14(11), 1161. https://doi.org/10.3390/min14111161