Artificial Neural Network-Based Non-Linear Modeling and Simulation of CaO-SiO2-Al2O3-MgO Blast Furnace Slag Viscosity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Database
2.1.2. Decisions
- The values of CaO, SiO2, Al2O3, and MgO should be greater than zero.
- The sum of the values of CaO, SiO2, Al2O3, and MgO should be between 0.9999 and 1.0001.
2.2. Preprocessing
2.2.1. Feature Engineering
2.2.2. Normalization
2.3. Modeling
2.3.1. Linear Modeling
2.3.2. Artificial Neural Networks
2.4. Predictions
2.4.1. Model Selection
2.4.2. Statistical Evaluation
2.4.3. Best Model
- −0.3 ≤ R ≤ 0 or 0 ≤ R ≤ 0.3: There is a weak or low linear correlation;
- −0.7 ≤ R < −0.3 or 0.3 < R ≤ 0.7: There is a moderate linear correlation;
- −1 ≤ R < 0.7 or 0.7 < R ≤ 1: There is a strong or high linear correlation.
2.4.4. Numerical Simulation
3. Results and Discussion
- D = −50.38T + 106(15.08%CaO + 20.61%SiO2 + 17.62%Al2O3 − 8.44%MgO);
- E = 109(−8.99%CaO − 23.41%SiO2 − 13.83%Al2O3 + 33.80%MgO);
Technical Use of the Viscosity Prediction Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, W.; Li, T.; Lan, D.; Sun, C.; Yang, S. Influence of TiO2, Al2O3, and Basicity on Viscosity and Structure of High Titanium-Bearing Blast Furnace Slag. Materials 2023, 16, 2575. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Zhang, Z.; Xing, X.; Zheng, J.; She, Y. Effect of MgO/Al2O3 on Viscosity and Thermodynamic Properties of High-Titanium Slag Containing Chlorine. Minerals 2023, 13, 444. [Google Scholar] [CrossRef]
- Li, T.; Sun, C.; Song, S.; Wang, Q. Influences of Al2O3 and TiO2 Content on Viscosity and Structure of CaO–8%MgO–Al2O3–SiO2–TiO2–5%FeO Blast Furnace Primary Slag. Metals 2019, 9, 743. [Google Scholar] [CrossRef]
- Tian, T.; Jin, X.; Zhang, Y.; Long, Y.; Kou, X.; Yang, J. The Effect of Acidity Coefficient on the Crystallization Properties and Viscosity of Modified Blast Furnace Slag for Mineral Wool Production. Materials 2022, 15, 4606. [Google Scholar] [CrossRef]
- Zheng, H.; Zhou, S.; Zhang, S.; Li, Y.; Zhang, B.; Shen, F.; Wang, Z.; Han, T. Viscosity Estimation of TiO2-Bearing Blast Furnace Slag with High Al2O3 at 1500 °C. Metals 2023, 13, 573. [Google Scholar] [CrossRef]
- Duchesne, M.A.; Bronsch, A.M.; Hughes, R.W.; Masset, P.J. Slag viscosity modeling toolbox. Fuel 2013, 114, 38–43. [Google Scholar] [CrossRef]
- Duchesne, M.A.; Macchi, A.; Lu, D.Y.; Hughes, R.W.; McCalden, D.; Anthony, E.J. Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions. Fuel Process. Technol. 2010, 91, 831–836. [Google Scholar] [CrossRef]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.-H.; Kang, Y.-B.; Melançon, J.; et al. FactSage thermochemical software and databases, 2010–2016. Calphad 2016, 54, 35–53. [Google Scholar] [CrossRef]
- Roscoe, R. The viscosity of suspensions of rigid spheres. Br. J. Appl. Phys. 1952, 3, 267. [Google Scholar] [CrossRef]
- Čistý, M.; Danko, M.; Kohnová, S.; Považanová, B.; Trizna, A. Machine Learning Enhanced by Feature Engineering for Estimating Snow Water Equivalent. Water 2024, 16, 2285. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Liang, Y.; Xu, Z. Feature Selection-Based Method for Scaffolding Assembly Quality Inspection Using Point Cloud Data. Buildings 2024, 14, 2518. [Google Scholar] [CrossRef]
- Guermazi, M.; Kallel, A.Y.; Kanoun, O. Explainable Feature Engineering for Multi-Modal Tissue State Monitoring Based on Impedance Spectroscopy. Sensors 2024, 24, 5209. [Google Scholar] [CrossRef] [PubMed]
- Folkedahl, B.C.; Schobert, H.H. Effects of Atmosphere on Viscosity of Selected Bituminous and Low-Rank Coal Ash Slags. Energy Fuels 2005, 19, 208–215. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, M.; Meng, Z.; Wang, H.; Liu, L.; Wang, X. Development of structure-informed artificial neural network for accurately modeling viscosity of multicomponent molten slags. Ceram. Int. 2021, 47, 30691–30701. [Google Scholar] [CrossRef]
- Martila, D.; Groote, S. Evaluation of the Gauss Integral. Stats 2022, 5, 538–545. [Google Scholar] [CrossRef]
- Joseph, V.R.; Vakayil, A. SPlit: An Optimal Method for Data Splitting. Technometrics 2022, 64, 166–176. [Google Scholar] [CrossRef]
- Son, K.; Lee, J.; Hwang, H.; Jeon, W.; Yang, H.; Sohn, I.; Kim, Y.; Um, H. Slag foaming estimation in the electric arc furnace using machine learning based long short-term memory networks. J. Mater. Res. Technol. 2021, 12, 555–568. [Google Scholar] [CrossRef]
- Ganapathi Raju, V.N.; Prasanna Lakshmi, K.; Jain, V.M.; Kalidindi, A.; Padma, V. Study the Influence of Normalization/Transformation process on the Accuracy of Supervised Classification. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020. [Google Scholar]
- Shen, Y.; Wang, J.; Navlakha, S. A Correspondence Between Normalization Strategies in Artificial and Biological Neural Networks. Neural Comput. 2021, 33, 3179–3203. [Google Scholar] [CrossRef]
- Richman, F. Laurent series over R. Commun. Algebra 2020, 48, 1982–1984. [Google Scholar] [CrossRef]
- Ni, H.; Hui, H.; Steinle-Neumann, G. Transport properties of silicate melts. Rev. Geophys. 2015, 53, 715–744. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, X.; Gao, Y.; Wang, S.; Ning, Y. Robust Total Least Squares Estimation Method for Uncertain Linear Regression Model. Mathematics 2023, 11, 4354. [Google Scholar] [CrossRef]
- Lu, Z.; Pu, H.; Wang, F.; Hu, Z.; Wang, L. The Expressive Power of Neural Networks: A View from the Width. arXiv 2017, arXiv:1709.02540. [Google Scholar]
- Leshno, M.; Lin, V.Y.; Pinkus, A.; Schocken, S. Multilayer feedforward networks with a nonpolynomial activation. Neural Netw. 1993, 6, 861–867. [Google Scholar] [CrossRef]
- Paluzo-Hidalgo, E.; Gonzalez-Diaz, R.; Gutiérrez-Naranjo, M.A. Two-hidden-layer feed-forward networks are universal approximators: A constructive approach. Neural Netw. 2020, 131, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.J.; Petridis, M.; Walters, S.D.; Gheytassi, S.M.; Morgan, R.E. Two Hidden Layers are Usually Better than One. In Proceedings of the International Conference on Engineering Applications of Neural Networks (EANN), Athens, Greece, 25–27 August 2017. [Google Scholar]
- Telgarsky, M. Benefits of depth in neural networks. arXiv 2016, arXiv:1602.04485. [Google Scholar]
- Kigma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Bai, Y.; Yang, E.; Han, B.; Yang, Y.; Li, J.; Mao, Y.; Niu, G.; Liu, T. Understanding and Improving Early Stopping for Learning with Noisy Labels. arXiv 2021, arXiv:2106.15853. [Google Scholar]
- Jepkoech, J.; Mugo, D.M.; Kenduiywo, B.K.; Too, E.C. The Effect of Adaptive Learning Rate on the Accuracy of Neural Networks. Int. J. Adv. Comput. Sci. Appl. 2021, 12. [Google Scholar] [CrossRef]
- Olden, J.D.; Jackson, D.A. Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 2002, 154, 135–150. [Google Scholar] [CrossRef]
- Rainio, O.; Teuho, J.; Klén, R. Evaluation metrics and statistical tests for machine learning. Sci. Rep. 2024, 14, 6086. [Google Scholar] [CrossRef]
- Edelmann, D.; Móri, T.F.; Székely, G.J. On relationships between the Pearson and the distance correlation coefficients. Stat. Probab. Lett. 2021, 169, 108960. [Google Scholar] [CrossRef]
- Vivas, E.; Allende-Cid, H.; Salas, R. A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score. Entropy 2020, 22, 1412. [Google Scholar] [CrossRef] [PubMed]
- Vargas, S.; Frandsen, F.J.; Dam-Johansen, K. Rheological properties of high-temperature melts of coal ashes and other silicates. Prog. Energy Combust. Sci. 2001, 27, 237–429. [Google Scholar] [CrossRef]
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef]
- Toebe, M.; Machado, L.N.; Tartaglia, F.L.; Carvalho, J.O.; Bandeira, C.T.; Filho, A.C. Sample size for the estimation of Pearson’s linear correlation in crotalaria species. Pesqui. Agropecu. Bras. 2019, 54, e01027. [Google Scholar] [CrossRef]
- Mills, K.C.; Karagadde, S.; Lee, P.D.; Yuan, L.; Shahbazian, F. Calculation of Physical Properties for Use in Models of Continuous Casting Process-Part 1: Mould Slags. ISIJ Int. 2016, 56, 264–273. [Google Scholar] [CrossRef]
- Min, D.J.; Tsukihashi, F. Recent advances in understanding physical properties of metallurgical slags. Met. Mater. Int. 2017, 23, 1–19. [Google Scholar] [CrossRef]
- Pereira, A.L.; Pereira, J.A.M.; Bielefeldt, W.V.; Vilela, A.C.F. Thermodynamic evaluation of viscosity behavior for CaO–SiO2–Al2O3–MgO slag systems examined at the temperatures range from 1500 to 1700 °C. Sci. Rep. 2023, 13, 16274. [Google Scholar] [CrossRef]
- Seftharaman, S.; Sichen, D.; Sridhar, S.; Mills, K.C. Estimation of liquidus temperatures for multicomponent silicates from activation energies for viscous flow. Metall. Mater. Trans. B 2000, 31, 111–119. [Google Scholar] [CrossRef]
- Kube, S.A.; Sohn, S.; Ojeda-Mota, R.; Evers, T.; Polsky, W.; Liu, N.; Ryan, K.; Rinehart, S.; Sun, Y.; Schroers, J. Compositional dependence of the fragility in metallic glass forming liquids. Nat. Commun. 2022, 13, 3708. [Google Scholar] [CrossRef]
- Pang, Z.; Lv, X.; Yan, Z.; Liang, D.; Dang, J. Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Electrical Conductivity. Metall. Mater. Trans. B 2019, 50, 385–394. [Google Scholar] [CrossRef]
- Ding, T.; Li, D.; Sun, R. Sub-Optimal Local Minima Exist for Neural Networks with Almost All Non-Linear Activations. arXiv 2019, arXiv:1911.01413. [Google Scholar]
- Mills, K.C.; Chapman, L.; Fox, A.B.; Sridhar, S. ‘Round robin’ project on the estimation of slag viscosities. Scand. J. Metall. 2001, 30, 396–403. [Google Scholar] [CrossRef]
- Xuan, W.; Zhang, J.; Xia, D. Crystallization characteristics of a coal slag and influence of crystals on the sharp increase of viscosity. Fuel 2016, 176, 102–109. [Google Scholar] [CrossRef]
- Sridhar, S.; Mills, K.C.; Afrange, O.D.C.; Lörz, H.P.; Carli, R. Break temperatures of mould fluxes and their relevance to continuous casting. Ironmak. Steelmak. Process. Prod. Appl. 2000, 27, 238–242. [Google Scholar] [CrossRef]
- Shankar, A.; Görnerup, M.; Lahiri, A.K.; Seetharaman, S. Experimental Investigation of the Viscosities in CaO-SiO2-MgO-Al2O3 and CaO-SiO2-MgO-Al2O3-TiO2 Slags. Metall. Mater. Trans. B 2007, 38, 911–915. [Google Scholar] [CrossRef]
- Rodrigues, R.C. Modeling urban traffic noise dependence on energy, assisted with Monte Carlo simulation. Energy Rep. 2022, 8, 583–588. [Google Scholar] [CrossRef]
- Metropolis, N.; Ulam, S. The Monte Carlo Method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Angell, C.A. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids 1991, 131–133 Pt 1, 13–31. [Google Scholar] [CrossRef]
- Ding, B.; Wang, H.; Zhu, X.; He, X.-Y.; Tan, Y.; Liao, Q. Prediction on crystallization behaviors of blast furnace slag in a phase change cooling process with corrected optical basicity. Fuel 2018, 223, 360–365. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, J.; Wang, Z.; Qian, G.; Ma, W. Effect of B2O3 Addition on Electrical Conductivity and Structural Roles of CaO-SiO2-B2O3 Slag. Metall. Mater. Trans. B 2019, 50, 304–311. [Google Scholar] [CrossRef]
- Hu, X.; Ren, Z.; Zhang, G.; Wang, L.; Chou, K. A model for estimating the viscosity of blast furnace slags with optical basicity. Int. J. Miner. Metall. Mater. 2012, 19, 1088–1092. [Google Scholar] [CrossRef]
- Xing, X.; Pang, Z.; Mo, C.; Wang, S.; Ju, J. Effect of MgO and BaO on viscosity and structure of blast furnace slag. J. Non-Cryst. Solids 2020, 530, 119801. [Google Scholar] [CrossRef]
- Liu, W.; Qin, J.; Zuo, H.; Wang, J.; Xue, Q. Viscosity variations in the transition process of blast furnace slag towards high-Al2O3 and low-MgO content. J. Non-Cryst. Solids 2024, 637, 123061. [Google Scholar] [CrossRef]
- Yao, L.; Ren, S.; Liu, G.; Liu, Q.; Kong, M.; Yang, J. Study of the effect of the MgO/Al2O3 ratio on viscosity of blast furnace slag. Metall. Res. Technol. 2015, 112, 602. [Google Scholar] [CrossRef]
- Uhrig, R.E. Introduction to artificial neural networks. In Proceedings of the IECON ‘95—21st Annual Conference on IEEE Industrial Electronics, Orlando, FL, USA, 6–10 November 1995. [Google Scholar]
- Chibuzo Cosmas Nwanwe, C.C.; Duru, U.I.; Anyadiegwu, C.; Ekejuba, A.I.B. An artificial neural network visible mathematical model for real-time prediction of multiphase flowing bottom-hole pressure in wellbores. Pet. Res. 2023, 8, 370–385. [Google Scholar]
- Chettibi, N.; Pavan, A.M.; Mellit, A.; Forsyth, A.J.; Todd, R. Real-time prediction of grid voltage and frequency using artificial neural networks: An experimental validation. Sustain. Energy Grids Netw. 2021, 27, 100502. [Google Scholar] [CrossRef]
- Elkatatny, S. Artificial neural network models for real-time prediction of the rheological properties of NaCl mud. Arab. J. Geosci. 2020, 13, 257. [Google Scholar] [CrossRef]
- Lu, Z.; Ren, N.; Xu, X.; Li, J.; Panwisawas, C.; Xia, M.; Dong, H.; Tsang, E.; Li, J. Real-time prediction and adaptive adjustment of continuous casting based on deep learning. Commun. Eng. 2023, 2, 34. [Google Scholar] [CrossRef]
- Hanza, S.S.; Marohnić, T.; Iljkić, D.; Basan, R. Artificial Neural Networks-Based Prediction of Hardness of Low-Alloy Steels Using Specific Jominy Distance. Metals 2021, 11, 714. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Z.; He, L.; Mahdipanah, M.H.; Wang, Y. Real-time prediction method of carbon concentration in carburized steel based on a BP neural network. Heat Treat. Surf. Eng. 2024, 6, 2350184. [Google Scholar]
log η | T (K) | MgO | Al2O3 | SiO2 | CaO * | Variables | Linear Data |
−0.9914 | 1498 | 1.99 | 3.75 | 15 | 25.75 | Min. | |
5.349 | 1995 | 20 | 40 | 53.25 | 58 | Max. | |
O | Mg | Al | Si | Ca ** | Variables | Non-linear Data *** | |
0.3688 | 0.012 | 0.0198 | 0.0701 | 0.184 | Min. | ||
0.443 | 0.1206 | 0.2117 | 0.2489 | 0.4146 | Max. |
MAE (log η) | Model |
---|---|
0.7581 | Linear |
0.1879 | ANN 23-24 |
5.7198 | ANNLiq |
3.2502 | BBHLW |
1.6275 | Bomkamp |
0.9434 | Duchesne |
2.1425 | Kalmanovitch-Frank |
2.7944 | Riboud |
2.0048 | Shaw |
2.1288 | Streeter |
1.462 | S2 |
1.4938 | Urbain |
1.8177 | Watt–Fereday |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Anjos, P.; Coleti, J.L.; Junca, E.; Grillo, F.F.; Machado, M.L.P. Artificial Neural Network-Based Non-Linear Modeling and Simulation of CaO-SiO2-Al2O3-MgO Blast Furnace Slag Viscosity. Minerals 2024, 14, 1160. https://doi.org/10.3390/min14111160
dos Anjos P, Coleti JL, Junca E, Grillo FF, Machado MLP. Artificial Neural Network-Based Non-Linear Modeling and Simulation of CaO-SiO2-Al2O3-MgO Blast Furnace Slag Viscosity. Minerals. 2024; 14(11):1160. https://doi.org/10.3390/min14111160
Chicago/Turabian Styledos Anjos, Patrick, Jorge Luís Coleti, Eduardo Junca, Felipe Fardin Grillo, and Marcelo Lucas Pereira Machado. 2024. "Artificial Neural Network-Based Non-Linear Modeling and Simulation of CaO-SiO2-Al2O3-MgO Blast Furnace Slag Viscosity" Minerals 14, no. 11: 1160. https://doi.org/10.3390/min14111160
APA Styledos Anjos, P., Coleti, J. L., Junca, E., Grillo, F. F., & Machado, M. L. P. (2024). Artificial Neural Network-Based Non-Linear Modeling and Simulation of CaO-SiO2-Al2O3-MgO Blast Furnace Slag Viscosity. Minerals, 14(11), 1160. https://doi.org/10.3390/min14111160