Geochemical Characterization of and Exploration Guide for the World-Class Mafic–Siliciclastic-Hosted Touro VMS Cu Deposit, Northwestern Iberian Peninsula
Abstract
:1. Introduction
Geotectonic Setting
2. Materials and Methods
3. Ore Deposit Geology (Previous Studies)
4. Results
4.1. Petrography
4.1.1. Amphibolite
4.1.2. Garnet Amphibolite
4.1.3. Paragneiss
4.1.4. Mineralized Paragneiss
4.2. Microprobe Results
4.2.1. Garnets
4.2.2. Micas
4.2.3. Amphibole
4.2.4. Feldspars
4.2.5. Chlorite
4.2.6. Epidote
4.2.7. Carbonates
4.3. Whole-Rock Geochemical Analyses
4.3.1. Geochemistry and Petrogenetic Characterization of Metabasic Rocks
4.3.2. Geochemistry and Petrogenetic Characterization of Mineralized Garnet Amphibolites
4.3.3. Geochemistry and Petrogenetic Characterization of Paragneisses and Mineralized Paragneisses
4.3.4. Sm-Nd Isotopic Geochemistry
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arias, M.; Nuñez, P.; Arias, D.; Gumiel, P.; Castañón, C.; Fuertes-Blanco, J.; Martin-Izard, A. 3D Geological Model of the Touro Cu Deposit, A World-Class Mafic-Siliciclastic VMS Deposit in the NW of the Iberian Peninsula. Minerals 2021, 11, 85. [Google Scholar] [CrossRef]
- Meuzelaar, T.; Núñez-Fernández, P.; Martín-Izard, A.; Arias-Prieto, D.; Díaz-Riopa, F. The waste rock of the Touro copper deposit in Galicia, Spain: Challenges for its environmental characterization. Geochem. Explor. Environ. Anal. 2021, 21, geochem2020-081. [Google Scholar] [CrossRef]
- Núñez, P.; Watts, T.; Martin-Izard, A.; Arias, D.; Rubio, Á.; Cortés, F.; Díaz-Riopa, F. Airborne Electromagnetic Survey over the Touro Copper VMS World Class Deposit (NW Spain): Geological and Geophysical Correlation. Minerals 2023, 13, 17. [Google Scholar] [CrossRef]
- Badham, P.; Williams, J. Genetic and Exploration Models for Sulfide Ores in Metaophiolites, Northwest Spain. Econ. Geol. 1981, 76, 2118–2127. [Google Scholar] [CrossRef]
- Sides, E.J. An alternative approach to the modelling of deformed stratiform and stratabound deposits. In Proceedings of the Twentieth lnternational Symposium on the Application of Computers and Mathematics in the Mineral Industries, APCOM 87, Johannesburg, South Africa, 19–23 October 1987; Volume 3, Geostatistics. pp. 187–198. [Google Scholar]
- Serranti, S.; Ferrini, V.; Masi, U.; Nicoletti, M.; Conde, L. Geochemical features of the massive sulfide (Cu) metamorphosed deposit of Arinteiro (Galicia, Spain) and genetic implications. Period. Mineral. 2002, 71, 27–48. [Google Scholar]
- Williams, P.J. The genesis and metamorphism of the Arinteiro-Bama Cu deposits, Santiago de Compostela, northwestern Spain. Econ. Geol. 1983, 78, 1689–1700. [Google Scholar] [CrossRef]
- Castiñeiras, P. Origen y Evolución Tectonotermal de las Unidades de o Pino y Cariño (Complejos Alóctonos de Galicia). Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2005. Serie Terra Nova 28. p. 289. [Google Scholar]
- Arenas, R.; Sánchez Martínez, S.; Díez Fernández, R.; Gerdes, A.; Abati, J.; Fernández-Suárez, J.; Andonaegui, P.; González Cuadra, P.; López Carmona, A.; Albert, R.; et al. Allochthonous terranes involved in the Variscan suture of NW Iberia: A review of their origin and tectonothermal evolution. Earth Sci. Rev. 2016, 161, 140–178. [Google Scholar] [CrossRef]
- Barreiro, J.G.; Martínez Catalán, J.R.; Fernández, R.D.; Arenas, R.; García, F.D. Upper crust reworking during gravitational collapse: The Bembibre-Pico Sacro detachment system (NW Iberia). J. Geol. Soc. 2010, 167, 769–784. [Google Scholar] [CrossRef]
- Díez Fernández, R.; Martínez Catalán, J.R.; Arenas Martín, R.; Abati Gómez, J. Tectonic evolution of a continental subduction-exhumation channel: Variscan structure of the basal allochthonous units in NW Spain. Tectonics 2011, 30, TC3009. [Google Scholar] [CrossRef]
- Julivert, M.; Martínez, F.J. The Structure and Evolution of the Hercynian Fold Belt in the Iberian Peninsula. In The Anatomy of Mountain Ranges, Princeton Legacy Library and Princeton Series in Geology and Paleontology, 788; Schaer, J.-P., Rodgers, J., Eds.; Princeton University Press: Princeton, NJ, USA, 2014; Chapter 6; pp. 65–105. [Google Scholar]
- Farias, P.; Gallastegui, G.; González Lodeiro, F.; Marquínez, J.; Martín Parra, L.M.; De Pablo Macía, J.G.; Rodríguez Fernández, L.R. Aportaciones al conocimiento de la litoestratigrafia y estructura de Galicia Central. Mem. Fac. Ciências Univ. Porto 1987, 1, 411–431. [Google Scholar]
- Martínez Catalán, J.R.; Álvarez Lobato, F.; Pinto, V.; Gómez Barreiro, J.; Ayarza, P.; Villalaín, J.J.; Casas, A. Gravity and magnetic anomalies in the allochthonous Órdenes Complex (Variscan belt, northwest Spain): Assessing its internal structure and thickness. Tectonics 2012, 31, TC5007. [Google Scholar] [CrossRef]
- Galley, A.G.; Hannington, M.D.; Jonasson, I.R. Volcanogenic Massive Sulphide Deposits. In Mineral Deposits of Canada—A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada. Ontario, Canada. Mineral Deposits Division; Goodfellow, W.D., Ed.; Special Publication; Society of Economic Geologists: Littleton, CO, USA, 2007; Volume 5, pp. 141–161. [Google Scholar]
- Andonaegui, P.; Arenas, R.; Albert, R.; Sánchez Martínez, S.; Díez Fernández, R.; Gerdes, A. The last stages of the Avalonian–Cadomian arc in NW Iberian Massif: Isotopic and igneous record for a long-lived peri-Gondwanan magmatic arc. Tectonophysics 2016, 681, 6–14. [Google Scholar] [CrossRef]
- Fuenlabrada, J.M.; Arenas, R.; Martínez, S.S.; García, F.D.; Castiñeiras, P. A peri-Gondwanan arc in NW IberiaI: Isotopic and geochemical constraints on the origin of the arc—A sedimentary approach. Gondwana Res. 2010, 17, 338–351. [Google Scholar] [CrossRef]
- Sánchez Martínez, S.; Arenas, R.; Albert, R.; Gerdes, A.; Fernández-Suárez, J. Updated Geochronology and Isotope Geochemistry of the Vila de Cruces Ophiolite: A Case Study of a Peri-Gondwanan Back-Arc Ophiolite; Special Publications 503; Geological Society: London, UK, 2021; pp. 497–530. [Google Scholar] [CrossRef]
- Díez-Fernández, R.; Arenas, R.; Francisco-Pereira, M.; Sánchez-Martínez, S.; Albert, R.; Martín Parra, L.M.; Rubio Pascual, F.J.; Matas, J. Tectonic evolution of Variscan Iberia: Gondwana–Laurussia collision revisited. Earth Sci. Rev. 2016, 162, 269–292. [Google Scholar] [CrossRef]
- Martínez Catalán, R.; Arenas, R.; García, F.D.; Abati, J. Variscan accretionary complex of northwest Iberia: Terrane correlation succession of tectonothermal events. Geology 1997, 25, 1103–1106. [Google Scholar] [CrossRef]
- Ziegler, P.A. (Ed.) Hercynian Suturing of Pangea. In AAPG Memoir Vol 43: Evolution of the Arctic-North Atlantic and the Western Tethys; The American Association of Petroleum Geologists: Tusla, OK, USA, 1988; pp. 25–32. [Google Scholar]
- Albert, R.; Arenas, R.; Gerdes, A.; Sánchez Martínez, S.; Fernández-Suárez, J.; Fuenlabrada, J.M. Provenance of the Variscan Upper Allochthon (Cabo Ortegal Complex, NW Iberian Massif). Gondwana Res. 2015, 28, 1434–1448. [Google Scholar] [CrossRef]
- Andonaegui, P.; Sánchez-Martínez, S.; Castiñeiras, P.; Abati, J.; Arenas, R. Reconstructing subduction polarity through the geochemistry of mafic rocks in a Cambrian magmatic arc along the Gondwana margin (Órdenes Complex, NW Iberian Massif). Int. J. Earth Sci. 2016, 105, 713–725. [Google Scholar] [CrossRef]
- Gutiérrez-Alonso, G.; Collins, A.S.; Fernández-Suárez, J.; Pastor-Galán, D.; González-Clavijo, E.; Jourdan, F.; Weil, A.B.; Johnston, S.T. Dating of lithospheric buckling: 40Ar/39Ar ages of syn-orocline strike–slip shear zones in northwestern Iberia. Tectonophys 2015, 643, 44–54. [Google Scholar] [CrossRef]
- Pastor-Galán, D.; Gutiérrez-Alonso, G.; Murphy, J.B.; Fernández-Suárez, J.; Hofmann, M.; Linnemann, U. Provenance analysis of the Paleozoic sequences of the northern Gondwana margin in NW Iberia: Passive margin to Variscan collision and orocline development. Gondwana Res. 2013, 23, 1089–1103. [Google Scholar] [CrossRef]
- Noblet, C.; Lefort, J.P. Sedimentological evidence for a limited separation between Armorica and Gondwana during the Early Ordovician. Geology 1990, 18, 303–306. [Google Scholar] [CrossRef]
- Díez Fernández, R.; Martínez Catalán, J.R.; Arenas, R.; Abati, J.; Gerdes, A.; Fernández-Suárez, J. U–Pb detrital zircon analysis of the lower allochthon of NW Iberia: Age constraints, provenance and links with the Variscan mobile belt and Gondwanan cratons. J. Geol. Soc. 2012, 169, 655–665. [Google Scholar] [CrossRef]
- Martínez Catalán, J.R.; Arenas, R.; Abati, J.; Martínez, S.S.; García, F.D.; Suárez, J.F.; Cuadra, P.G.; Castiñeiras, P.; Barreiro, J.G.; Montes, A.D.; et al. A rootless suture and the loss of the roots of a mountain chain: The Variscan belt of NW Iberia. Comptes Rendus Geosci. 2009, 341, 114–126. [Google Scholar] [CrossRef]
- Scotese, C.R.; Boucot, A.J.; Mckerrow, W.S. Gondwanan palæogeography and palæoclimatology. J. Afr. Earth Sci. 1999, 28, 99–114. [Google Scholar] [CrossRef]
- Arenas, R.; Sánchez Martínez, S.; Gerdes, A.; Albert, R.; Díez Fernández, R.; Andonaegui, P. Re-interpreting the Devonian ophiolites involved in the Variscan suture: U-Pb and Lu-Hf zircon data of the Moeche Ophiolite (Cabo Ortegal Complex, NW Iberia). Int. J. Earth Sci. 2014, 103, 1385–1402. [Google Scholar] [CrossRef]
- Van Zuuren, A. Structural petrology of an area near Santiago de Compostela (NW Spain). Leidse Geol. Meded. 1970, 45, 1–71. [Google Scholar]
- Castiñeiras, P. Origen y Evolución Tectonotermal de las Unidades de o Pino y Cariño (Complejos Alóctonos de Galicia). Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2003. [Google Scholar]
- Martínez Catalán, J.R.; Díaz Garcia, F.; Arenas, R.; Abati, J.; Castiñeiras, P.; González Cuadra, P.; Gómez Barreiro, J.; Rubio Pascual, F.J. Thrust and detachment systems in the Ordenes Complex (northwestern Spain) implications for the Variscan-Appalachian geodynamics. In Variscan-Appalachian Dynamics: The Building of the Late Paleozoic Besement; Martinez Catalán, J.R., Hatcher, R.D., Jr., Arenas, R., Díaz Garcia, F., Eds.; Special Paper; Geological Society of America: Boulder, CO, USA, 2002; Volume 364, pp. 163–182. [Google Scholar]
- Marcos, A.; Marquínez, J.; Perez-Estaún, A.; Pulgar, J.; Bastida, F. Nuevas aportaciones al conocimiento de la evolución tectonometamórfica del complejo de Cabo Ortegal (NW de España). Cuad. Lab. Xeolóxico Laxe 1984, 7, 125–137. [Google Scholar]
- Castroviejo, R.; Armstrong, E.; Lago, A.; Martínez Simón, J.M.; Argüelles, A. Geología de las mineralizaciones de sulfuros masivos en los cloritoesquistos de Moeche (complejo de Cabo Ortegal, A Coruña). Bol. Geol. Min. 2004, 115, 3–34. [Google Scholar]
- Arenas, R.; Catalán, J.R.M. Prograde Development of Corona Textures in Metagabbros of the Sobrado Unit (Ordenes Complex, Northwestern Iberian Massif). Spec. Pap. Geol. Soc. Am. 2002, 364, 73–88. [Google Scholar]
- Gil Ibarguchi, J.I.; Arenas, R. Metamorphic Evolution of the Allochthonous Complexes from the Northwest of Iberian Peninsula. In Pre-Mesozoic Geology of Iberia; Dallmeyer, R.D., Martínez-García, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 237–246. [Google Scholar]
- Catalán, J.M.; Martín, R.A. Deformación extensional de las unidades alóctonas superiores de la parte oriental del Complejo de Ordenes (Galicia). Geogaceta 1992, 11, 108–111. [Google Scholar]
- Available online: https://atalayamining.com/es/operaciones/proyecto-touro/ (accessed on 13 November 2024).
- García de Madinabeitia, S.; Sánchez Lorda, M.E.; Gil Ibarguchi, J.I. Simultaneous determination of major to ultratrace elements in geological samples by fusion-dissolution and inductively coupled plasma mass spectrometry techniques. Anal. Chim. Acta 2008, 625, 117–130. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Anaytical Chemistry, 6th ed.; Pearson Education: Toronto, ON, Canada, 2004; p. 296. [Google Scholar]
- Pin, C.; Santos Zalduegui, J.F. Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. Anal. Chim. Acta 1997, 339, 79–89. [Google Scholar] [CrossRef]
- Fernandez, F.J.; Marcos, A. Mylonitic Foliation Developed by Heterogeneous Pure Shear Under High-Grade Conditions in Quartz Feldspathic Rocks (Chimparra gneiss Formation, Cabo Ortegal Complex, NW Spain). In Basement Tectonics 11 Europe and Other Regions; Springer: Berlin/Heidelberg, Germany, 1996; pp. 17–34. [Google Scholar]
- Hawthorne, C.; Oberti, R.; Harlow, G.; Maresch, W.; Martin, R.; Schumacher, J.; Welch, M. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Leake, B. Nomenclature of amphibole: Report of the Subcommittee on amphiboles of the International Commission on New Mineral and Mineral Names. Can. Mineral. 1997, 35, 219–247. [Google Scholar]
- Hey, M. A new review of the chlorites. Mineral. Mag. 1954, 30, 277–292. [Google Scholar] [CrossRef]
- Grapes, R.; Hoskin, P. Epidote group minerals in low-medium pressure metamorphic terranes. Rev. Mineral. Geochem. 2004, 56, 301–345. [Google Scholar] [CrossRef]
- Cathelineau, M.; Izquierdo, G. Temperature-composition relationships of autigenic micaceous minerals in the Los Azufres geothermal system. Contrib. Mineral. Petrol. 1988, 100, 418–428. [Google Scholar] [CrossRef]
- Boström, K. Origin and Fate of Ferromanganoan Active Ridge Sediments. In Pelagic Sediments: On Land and Under the Sea; Wiley: Hoboken, NJ, USA, 1975; p. 401. [Google Scholar] [CrossRef]
- Spry, P.G.; Peter, J.M.; Slack, J.F. Meta-Exhalites as Exploration Guides to Ore: Reviews in Economic Geology; Society of Economic Geologists: Lyttelton, CO, USA, 1998; Volume 11, pp. 163–201. [Google Scholar]
- Peter, J.M.; Goodfellow, W.D.; Doherty, W. Hydrothermal Sedimentary Rocks of the Heath Steele Belt, Bathurst Mining Camp, New Brunswick: Part 2. Bulk and Rare Earth Element Geochemistry and Implications for Origin. Econ. Geol. Monogr. 2003, 11, 391–415. [Google Scholar]
- Irvine, T.N.; Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Hastie, A.R.; Kerr, A.C.; Pearce, J.A.; Mitchell, S.F. Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th Co Discrimination Diagram. J. Petrol. 2007, 48, 2341–2357. [Google Scholar] [CrossRef]
- Wood, D.A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet Sci. Lett. 1980, 50, 11–30. [Google Scholar] [CrossRef]
- Pearce, J.A.; Cann, J.R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci. Lett. 1973, 19, 290–300. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Magmat. Ocean. Basins. Geol. Soc. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- DePaolo, D.J.; Wasserburg, G.J. Inferences about Magma Sources and Mantle Structure from Variations of 143Nd/144Nd. Geophys. Res. Lett. 1976, 3, 743–746. [Google Scholar] [CrossRef]
- DePaolo, J. Neodymium Isotope Geochemistry: An Introduction; Springler-Verlag: New York, NY, USA, 1988. [Google Scholar]
- Wasserburg, G.J.; Jacousen, S.B.; DePaolo, D.J.; McCulloch, M.T.; Wen, T. Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta 1981, 45, 2311–2323. [Google Scholar] [CrossRef]
- Dickin, A.P. Radiogenic Isotope Geology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Fuenlabrada, J.M.; Arenas, R.; Martínez, S.S.; Fernández, R.D.; Pieren, A.P.; Pereira, M.F.; Chichorro, M.; Silva, J.B. Geochemical and isotopic (Sm-Nd) provenance of Ediacaran-Cambrian metasedimentary series from the Iberian Massif. Paleoreconstruction of the North Gondwana margin. Earth Sci. Rev. 2019, 201, 103079. [Google Scholar] [CrossRef]
- Santos Zalduegui, J.F.; Scharer, U.; Gil Ibarguchi, J.I.; Girardeau, J. Origin and evolution of the Paleozoic Cabo Ortegal ultramafic- mafic complex (NW Spain): U-Pb, Rb-Sr and Pb-Pb isotope data. Chem. Geol. 1996, 129, 281–304. [Google Scholar] [CrossRef]
- Ordóñez Casado, B.; Gebauer, D.; Schafer, H.J.; Gil Ibarguchi, J.I.; Peucat, J.J. A single Devonian subduction event for the HP/HT metamorphism of the Cabo Ortegal complex within the Iberian Massif. Tectonophysics 2001, 332, 359–385. [Google Scholar] [CrossRef]
- Fernández-Suárez, J.; Corfu, F.; Arenas, R.; Marcos, A.; Martínez Catalán, J.R.; Díaz García, F.; Abati, J.; Fernández, F.J. U-Pb evidence for a polyorogenic evolution of the HPHT units of the NW Iberian Massif. Contrib. Miner. Petrol. 2002, 143, 236–253. [Google Scholar]
- Fernández-Suárez, J.; Arenas, R.; Abati, J.; Martínez Catalán, J.R.; Whitehouse, M.J.; Jeffries, T.E. U-Pb chronometry of polymeta- morphic high-pressure granulites: An example from the allochthonous terranes of the NW Iberian Variscan belt. Geol. Soc. Am. Mem. 2007, 200, 469–488. [Google Scholar]
- Nesbitt, B.E. Oxide-sulfide-silicate equilibria associated with metamorphosed ore deposits; Part II, Pelitic and felsic volcanic terrains. Econ. Geol. 1986, 81, 841–856. [Google Scholar] [CrossRef]
- Mungall, J.E. Kinetic Controls on the Partitioning of Trace Elements Between Silicate and Sulfide Liquids. J. Petrol. 2002, 43, 749–768. [Google Scholar] [CrossRef]
- Steenstra, E.S.; Trautner, V.T.; Berndt, J.; Klemme, S.; van Westrenen, W. Trace element partitioning between sulfide-, metal- and silicate melts at highly reduced conditions: Insights into the distribution of volatile elements during core formation in reduced bodies. Icarus 2020, 335, 113408. [Google Scholar] [CrossRef]
- Dallmeyer, R.D.; Martínez Catalán, J.R.; Arenas, R.; Gil Ibarguchi, J.I.; Gutiérrez-Alonso, G.; Farias, P.; Bastida, F.; Aller, J. Diachronous Variscan tectonothermal activity in the NW Iberian Massif: Evidence from 40Ar/39Ar dating of regional fabrics. Tectonophysics 1997, 277, 307–337. [Google Scholar] [CrossRef]
- Gómez Barreiro, J.; Wijbrans, J.R.; Castineiras, P.; Martínez Catalán, J.R.; Arenas, R.; Díaz García, F.; Abati, J. 40Ar/39Ar laser probe dating of mylonitic fabrics in a polyorogenic terrane of NW Iberia. J. Geol. Soc. 2006, 163, 61–73. [Google Scholar] [CrossRef]
GA Siderite | MP Siderite | MP Siderite | MP Siderite | MP Siderite | MP Siderite | MP Siderite | MP Siderite | MP Siderite | GA Siderite | MP Siderite | GA Siderite | MP Calcite | GA Calcite | GA Calcite | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MgO | 0.46 | 0.43 | 0.45 | 0.49 | 0.56 | 0.6 | 0.6 | 0.51 | 0.51 | 0.42 | 0.56 | 0.17 | 0.6 | 0.39 | 0.27 |
CaO | 6.23 | 5.3 | 5.91 | 5.78 | 5.49 | 5.78 | 5.79 | 5.63 | 5.63 | 5.92 | 3.2 | 4.94 | 59.78 | 60.98 | 60.43 |
MnO | 1.17 | 1.19 | 1.26 | 1.15 | 1.02 | 1.28 | 1.12 | 1.18 | 1.18 | 1.15 | 0.33 | 0.93 | 0.36 | 0.44 | 1.16 |
FeO | 52.44 | 53.48 | 52.97 | 53.13 | 53.59 | 52.99 | 53.41 | 53.66 | 53.66 | 53.81 | 57.17 | 55.79 | 0.73 | 0.47 | 0.39 |
Total | 60.43 | 60.56 | 60.67 | 60.71 | 60.77 | 61.08 | 61.09 | 61.18 | 61.18 | 61.34 | 61.46 | 62.08 | 62.45 | 63.13 | 64.04 |
Formation Period | Tectonic Setting | Process | Ore and Rocks | Structural Elements |
---|---|---|---|---|
First Step: Early Ordovician (±480 Ma) | Extensional back-arc basin setting (transtension) | Deposition of siliciclastic sediments and basalts | Formation of VMS deposits; host rocks are hydrothermally affected | Normal extensional faults |
Second Step: Early Devonian (410–390 Ma) | Burial of siliciclastic sediments, mafic rocks, and VMSs | Metamorphism of siliciclastic sediments, mafic rocks, and VMSs under amphibolite facies | Transformation of rocks into amphibolites and paragneisses | Foliation in all the rocks; development of S-type mylonites; folds |
Third Step: Late Devonian to Early Permian (375–295 Ma) | Exhumation of the sequence, emplacement via thrust on the top of the Órdenes Complex, and folding | Broad retrograde metamorphism | Formation of retrograde amphibolites and chlorite-rich schists | Formation of a roughly N–S-trending antiform (Arinteiro) during the last Variscan deformation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuñez, P.; Rubio, A.; Arias, D.; Fuertes-Blanco, J.; Cortés, F.; Díaz-Riopa, F.; Martin-Izard, A. Geochemical Characterization of and Exploration Guide for the World-Class Mafic–Siliciclastic-Hosted Touro VMS Cu Deposit, Northwestern Iberian Peninsula. Minerals 2024, 14, 1159. https://doi.org/10.3390/min14111159
Nuñez P, Rubio A, Arias D, Fuertes-Blanco J, Cortés F, Díaz-Riopa F, Martin-Izard A. Geochemical Characterization of and Exploration Guide for the World-Class Mafic–Siliciclastic-Hosted Touro VMS Cu Deposit, Northwestern Iberian Peninsula. Minerals. 2024; 14(11):1159. https://doi.org/10.3390/min14111159
Chicago/Turabian StyleNuñez, Pablo, Alvaro Rubio, Daniel Arias, Jorge Fuertes-Blanco, Fernando Cortés, Fernando Díaz-Riopa, and Agustin Martin-Izard. 2024. "Geochemical Characterization of and Exploration Guide for the World-Class Mafic–Siliciclastic-Hosted Touro VMS Cu Deposit, Northwestern Iberian Peninsula" Minerals 14, no. 11: 1159. https://doi.org/10.3390/min14111159
APA StyleNuñez, P., Rubio, A., Arias, D., Fuertes-Blanco, J., Cortés, F., Díaz-Riopa, F., & Martin-Izard, A. (2024). Geochemical Characterization of and Exploration Guide for the World-Class Mafic–Siliciclastic-Hosted Touro VMS Cu Deposit, Northwestern Iberian Peninsula. Minerals, 14(11), 1159. https://doi.org/10.3390/min14111159