The Fate of “Immobile” Ti in Hyaloclastites: An Evidence from Silica–Iron-Rich Sedimentary Rocks of the Urals Paleozoic Massive Sulfide Deposits
Abstract
:1. Introduction
2. Brief Geological Characteristic
3. Materials and Methods
4. Results
4.1. Structures and Textures of Silica–Iron-Rich Rocks
4.2. Mineral Composition of Hyaloclastites and Silica–Iron-Rich Rocks
4.3. Biogenic Textures of Ti Phases
4.4. EBSD-Based Structure of Anatase and Chlorite
4.5. Chemical Composition of Hyaloclastites and Silica–Iron-Rich Rocks
4.6. LA-ICP-MS Composition of Hyaloclasts and Hematite–Quartz (±Chlorite) Pseudomorphs
4.6.1. Hyaloclasts in Jasperites
4.6.2. Hyaloclasts in Gossanites
4.6.3. LA-ICP-MS Zonation of Anatase Globules
5. Discussion
5.1. Halmyrolytic–Diagenetic Alteration of Hyaloclasts
5.1.1. Pathways of Hyaloclast Alteration
5.1.2. Mobilization of Ti and Precipitation of Ti Minerals
5.2. Element Distribution during the Formation of Ti Phase
5.3. Microbial Effect on the Formation of Ti Phases
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nesbitt, H.W.; Wilson, R.E. Recent chemical weathering of basalts. Am. J. Sci. 1992, 292, 740–777. [Google Scholar] [CrossRef]
- Young, G.M.; Nesbitt, W.H. Processes controlling the distribution of Ti and Al in weathering profiles, silicaclastic sediments and sedimentary rocks. J. Sediment. Res. 1998, 68, 448–455. [Google Scholar] [CrossRef]
- Hill, I.G.; Worden, R.H.; Meighan, I.G. Yttrium: The immobility-mobility transition during basaltic weathering. Geology 2000, 28, 923–926. [Google Scholar] [CrossRef]
- Tilley, D.B.; Eggleton, T. Titanite low-temperature alteration and Ti mobility. Clays Clay Miner. 2005, 53, 100–107. [Google Scholar] [CrossRef]
- Morad, S.; Aldahan, A.A. Authigenesis of titanium minerals in two Proterozolc sedimentary rocks from southern and central Sweden. J. Sediment. Petrol. 1982, 52, 1295–1303. [Google Scholar]
- Morton, A.C.; Humphreys, B. The Petrology of the Middle Jurassic Sandstones from the Murchison Field. North Sea. J. Petrol. Geol. 1983, 5, 245–260. [Google Scholar] [CrossRef]
- Liu, Z.-R.R.; Zhou, M.-F.; Williams-Jones, A.E.; Wang, W.; Gao, J.-F. Diagenetic mobilization of Ti and formation of brookite/anatase in early Cambrian black shales, South China. Chem. Geol. 2019, 506, 79–96. [Google Scholar] [CrossRef]
- Chaikovsky, I.I.; Chaikovskaya, E.V.; Korotchenkova, O.; Chirkova, E.P.; Utkina, T.A. Authigenic Titanium and Zirconium Minerals at the Verkhnekamskoe Salt Deposit. Geochem. Int. 2019, 57, 184–196. [Google Scholar] [CrossRef]
- Sindern, S.; Havenith, V.; Gerdes, A.; Meyer, F.M.; Adelmann, D.; Hellmann, A. Dating of anatase-forming diagenetic reactions in Rotliegend sandstones of the North German Basin. Int. J. Earth Sci. 2019, 108, 1275–1292. [Google Scholar] [CrossRef]
- Novoselov, K.; Belogub, E.; Shilovskikh, V.; Artemyev, D.; Blinov, I.; Filippova, K. Origin of ironstones of the Udokan Cu deposit (Siberia, Russia): A key study using SEM and LA-ICP-MS. J. Geochem. Explor. 2023, 249, 107221. [Google Scholar] [CrossRef]
- Mader, D. Authigener rutil in Buntsandstem der Westeifel. Neues Jahrb. Mineral. 1980, 3, 97–108. [Google Scholar]
- Morad, S. SEM study of authigenic rutile, anatase and brookite in Proterozoic sandstones from Sweden. Sediment. Geol. 1986, 46, 77–89. [Google Scholar] [CrossRef]
- Valentine, P.C.; Commeau, J.A. Fine-grained rutile in the Gulf of Maine—Diagenetic origin, source rocks, and sedimentary environment of deposition. Econ. Geol. Bull. Soc. Econ. Geol. 1990, 85, 862–876. [Google Scholar] [CrossRef]
- Parnell, J. Titanium mobilization by hydrocarbon fluids related to sill intrusion in a sedimentary sequence, Scotland. Ore Geol. Rev. 2004, 24, 155–167. [Google Scholar] [CrossRef]
- Schulz, H.-M.; Wirth, R.; Schreiber, A. Nano-crystal formation of TiO2 polymorphs brookite and anatase due to organic–inorganic rock–fluid interactions. J. Sediment. Res. 2016, 86, 59–72. [Google Scholar] [CrossRef]
- Duhing, N.C.; Stolz, J.; Davidson, G.J.; Large, R.R. Cambrian microbial and silica gel textures in silica iron exhalites from the Mount Windsor volcanic belt, Australia: Their petrography, chemistry, and origin. Econ. Geol. 1992, 87, 764–784. [Google Scholar] [CrossRef]
- Iizasa, K.; Kawasaki, K.; Maeda, K.; Matsumoto, T.; Saito, N.; Hirai, K. Hydrothermal sulfide-bearing Fe–Si oxyhydroxide deposits from the Coriolis Troughs, Vanuatu backarc, southwestern Pacific. Mar. Geol. 1998, 145, 1–21. [Google Scholar] [CrossRef]
- Davidson, G.J.; Stolz, A.J.; Eggins, S.M. Geochemical anatomy of silica–iron exhalites: Evidence for hydrothermal oxyanion cycling in response to vent fluid redox and thermal evolution (Mt. Windsor Subprovince, Australia). Econ. Geol. 2001, 96, 1201–1226. [Google Scholar] [CrossRef]
- Hrischeva, E.; Scott, S.D. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endevaur segment, Juan de Fuca Ridge. Geochim. Cosmochim. Acta 2007, 71, 3476–3497. [Google Scholar] [CrossRef]
- Slack, J.F.; Grenne, T.; Bekker, A. Seafloor-hydrothermal Si-Fe-Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawater. Geosphere 2009, 5, 302–314. [Google Scholar] [CrossRef]
- Constantinou, G.; Govett, G.J.S. Geology, geochemistry, and genesis of Cyprus sulfide deposits. Econ. Geol. 1973, 68, 843–858. [Google Scholar] [CrossRef]
- Kalogeropoulos, S.I.; Scott, S.D. Mineralogy and geochemistry of tuffaceous exhalites (tetsusekiei) of the Fukazawa mine, Hokuroku district, Japan. Econ. Geol. Monogr. 1983, 5, 412–432. [Google Scholar]
- Grenne, T.; Slack, J.F. Bedded jaspers of the Ordovician Lökken ophiolite, Norway: Seafloor deposition and diagenetic maturation of hydrothermal plume-derived silica-iron gels. Miner. Dep. 2003, 38, 625–639. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Ayupova, N.R.; Herrington, R.J.; Danyushevskiy, L.V.; Large, R.R. Ferruginous and manganiferous haloes around massive sulphide deposits of the Urals. Ore Geol. Rev. 2012, 47, 5–41. [Google Scholar] [CrossRef]
- Hollis, S.P.; Cooper, M.R.; Herrington, R.J.; Roberts, S.; Earls, G.; Verbeeten, A.; Piercey, S.J.; Archibald, S.M. Distribution, mineralogy and geochemistry of silica–iron exhalites and related rocks from the Tyrone Igneous Complex: Implications for VMS mineralization in Northern Ireland. J. Geochem. Explor. 2015, 159, 148–168. [Google Scholar] [CrossRef]
- Alt, J.C. Hydrothermal oxide and nontronite deposits on seamounts in the Eastern Pacific. Mar. Geol. 1988, 81, 227–239. [Google Scholar] [CrossRef]
- Herzig, P.M.; Hannington, M.D.; Scott, S.D.; Maliotis, G.; Rona, P.A.; Thompson, G. Gold-rich sea-floor gossans in the Troodos ophiolite and on the Mid-Atlantic ridge. Econ. Geol. 1991, 86, 1747–1755. [Google Scholar] [CrossRef]
- Hekinian, R.; Hoffert, M.; Larque, P.; Chemine, J.L.; Stoffers, P.; Bideau, D. Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific Rise axial and off-axial regions. Econ. Geol. 1993, 88, 2099–2121. [Google Scholar] [CrossRef]
- Petersen, S.; Herzig, P.M.; Hannington, M.D.; Belanger, P. Geochemical variation in metalliferous sediments from the TAG hydrothermal mound, Mid-Atlantic Ridge, 26° N. In Proceeding of the Fifth Biennial SGA Meeting and Tenth Quadrennial IIAGOD Symposium: Mineral Deposits, Processes to Processing, London, UK, 22–25 August 1999; Stanley, C., Ed.; pp. 563–566. [Google Scholar]
- Halbach, M.; Halbach, P.; Lueders, V. Sulfide-impregnated and pure silica precipitates of hydrothermal origin from the central Indian Ocean. Chem. Geol. 2002, 182, 357–375. [Google Scholar] [CrossRef]
- Hein, J.R.; Clague, D.A.; Koski, R.A.; Embley, R.W.; Duhnam, R.E. Metalliferous sediment and a silica-hematite deposit within the Blanco Fracture Zone, Northeast Pacific. Mar. Geores. Geotechnol. 2008, 26, 317–339. [Google Scholar] [CrossRef]
- Fallon, E.K.; Petersen, S.; Brooker, R.A.; Scott, T.B. Oxidative dissolution of hydrothermal mixed-sulphide ore: An assessment of current knowledge in relation to seafloor massive sulphide mining. Ore Geol. Rev. 2017, 86, 309–337. [Google Scholar] [CrossRef]
- Strakhov, I.M. Problems of Geochemistry of Modern Oceanic Lithogenesis; Institute of Geology of the Academy of Sciences of the USSR: Moscow, Russia, 1976; 229p. (In Russia) [Google Scholar]
- Marchig, V.; Gundlach, H.; Möller, P.; Schley, F. Some geochemical indicators for discrimination between diagenetic and hydrothermal metalliferous sediments. Mar. Geol. 1982, 50, 241–256. [Google Scholar] [CrossRef]
- Barrett, T.J.; Catalani, C.F.; Hoy, L.; Rioprl, J.; Lafleur, P.-J. Massive sulfide deposits of the Noranda area, Quebec. IV. The Mobrun mine. Can. J. Earth Sci. 1992, 29, 1349–1374. [Google Scholar] [CrossRef]
- He, C.; Ji, L.; Wu, Y.; Su, A.; Zhang, M. Characteristics of hydrothermal sedimentation process in the Yanchang Formation, south Ordos Basin, China: Evidence from element geochemistry. Sediment. Geol. 2016, 345, 33–41. [Google Scholar] [CrossRef]
- Liaghat, S.; MacLean, W.H. The Key tuffite, Matagami mining district: Origin of the tuff component and mass changes. Explor. Min. Geol. 1992, 1, 197–207. [Google Scholar]
- Genna, D.; Gaboury, D.; Roy, G. Evolution of a volcanogenic hydrothermal system recorded by the behavior of LREE and Eu: Case study of the Key Tuffite at Bracemac-McLeod deposits, Matagami, Canada. Ore Geol. Rev. 2014, 63, 160–177. [Google Scholar] [CrossRef]
- Ayupova, N.R.; Maslennikov, V.V.; Tessalina, S.G.; Shilovsky, O.P.; Sadykov, S.A.; Hollis, S.P.; Danyushevsky, L.V.; Safina, N.P.; Statsenko, E.O. Tube fossils from gossanites of the Urals VHMS deposits, Russia: Authigenic mineral assemblages and trace element distributions. Ore Geol. Rev. 2017, 85, 107–130. [Google Scholar] [CrossRef]
- Ayupova, N.R.; Maslennikov, V.V.; Safina, N.P.; Melekestseva, I.Y.; Blinov, I.A.; Tseluyko, A.S. Diagenetic behavior of rare-earth elements: An example of layered sulfide ores of the Novy Shemur volcanic-hosted massive sulfide deposit, North Urals, Russia. Int. J. Earth Sci. 2023, 112, 1747–1770. [Google Scholar] [CrossRef]
- Ayupova, N.R.; Maslennikov, V.V.; Shilovskikh, V.V. Authigenic Ti mineralization as an indicator of halmyrolysis of carbonate–sulfide–hyaloclastite sediments in Urals massive sulfide deposits. Lithosphere 2022, 22, 847–858. [Google Scholar] [CrossRef]
- Prokin, V.A.; Buslaev, F.P. Massive copper–zinc sulphide deposits in the Urals. Ore Geol. Rev. 1999, 14, 1–69. [Google Scholar] [CrossRef]
- Herrington, R.J.; Zaykov, V.V.; Maslennikov, V.V.; Brown, D.; Puchkov, V.N. Mineral deposits of the Urals and links to geodynamic evolution. Econ. Geol. 2005, 1069–1095. [Google Scholar] [CrossRef]
- Puchkov, V.N. Structural stages and evolution of the Urals. Miner. Petrol. 2013, 107, 3–37. [Google Scholar] [CrossRef]
- Herrington, R.J.; Maslennikov, V.V.; Spiro, B.; Zaykov, V.V.; Little, C.T.S. Ancient vent chimney structures in the Silurian massive sulfides of the Urals. In Modern Ocean Floor Processes and the Geological Record; Mills, R.A., Harrison, K., Eds.; Geological Society, London, Special Publications: London, UK, 1998; Volume 148, pp. 241–257. [Google Scholar]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V. Study of trace element zonation in vent chimneys from the Silurian Yaman–Kasy VHMS (the Southern Urals, Russia) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS). Econ. Geol. 2009, 104, 1111–1141. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V.; Herrington, R.J.; Ayupova, N.R.; Zaykov, V.V.; Lein, A.Y.; Tseluyko, A.S.; Melekestseva, I.Y.; et al. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geol. Rev. 2017, 85, 64–106. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Ayupova, N.R.; Maslennikova, S.P.; Lein, A.Y.; Tseluyko, A.S.; Danyushevsky, L.V.; Large, R.R.; Simonov, V.A. Criteria for the detection of hydrothermal ecosystem fauna in ores of massive sulfide deposits in the Urals. Lithol. Miner. Res. 2017, 52, 173–191. [Google Scholar] [CrossRef]
- Georgieva, M.N.; Little, C.T.S.; Maslennikov, V.V.; Glover, A.G.; Ayupova, N.R.; Herrington, R.J. The history of life at hydrothermal vents. Earth-Sci. Rev. 2021, 217, 103602. [Google Scholar] [CrossRef]
- Zaykov, V.V.; Maslennikov, V.V.; Zaykova, E.V.; Herrington, R.E. Ore Formation and Ore Facies Analysis of Massive Sulfide Deposits of the Urals Paleoocean; Institute of Mineralogy UB RAS: Miass, Russia, 2001; 315p. (In Russia) [Google Scholar]
- Maslennikov, V.V.; Ayupova, N.R.; Safina, N.P.; Tseluyko, A.S.; Melekestseva, I.Y.; Large, R.R.; Herrington, R.J.; Kotlyarov, V.A.; Blinov, I.A.; Maslennikova, S.P.; et al. Mineralogical features of ore diagenites in the Urals massive sulfide deposits, Russia. Minerals 2019, 9, 150. [Google Scholar] [CrossRef]
- Ayupova, N.R.; Maslennikov, V.V.; Kotlyarov, V.A.; Maslennikova, S.P.; Danyushevsky, L.V.; Large, R. Se and In minerals of in the submarine oxidation zone of the Molodezhnoe copper–zinc massive sulfide deposit, Southern Urals. Dokl. Earth Sci. 2017, 473, 318–322. [Google Scholar] [CrossRef]
- Maslov, V.A.; Artyushkova, O.V. Stratigraphy and Correlation of Devonian Sequences of Magnitogorsk Megazone, Southern Urals; Institute Geology, Russian Academy of Science: Ufa, Russia, 2010; 210p. (In Russia) [Google Scholar]
- Danyushevsky, L.V.; Robinson, R.; Gilbert, S.; Norman, M.; Large, R.; McGoldrick, P.; Shelley, J.M.G. Routine quantitative multi-element analysis of sulfide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochim. Explor. Environm. Anal. 2011, 11, 51–60. [Google Scholar] [CrossRef]
- Dekov, V.; Bindi, L.; Burgaud, G.; Petersen, S.; Asael, D.; Rédou, V.; Fouquet, Y.; Pracejus, B. Inorganic and biogenic As-sulfide precipitation at seafloor hydrothermal fields. Mar. Geol. 2013, 342, 28–38. [Google Scholar] [CrossRef]
- Fisher, R.V.; Schmincke, H.-U. Alteration of volcanic glass. In Pyroclastic Rocks; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1984; pp. 312–345. [Google Scholar]
- Marsaglia, K.M.; Tazaki, K. Diagenetic trends in Leg 126 sandstones. In Proceedings of the Ocean Drilling Program, Scientific Results; Taylor, B., Fujioka, K., Janecek, T.R., Langmuir, C.P., Eds.; Ocean Drilling Program: College Station, TX, USA, 1992; Volume 126, pp. 125–138. [Google Scholar] [CrossRef]
- Daux, V.; Crovisier, J.L.; Hemond, C.; Petit, J.C. Geochemical evolution of basaltic rocks subjected to weathering: Fate of the major elements, rare earth elements, and thorium. Geochim. Cosmochim. Acta 1994, 58, 4941–4954. [Google Scholar] [CrossRef]
- Zhou, W.; Peacor, D.R.; Alt, J.C.; Van der Voo, R.; Kao, L.S. TEM study of the alteration of interstitial glass in MORB by inorganic processes. Chem. Geol. 2001, 174, 365–376. [Google Scholar] [CrossRef]
- Staudigel, H.; Hart, S.R. Alteration of basaltic glass: Mechanisms and significance for the oceanic crust-sea water budget. Geochim. Cosmochim. Acta 1983, 47, 337–350. [Google Scholar] [CrossRef]
- Hay, R.L.; Guldman, S.G.; Matthews, J.C.; Lander, R.H.; Duffin, M.E.; Kyser, T.K. Clay mineral diagenesis in core KM-3 of Searles Lake, California. Clays Clay Miner. 1991, 39, 84–96. [Google Scholar] [CrossRef]
- Beaufort, D.; Rigault, C.; Billon, S.; Bil, V. Chlorite and chloritization processes through mixed-layer mineral series in low temperature geological systems—A review. Clay Miner. 2015, 50, 497–523. [Google Scholar] [CrossRef]
- Hajash, A.; Chandler, G.W. An Experimental investigation of high-temperature interactions between seawater and rhyolite, andesite, basalt and peridotite. Miner. Petrol. 1981, 78, 240–254. [Google Scholar] [CrossRef]
- Hanaor, D.A.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Knauss, K.G.; Dibley, M.J.; Bourcier, W.L.; Shaw, H.F. Ti(IV) hydrolysis constants derived from rutile solubility measurements made from 100 to 300 °C. Appl. Geochem. 2001, 16, 1115–1128. [Google Scholar] [CrossRef]
- Banfield, J.F.; Jones, B.F.; Veblen, D.R. An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon: I. Weathering reactions in volcanics. Geochim. Cosmochim. Acta 1991, 55, 2781–2793. [Google Scholar] [CrossRef]
- Fontaine, F.; Christidis, G.E.; Yans, J.; Hollanders, S.; Hoffman, A.; Fagel, A. Characterization and origin of two Fe-rich bentonites from Westerwald (Germany). Appl. Clay Sci. 2020, 187, 105444. [Google Scholar] [CrossRef]
- Kossovskaya, A.G.; Petrova, V.V.; Shutov, V.D. The mineral associations of palagonitization of oceanic basalts and problems of extraction of ore components. Lithol. Miner. Res. 1982, 3, 10–31. (In Russia) [Google Scholar]
- Yoneyama, H.; Haga, S.; Yamanaka, S. Photocatalytic activities of microcrystalline TiO2 incorporated in sheet silicates of clay. J. Phys. Chem. 1989, 93, 4833–4837. [Google Scholar] [CrossRef]
- Drief, A.; Schiffman, P. Very low temperature alteration of sideromelane in hyaloclastites and hyalotuffs from Kilauea and Mauna Loa volcanoes: Implications for the mechanism of palagonite formation. Clays Clay Miner. 2004, 52, 623–635. [Google Scholar] [CrossRef]
- Giorgetti, G.; Monecke, T.; Kleeberg, R.; Hannington, M.D. Low-Temperature Hydrothermal Alteration of Silicic Glass at the PACMANUS Hydrothermal Vent Field, Manus Basin: An XRD, SEM and AEM-TEM study. Clays Clay Miner. 2006, 54, 240–251. [Google Scholar] [CrossRef]
- Dekov, V.; Scholten, J.; Garbe-Schonberg, C.-D.; Botz, R.; Cuadros, J.; Schmidt, M.; Stoffers, P. Hydrothermal sediment alteration at a seafloor vent field: Grimsey Graben, Tjornes Fracture Zone, north of Iceland. J. Geophys. Res. 2008, 113, B11101. [Google Scholar] [CrossRef]
- Cornu, S.; Lucas, Y.; Lebon, E.; Ambrosi, J.P.; Luizão, F.; Rouiller, J.; Bonnay, M.; Neal, C. Evidence of titanium mobility in soil profiles, Manaus, Central Amazonia. Geoderma 1999, 91, 281–285. [Google Scholar] [CrossRef]
- Zhang, H.; Banfield, J.F. Structural characteristics and mechanical thermodynamic properties of nanocrystalline TiO2. Chem. Rev. 2014, 114, 9613–9644. [Google Scholar] [CrossRef]
- McHenry, L.J. Element mobility during zeolitic and argillic alteration of volcanic ash in a closed-system lacustrine environment: Case study Olduvai Gorge, Tanzania. Chem. Geol. 2009, 265, 540–552. [Google Scholar] [CrossRef]
- Nabivanets, B.I.; Omelchenko, J.A. Titanium carbonate complexes in solution. J. Inorg. Chem. 1986, 31, 356–359. (In Russia) [Google Scholar]
- Agapova, G.F.; Modnikov, E.M.; Shmariovich, E.M. Experimental study of titanium behavior in thermal sulfide-carbonate solutions. Geol. Rudn. Mestorozhd. 1989, 2, 73–79. (In Russia) [Google Scholar]
- Ranade, M.R.; Navrotsky, A.; Zhang, H.Z.; Banfield, J.F.; Elder, S.H.; Zaban, A.; Borse, P.H.; Kulkarni, S.K.; Doran, G.S.; Whitfield, H.J. Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. USA 2002, 99 (Suppl. 2), 6476–6481. [Google Scholar] [CrossRef] [PubMed]
- Huberty, J.; Xu, H. Kinetics study on phase transformation from titania polymorph brookite to rutile. J. Solid State Chem. 2008, 181, 50–514. [Google Scholar] [CrossRef]
- Smith, S.J.; Stevens, R.; Liu, S.; Li, G.; Navrotsky, A.; Boerio-Goates, J.; Woodfield, B.F. Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability. Am. Mineral. 2009, 94, 236–243. [Google Scholar] [CrossRef]
- Gifkins, C.C.; Allen, R.L. Textural and chemical characteristics of diagenetic and hydrothermal alteration in glassy volcanic rocks: Examples from the Mount Read Volcanics, Tasmania. Econ. Geol. 2001, 96, 973–1002. [Google Scholar] [CrossRef]
- Izawa, M.R.M.; Banerjee, N.R.; Flemming, J.W.; Hetherington, R.L.; Muehlenbachs, C.J.; Schultz, K.; Das, D.; Hanan, B.B. Titanite mineralization of microbial bioalteration textures in Jurassic Volcanic Glass, Coast Range Ophiolite, California. Front. Earth Sci. 2019, 7, 315. [Google Scholar] [CrossRef]
- Van Panhuys-Sigler, M.; Trewin, N.H. Authigenic sphene cement in Permian sandstones from Arran. Scott. J. Geol. 1990, 26, 39–144. [Google Scholar] [CrossRef]
- Liou, J.G.; Maruyama, S.; Cho, M. Very low-grade metamorphism of volcanic and volcaniclastic rocks—Mineral assemblages and mineral facies. In Low Temperature Metamorphism; Frey, M., Ed.; Blackie: Glasgow, UK, 1987; pp. 59–113. [Google Scholar]
- Stroncik, N.A.; Schmincke, H.-U. Evolution of palagonite: Crystallization, chemical changes, and element budget. Geochem. Geophys. Geosyst. 2001, 2, 2000GC000102. [Google Scholar] [CrossRef]
- Walton, A.W.; Schiffman, P.; Macpherson, G.L. Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core: 2. Mass balance of the conversion of sideromelane to palagonite and chabazite. Geochem. Geophys. Geosyst. 2005, 6, Q09G19. [Google Scholar] [CrossRef]
- Aréna, H.; Godon, N.; Rébiscoul, D.; Frugier, P.; Podor, R.; Garcès, E.; Cabie, M.; Mestre, J.-P. Impact of iron and magnesium on glass alteration: Characterization of the secondary phases and determination of their solubility constants. Appl. Geochem. 2017, 82, 119–133. [Google Scholar] [CrossRef]
- Petit, J.C.; Della Mea, G.; Dran, J.C.; Magonthier, M.C.; Mando, P.A.; Paccagnella, A. Hydrated layer formation during dissolution of complex silicate glasses and minerals. Geochim. Cosmochim. Acta 1990, 54, 1941–1955. [Google Scholar] [CrossRef]
- Emerson, S.R.; Huested, S.S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar. Chem. 1991, 34, 177–196. [Google Scholar] [CrossRef]
- Mills, R.A.; Thomson, J.; Elderfield, H.; Hinton, R.W.; Hyslop, E. Uranium enrichment in metalliferous sediments from the Mid-Atlantic Ridge. Earth Planet. Sci. Let. 1994, 124, 35–47. [Google Scholar] [CrossRef]
- Li, H.; Zhao, G.L.; Chen, Z.J.; Han, R.; Song, B. Low temperature synthesis of visible light-driven vanadium doped titania photocatalyst. J. Colloid Interface Sci. 2010, 344, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Algeo, T.J.; Maynard, J.B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Skrabal, S.A.; Terry, C.M. Distributions of dissolved titanium in pore waters of estuarine and coastal marine sediments. Mar. Chem. 2002, 77, 109–122. [Google Scholar] [CrossRef]
- Konhauser, K. Introduction to Geomicrobiology; Blackwell Publishing: Maldon, MA, USA; Oxford, UK; Carlton, Australia, 2006; 425p. [Google Scholar]
- Banerjee, N.R.; Furnes, H.; Muehlenbachs, K.; Staudigel, H.; de Wit, M. Preservation of ~3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa. Earth Planet. Sci. Let. 2006, 241, 707–722. [Google Scholar] [CrossRef]
TiO2 | Fe2O3 | FeO | Al2O3 | SiO2 | MgO | CaO | LOI * | |
---|---|---|---|---|---|---|---|---|
Chloritized hyaloclastites (n = 11) | ||||||||
av | 0.33 | 11.52 | 13.51 | 16.59 | 28.25 | 12.25 | 2.39 | 12.96 |
min | 0.16 | 6.34 | 5.56 | 13.43 | 22.52 | 3.93 | 0.38 | 7.14 |
max | 0.55 | 16.95 | 26.18 | 19.83 | 35.51 | 19.25 | 8.69 | 16.25 |
Silica–iron-rich rocks with relic of hyaloclasts (n = 7) | ||||||||
av | 0.46 | 12.71 | 17.22 | 13.56 | 38.07 | 4.83 | 2.19 | 7.38 |
min | 0.23 | 9.62 | 16.38 | 11.72 | 31.90 | 4.50 | 1.44 | 5.48 |
max | 0.71 | 15.49 | 17.96 | 15.51 | 41.17 | 5.30 | 3.35 | 10.86 |
Silica–iron-rich rocks after hyaloclastites (jasperites) (n = 20) | ||||||||
av | <0.05 | 17.10 | 3.72 | 0.84 | 74.31 | 0.36 | 2.38 | 2.84 |
min | <0.05 | 10.15 | 0.02 | 0.10 | 60.92 | 0.04 | 0.20 | 0.10 |
max | <0.05 | 29.61 | 3.93 | 3.51 | 86.87 | 0.00 | 9.71 | 8.58 |
Oxidized sulfide layers with significant hyaloclasts and sulfides (gossanites) (n = 20) | ||||||||
av | 0.25 | 38.70 | 8.09 | 7.43 | 29.85 | 2.87 | 2.34 | 6.13 |
min | 0.11 | 20.17 | 1.07 | 3.11 | 8.19 | 0.32 | 0.20 | 3.49 |
max | 0.45 | 64.21 | 15.80 | 12.22 | 53.37 | 4.57 | 6.93 | 20.24 |
Oxidized sulfide ore with minor hyaloclastic material (gossanites) (n = 15) | ||||||||
av | <0.05 | 46.97 | 2.18 | 1.78 | 37.50 | 1.11 | 2.96 | 4.02 |
min | <0.05 | 31.12 | 0.02 | 0.05 | 4.36 | 0.43 | 0.36 | 0.80 |
max | <0.05 | 88.09 | 3.59 | 3.52 | 57.76 | 2.83 | 7.75 | 7.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayupova, N.R.; Maslennikov, V.V.; Melekestseva, I.Y.; Artemyev, D.A.; Belogub, E.V. The Fate of “Immobile” Ti in Hyaloclastites: An Evidence from Silica–Iron-Rich Sedimentary Rocks of the Urals Paleozoic Massive Sulfide Deposits. Minerals 2024, 14, 939. https://doi.org/10.3390/min14090939
Ayupova NR, Maslennikov VV, Melekestseva IY, Artemyev DA, Belogub EV. The Fate of “Immobile” Ti in Hyaloclastites: An Evidence from Silica–Iron-Rich Sedimentary Rocks of the Urals Paleozoic Massive Sulfide Deposits. Minerals. 2024; 14(9):939. https://doi.org/10.3390/min14090939
Chicago/Turabian StyleAyupova, Nuriya R., Valery V. Maslennikov, Irina Yu. Melekestseva, Dmitry A. Artemyev, and Elena V. Belogub. 2024. "The Fate of “Immobile” Ti in Hyaloclastites: An Evidence from Silica–Iron-Rich Sedimentary Rocks of the Urals Paleozoic Massive Sulfide Deposits" Minerals 14, no. 9: 939. https://doi.org/10.3390/min14090939
APA StyleAyupova, N. R., Maslennikov, V. V., Melekestseva, I. Y., Artemyev, D. A., & Belogub, E. V. (2024). The Fate of “Immobile” Ti in Hyaloclastites: An Evidence from Silica–Iron-Rich Sedimentary Rocks of the Urals Paleozoic Massive Sulfide Deposits. Minerals, 14(9), 939. https://doi.org/10.3390/min14090939