Zircon U-Pb Ages of the Granitoids in Shanxi and Its Significance for Tectonic Evolution of North China Craton in Mesozoic
Abstract
:1. Introduction
2. Geological Setting and Petrography
3. Analytical Methods
4. Results
4.1. Zircon U-Pb Ages
4.2. Whole-Rock Compositions of Major and Trace Elements
4.3. Nd-Sr Isotopes
5. Discussion
5.1. Petrogenetic Constraints on the Genesis of the Yihe Complex
5.2. Petrogenetic Constraints on the Genesis of the Zhujiagou Complex
5.3. Geodynamic Implications
5.3.1. Late Triassic YH Complex
5.3.2. Late Jurassic ZJG Complex
6. Conclusions
- (1)
- There were two episodes of magmatism in the Huai’an terrane, namely, the Middle Triassic and Late Jurassic, indicated by U-Pb ages of 226.4 ± 1.1 Ma for the Yihe granite and 156.3 ± 2.9 Ma for the Zhujiagou granodiorite.
- (2)
- The trace element and Sr-Nd isotopic analysis results reveal that the Yihe complex originated from the partial melting of the lower crust and the enriched lithospheric mantle, while the ZJG complex was produced from the thickened lower crust.
- (3)
- The YH and ZJG complexes were generated under two different geodynamic settings: the YH complex developed in a post-collisional extensional regime associated with the Paleo-Asian oceanic plate beneath the NCC, while the Late Jurassic ZJG complex was produced under a compression regime associated with the subduction of the Paleo-Pacific Ocean.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, D.Y.; Wilde, S.A.; Wan, Y.S.; Wu, J.A.; Zhou, H.Y.; Dong, C.Y.; Yin, X.Y. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. Am. J. Sci. 2008, 308, 200–231. [Google Scholar] [CrossRef]
- Wilde, S.A. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction—A review of the evidence. Tectonophysics 2015, 662, 345–362. [Google Scholar] [CrossRef]
- Safonova, I.; Biske, G.; Romer, R.L.; Seltmann, R.; Simonov, V.; Maruyama, S. Middle Paleozoic mafic magmatism and ocean plate stratigraphy of the South Tianshan, Kyrgyzstan. Gondwana Res. 2016, 30, 236–256. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, G.C.; Han, Y.G.; Eizenhöfer, P.R.; Zhu, Y.L.; Hou, W.Z.; Zhang, X.R. Timing of the final closure of the Paleo-Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites. Lithos 2017, 274–275, 19–30. [Google Scholar] [CrossRef]
- Ma, X.H.; Zhu, W.P.; Zhou, Z.H.; Qiao, S.L. Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin-Heilongjiang Belt, NE China. J. Asian Earth Sci. 2017, 144, 261–286. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.L.; Xiao, W.J.; Zheng, J.P.; Wang, C.; Jiang, H.; Brouwer, F.M. Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic granitoids along the Solonker suture zone in Inner Mongolia, China: Constraints on bidirectional subduction and closure timing of the Paleo-Asian Ocean. Gondwana Res. 2024, 126, 1–21. [Google Scholar] [CrossRef]
- Zonenshaĭn, L.P.; Kuzmin, M.I.; Natapov, L.M. Geology of the USSR: A plate-tectonic synthesis. Pure Appl. Geophys. 1990, 140, 120. [Google Scholar]
- Eizenhöfer, P.R.; Zhao, G.C.; Zhang, J.; Sun, M. Final closure of the Paleo-Asian Ocean along the Solonker Suture Zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics 2014, 33, 441–463. [Google Scholar] [CrossRef]
- Guo, F.; Li, H.X.; Fan, W.M.; Li, J.Y.; Zhao, L.; Huang, M.W.; Xu, W.L. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China: Petrologic and geochemical evidence from the Tumen mafic intrusive complex. Lithos 2015, 224–225, 46–60. [Google Scholar] [CrossRef]
- Li, S.Z.; Suo, Y.H.; Li, X.Y.; Zhou, J.; Santosh, M.; Wang, P.C.; Wang, G.Z.; Guo, L.L.; Yu, S.Y.; Lan, H.Y.; et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate. Earth Sci. Rev. 2019, 192, 91–137. [Google Scholar] [CrossRef]
- Teng, G.; Liu, S.W.; Wang, M.J.; Bao, H. Petrogenesis and tectonic implications of the Mesozoic granitoid intrusions in the eastern Liaoning Peninsula, NE China. J. Asian Earth Sci. 2020, 195, 104356. [Google Scholar] [CrossRef]
- Zhang, T.; Qiu, H.N.; Wu, Y.; Zhang, D.H. Petrogenesis of Middle Jurassic mafic dikes and granites in the eastern Hebei district, North China Craton, China: Implications for westward subduction of the Paleo-Pacific plate. J. Asian Earth Sci. 2024, 272, 106248. [Google Scholar] [CrossRef]
- Li, D.P.; Jin, Y.; Hou, K.J.; Chen, Y.L.; Lu, Z. Late Paleozoic final closure of the Paleo-Asian Ocean in the eastern part of the Xing-Meng Orogenic Belt: Constraints from Carboniferous-Permian (meta-) sedimentary strata and (meta-) igneous rocks. Tectonophysics 2015, 665, 251–262. [Google Scholar] [CrossRef]
- Zhai, M.G.; Zhu, R.X.; Liu, J.M.; Meng, Q.R.; Hou, Q.L.; Hu, S.B.; Liu, W.; Li, Z.; Zhang, H.F.; Zhang, H.F. Time range of Mesozoic tectonic regime inversion in eastern North China Block. Sci. China Ser. D 2003, 33, 913–920. [Google Scholar] [CrossRef]
- Davis, G.A.; Zheng, Y.D.; Wang, C.; Darby, B.J.; Zhang, C.H.; Gehrels, G. Mesozoic tectonic evolution of the Yanshan fold and thrust belt with emphasis on Hebei and Liaoning Provinces, northern China. Beijing Geol. 2002, 10, 171–197, (In Chinese with English Abstract). [Google Scholar]
- Cai, J.H.; Yan, G.H.; Mu, B.L.; Ren, K.X.; Song, B.; Li, F.T. Zircon U-Pb age, Sr-Nd-Pb isotopic compositions and trace element of Fangshan complex in Beijing and their petrogenesis significance. Acta Petrol. Sin. 2005, 21, 776–788. [Google Scholar]
- Fan, W.M.; Zhang, H.F.; Baker, J.; Javis, K.E.; Mason, P.R.D.; Menzies, M.A. On and off the North China Craton: Where is the Archean keel. J. Petrol. 2000, 41, 933–950. [Google Scholar] [CrossRef]
- Gao, S.; Rudnik, R.L.; Yuan, H.L.; Liu, X.M.; Liu, Y.S.; Xu, W.L.; Ling, W.L.; Ayers, J.; Wang, X.C.; Wang, Q.H. Recycling lower continental crust in the North China Craton. Nature 2004, 432, 892–897. [Google Scholar] [CrossRef]
- Shao, J.A.; Mu, B.L.; Zhang, Y.Q. Deep geological process and its shallow response during Mesozoic transfer of tectonic frameworks in eastern North China. Geol. Rev. 2000, 46, 32–39, (In Chinese with English Abstract). [Google Scholar]
- Zhang, S.H.; Zhao, Y.; Davis, G.A.; Ye, H.; Wu, F. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton: Implications for lithospheric thinning and decratonization. Earth Sci. Rev. 2014, 131, 49–87. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhao, Y. Cogenetic origin of mafic microgranular enclaves in calc-alkaline granitoids: The Permian plutons in the northern North China Block. Geosphere 2017, 13, 482–517. [Google Scholar] [CrossRef]
- Ying, J.F.; Zhang, H.F.; Tang, Y.J. Crust-mantle interaction in the central North China Craton during the Mesozoic: Evidence from zircon U-Pb chronology, Hf isotope and geochemistry of syenitic-monzonitic intrusions from Shanxi province. Lithos 2011, 125, 449–462. [Google Scholar] [CrossRef]
- Ma, X.Y. Atlas of Active Fault of China; Seismologic Press: Beijing, China, 1989; p. 120. [Google Scholar]
- Ying, J.F.; Zhang, H.F.; Sun, M.; Tang, Y.J.; Zhou, X.H.; Liu, X.M. Petrology and geochemistry of Zijinshan alkaline intrusive complex in Shanxi Province, western North China Craton: Implication for magma mixing of different sources in an extensional regime. Lithos 2007, 98, 45–66. [Google Scholar] [CrossRef]
- Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S.Z. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Su, Y.P.; Zheng, J.P.; Griffin, W.L.; Zhao, J.H.; Li, Y.L.; Wei, Y.; Huang, Y. Zircon U-Pb ages and Hf isotope of gneissic rocks from the Huai’an Complex: Implications for crustal accretion and tectonic evolution in the northern margin of the North China Craton. Precambrian Res. 2014, 255, 335–354. [Google Scholar] [CrossRef]
- Shao, J.A.; Zhang, Y.B.; Zhang, L.Q.; Mu, B.L.; Wang, P.Y.; Guo, F. Early Mesozoic dike swarms of carbonatites and lamprophyres in Datong ares. Acta Petrol. Sin. 2003, 19, 93–104, (In Chinese with English Abstract). [Google Scholar]
- Zhang, H.F.; Wang, H.Z.; Santosh, M.; Zhai, M.G. Zircon U-Pb ages of Paleoproterozoic mafic granulites from the Huai’an terrane, North China Craton (NCC): Implications for timing of cratonization. Precambrian Res. 2016, 272, 244–263. [Google Scholar] [CrossRef]
- Santosh, M.; Liu, S.J.; Tsunogae, T.; Li, J.H. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Res. 2012, 222–223, 77–106. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Santosh, M. Charnockite magmatism during a transitional phase: Implications for Late Paleoproterozoic ridge subduction in the North China Craton. Precambrian Res. 2015, 261, 188–216. [Google Scholar] [CrossRef]
- Ma, X.D.; Guo, J.H.; Liu, F.; Qian, Q.; Fan, H.R. Zircon U-Pb ages, trace elements and Nd-Hf isotopic geochemistry of Guyang sanukitoids and related rocks: Implications for the Archean crustal evolution of the Yinshan Block, North China Craton. Precambrian Res. 2013, 230, 61–78. [Google Scholar] [CrossRef]
- Ma, X.D.; Fan, H.R.; Santosh, M.; Guo, J.H. Petrology and geochemistry of the Guyang hornblendite complex in the Yinshan block, North China Craton: Implications for the melting of subduction-modified mantle. Precambrian Res. 2016, 273, 38–52. [Google Scholar] [CrossRef]
- Liu, J.J.; Ye, L.; Niu, Y.L.; Guo, P.Y.; Sun, P.; Cui, H.X. The Geochemistry of Late Mesozoic Volcanic Rocks From the North China Craton and Temporal and Spatial Constraints on the Lithospheric Thinning. Geol. J. China Univ. 2014, 4, 491–506, (In Chinese with English Abstract). [Google Scholar]
- Qiao, H.Z.; Yin, C.Q.; Li, Q.L.; He, X.L.; Qian, J.H.; Li, W.J. Application of the revised Ti-in-zircon thermometer and SIMS zircon U-Pb dating of high-pressure pelitic granulites from the Qianlishan-Helanshan Complex of the Khondalite Belt, North China Craton. Precambrian Res. 2016, 276, 1–13. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Z.C.; Li, K.; Chen, Y.; Tang, W.H.; Li, J.F. Geochronology, geochemistry, and its geological significance of the Damaoqi Permian volcanic sequences on the northern margin of the North China Block. J. Asian Earth Sci. 2015, 97, 307–319. [Google Scholar] [CrossRef]
- Tong, Y.; Jahn, B.M.; Wang, T.; Hong, D.W.; Smith, E.I.; Sun, M.; Gao, J.F.; Yang, Q.D.; Huang, W. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance. J. Asian Earth Sci. 2015, 97, 320–336. [Google Scholar] [CrossRef]
- Niu, Y.L. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geol. J. China Univ. 2005, 11, 9–46, (In Chinese with English Abstract). [Google Scholar]
- Wang, J.; Wu, Y.B.; Gao, S.; Peng, M.; Liu, X.C.; Zhao, L.S.; Zhou, L.; Hu, Z.C.; Gong, H.J.; Liu, Y.S. Zircon U-Pb and trace element data from rocks of the Huai’an Complex: New insights into the late Paleoproterozoic collision between the Eastern and Western Blocks of the North China Craton. Precambrian Res. 2010, 178, 59–71. [Google Scholar] [CrossRef]
- Wu, J.L.; Zhang, H.F.; Zhai, M.G.; Guo, J.H.; Liu, L.; Yang, W.Q.; Wang, H.Z.; Zhao, L.; Jia, X.L.; Wang, W. Discovery of pelitic high-pressure granulite from Manjinggou of the Huai’an Complex, North China Craton: Metamorphic P-T evolution and geological implications. Precambrian Res. 2016, 278, 323–336. [Google Scholar] [CrossRef]
- Mu, B.L.; Yan, G.H. Geochemistry of Triassic alkaline or subalkaline igneous complexes in the Yan-Liao area and their significance. Acta Geol. Sin. 1992, 66, 108–121, (In Chinese with English Abstract). [Google Scholar]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Aleinikoff, J.N.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. TEMORA 1: A new zircon standard for Phanerozoic U–Pb geochronology. Chem. Geol. 2003, 200, 155–170. [Google Scholar] [CrossRef]
- Wan, Y.S.; Song, B.; Liu, D.Y.; Wilde, S.A.; Wu, J.S.; Shi, Y.R.; Yin, X.Y.; Zhou, H.Y. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Res. 2006, 149, 249–271. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot/Ex Version 4: A Geochronological Toolkit for Microsoft Excel; Geochronology Center: Berkeley, CA, USA, 2011; p. 74. [Google Scholar]
- Yang, Y.H.; Zhang, H.F.; Chu, Z.Y.; Xie, L.W.; Wu, F.Y. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS. Int. J. Mass Spectrom. 2010, 290, 120–126. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Roberts, M.P.; Clemens, J.D. Origin of high-potassium, calc-alkaline, I-type granitoids. Geology 1993, 21, 825–828. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Wolf, M.B.; Wyllie, P.J. Dehydration-melting of amphibolite at 10 kbar: The effects of temperature and time. Contrib. Mineral. Petr. 1994, 115, 369–383. [Google Scholar] [CrossRef]
- Rapp, R.P.; Watson, E.B. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J. Petrol. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Springer, W.; Seck, H.A. Partial fusion of basic granulites at 5 to 15 kbar: Implications for the origin of TTG magmas. Contrib. Mineral. Petr. 1997, 127, 30–45. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jäger, E. Subcommission on geochronology: Convention on the use of decay constants in geo-and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Lugmair, G.W.; Marti, K. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth Planet. Sci. Lett. 1978, 39, 349–357. [Google Scholar] [CrossRef]
- Yin, J.Y.; Yuan, C.; Sun, M.; Long, X.P.; Zhao, G.C.; Wong, K.P.; Geng, H.Y.; Cai, K.D. Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications. Gondwana Res. 2010, 17, 145–152. [Google Scholar] [CrossRef]
- Schiano, P.; Monzier, M.; Eissen, J.P.; Martin, H.; Koga, K.T. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib. Mineral. Petr. 2010, 160, 297–312. [Google Scholar] [CrossRef]
- Zhu, Y.S.; Yang, J.H.; Sun, J.F.; Zhang, J.H.; Wu, F.Y. Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China. J. Asian Earth Sci. 2016, 117, 184–207. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Liu, S.; Hu, R.Z.; Gao, S.; Feng, C.X.; Yu, B.B.; Feng, G.Y.; Qi, Y.Q.; Wang, T.; Coulson, I.M. Petrogenesis of Late Mesozoic Mafic Dykes in the Jiaodong Peninsula, Eastern North China Craton and Implications for The Foundering of Lower Crust. Lithos 2009, 113, 621–639. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Wilde, S.A.; Liu, X.M. Petrogenesis of Late Triassic granitoids and their enclaves with implications for post-collisional lithospheric thinning of the Liaodong Peninsula, North China Craton. Chem. Geol. 2007, 242, 155–175. [Google Scholar] [CrossRef]
- Jelínek, E.; Dudek, A. Geochemistry of subsurface Precambrian plutonic rocks from the Brunovistulian complex in the Bohemian massif, Czechoslovakia. Precambrian Res. 1993, 62, 103–125. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, W.J.; Li, R.; Chen, H.X.; Tan, Z.; Mao, Q.G.; Shi, M.Y. High-grade complexes record the Late Permian-Middle Triassic arc metamorphism in the southernmost Altaids: Implications for the final closure of the Paleo-Asian Ocean. Lithos 2023, 442–443, 107054. [Google Scholar] [CrossRef]
- Song, D.F.; Xiao, W.J.; Ao, S.J.; Mao, Q.G.; Wan, B.; Zeng, H. Contemporaneous closure of the Paleo-Asian Ocean in the Middle-Late Triassic: A synthesis of new evidence and tectonic implications for the final assembly of Pangea. Earth Sci. Rev. 2024, 253, 104771. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Chen, Q.; Huang, F.; Xu, J.F.; Liu, X.J.; Zhang, Z.; Zeng, Y.C.; Yang, X.L.; Zhang, Y.T.; Zhang, M.; et al. Triassic volcanism on the North margin of the North China Craton: Insights for lithospheric modification during closure of Paleo-Asian Ocean. Lithos 2022, 434–435, 106918. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liu, Y.S.; Foley, S.F.; Zong, K.Q.; Hu, Z.C. Lithospheric transformation of the northern North China Craton by changing subduction style of the Paleo-Asian oceanic plate: Constraints from peridotite and pyroxenite xenoliths in the Yangyuan basalts. Lithos 2019, 328, 58–68. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, L.Y.; Zhao, L.J. Cratonic reactivation and orogeny: An example from the northern margin of the North China Craton. Gondwana Res. 2013, 24, 1203–1222. [Google Scholar] [CrossRef]
- Liu, S.F. The coupling mechanism of basin and orogen in the western Ordos Basin and adjacent regions of China. J. Asian Earth Sci. 1998, 16, 369–383. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Dong, S.W.; Zhang, Y.Q.; Long, C.X.; Yang, Z.Y.; Ji, Q.; Wang, T.; Hu, J.M.; Chen, X.H. Jurassic tectonic revolution in China and new interpretation of the ‘Yanshan Movement’. Acta Petrol. Sin. 2007, 82, 334–347, (In Chinese with English Abstract). [Google Scholar]
- Dong, S.W.; Zhang, Y.Q.; Cheng, X.H.; Long, C.Q.; Wang, T.; Yang, Z.Y.; Hu, J.M. The formation and deformational characteristics of East Asia multi-direction convergent tectonic system in Late Jurassic. Acta Petrol. Sin. 2008, 29, 306–317, (In Chinese with English Abstract). [Google Scholar]
- Wang, T.; Guo, L.; Zhang, L.; Yang, Q.D.; Zhang, J.J.; Tong, Y.; Ye, K. Timing and evolution of Jurassic-Cretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings. J. Asian Earth Sci. 2015, 97, 365–392. [Google Scholar] [CrossRef]
- Ge, L.S.; Wang, Z.H.; Yang, G.C.; Lu, Y.C. Yanshanian magmatism and gold-polymetallic mineralization dynamics in northeastern Shanxi Province, China. Acta Petrol. Sin. 2012, 28, 619–636. [Google Scholar]
- Qiang, R.; Zhang, S.H.; Wu, H.C.; Liang, Z.K.; Miao, X.J.; Zhao, H.Q.; Li, H.Y.; Yang, T.S.; Pei, J.L.; Davis, G.A. Further paleomagnetic results from the ~155 Ma Tiaojishan Formation, Yanshan Belt, North China, and their implications for the tectonic evolution of the Mongol-Okhotsk suture. Gondwana Res. 2016, 35, 180–191. [Google Scholar]
- Zhao, Y.; Chen, B.; Zhang, S.H.; Liu, J.M.; Hu, J.M.; Liu, J.; Pei, J.L. Pre-Yanshanian geological events in the northern margin of the North China Craton and its adjacent areas. Geol. China 2010, 37, 900–915. [Google Scholar]
- Tang, J.; Xu, W.L.; Wang, F.; Ge, W.C. Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia. Sci. China Earth Sci. 2018, 61, 527–559. [Google Scholar] [CrossRef]
- Guo, J.F.; Ma, Q.; Xu, Y.G.; Zheng, J.P.; Zou, Z.Y.; Ma, L.; Bai, X.J. Migration of Middle-Late Jurassic volcanism across the northern North China Craton in response to subduction of Paleo-Pacific Plate. Tectonophysics 2022, 833, 229338. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W.L.; Tang, J.; Pei, F.P.; Wang, F.; Sun, C.Y. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing’an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime. Lithos 2018, 304, 57–73. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W.L.; Zhang, X.M.; Tang, J. Late Mesozoic stratigraphic framework of the Great Xing’an Range, NE China, and overprinting by the Mongol-Okhotsk and Paleo-Pacific tectonic regimes. Gondwana Res. 2024, 134, 91–106. [Google Scholar] [CrossRef]
- Li, Z.H.; Qu, H.J.; Gong, W.B. Late Mesozoic basin development and tectonic setting of the northern North China Craton. J. Asian Earth Sci. 2015, 114, 115–139. [Google Scholar] [CrossRef]
Wt% | ZJG-1 | ZJG-2 | ZJG-3 | ZJG-4 | ZJG-5 | ZJG-6 | ZJG-7 | YH-1 | YH-2 | YH-3 | YH-4 | YH-5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 68.35 | 71.86 | 69.71 | 69.11 | 69.62 | 69.69 | 69.14 | 71.17 | 73.41 | 72.63 | 72.71 | 72.33 |
TiO2 | 0.49 | 0.34 | 0.44 | 0.35 | 0.35 | 0.35 | 0.36 | 0.24 | 0.22 | 0.23 | 0.25 | 0.26 |
Al2O3 | 13.96 | 13.37 | 14.54 | 14.89 | 14.81 | 14.78 | 14.89 | 14.09 | 13.47 | 13.56 | 13.48 | 14.10 |
T Fe2O3 | 3.60 | 2.94 | 2.97 | 3.04 | 3.01 | 2.83 | 2.97 | 2.25 | 2.15 | 1.63 | 2.10 | 2.17 |
MnO | 0.05 | 0.03 | 0.03 | 0.03 | 0.02 | 0.02 | 0.03 | 0.04 | 0.01 | 0.02 | 0.01 | 0.00 |
MgO | 0.79 | 0.78 | 0.72 | 0.75 | 0.71 | 0.70 | 0.74 | 0.52 | 0.38 | 0.33 | 0.32 | 0.33 |
CaO | 3.55 | 1.92 | 2.13 | 2.03 | 1.94 | 1.92 | 1.93 | 1.57 | 0.93 | 1.54 | 1.08 | 0.43 |
Na2O | 3.35 | 2.70 | 3.21 | 3.22 | 3.22 | 3.17 | 3.31 | 3.99 | 3.96 | 3.92 | 3.88 | 4.04 |
K2O | 4.59 | 4.54 | 4.53 | 4.48 | 4.73 | 4.69 | 4.76 | 4.61 | 4.47 | 4.65 | 4.66 | 4.35 |
P2O5 | 0.27 | 0.13 | 0.16 | 0.16 | 0.17 | 0.17 | 0.17 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
LOI | 0.66 | 1.13 | 1.04 | 1.12 | 1.05 | 1.09 | 1.14 | 0.98 | 0.90 | 1.25 | 1.01 | 1.56 |
TOTAL | 99.88 | 99.74 | 99.83 | 99.53 | 99.89 | 99.74 | 99.73 | 99.54 | 99.98 | 99.84 | 99.59 | 99.66 |
Mg# | 30 | 34 | 32 | 33 | 32 | 33 | 33 | 31 | 26 | 29 | 23 | 23 |
A/CNK | 0.861 | 1.039 | 1.033 | 1.075 | 1.061 | 1.071 | 1.054 | 0.977 | 1.031 | 0.948 | 1.005 | 1.161 |
A/NK | 1.452 | 1.427 | 1.426 | 1.466 | 1.420 | 1.434 | 1.403 | 1.218 | 1.185 | 1.180 | 1.178 | 1.240 |
ppm | ||||||||||||
Sc | 7.19 | 6.34 | 24.4 | 20.9 | 20.5 | 21.4 | 22.4 | 4.54 | 4.39 | 3.78 | 3.93 | 4.49 |
V | 65.6 | 41.5 | 35.5 | 35.7 | 34.3 | 27.1 | 32 | 35.00 | 37.40 | 32.50 | 36.80 | 40.80 |
Cr | 66.3 | 10.2 | 12.7 | 10.2 | 9.18 | 11.4 | 9.55 | 14.00 | 13.00 | 8.49 | 9.55 | 20.30 |
Co | 12 | 2.78 | 3.47 | 3.51 | 3.43 | 3.4 | 3.41 | 3.22 | 2.09 | 1.79 | 3.04 | 0.46 |
Ni | 38 | 2.43 | 4.68 | 3.9 | 4.42 | 5.97 | 4.92 | 4.98 | 3.27 | 6.41 | 1.14 | 4.93 |
Rb | 92.9 | 170 | 177 | 171 | 170 | 174 | 179 | 111 | 114 | 122 | 119 | 106 |
Sr | 1080 | 355 | 497 | 490 | 475 | 373 | 485 | 1030 | 908 | 827 | 718 | 618 |
Y | 7.62 | 16.2 | 45 | 16.3 | 15.6 | 16.6 | 15.5 | 14.20 | 11.10 | 12.60 | 12.70 | 11.20 |
Zr | 129 | 219 | 186 | 186 | 184 | 195 | 192 | 316 | 330 | 305 | 303 | 272 |
Nb | 8.01 | 14.4 | 33.34 | 15.71 | 15.82 | 16.16 | 15.37 | 21.70 | 18.70 | 21.20 | 21.50 | 17.40 |
Cs | 0.611 | 9.5 | 9.95 | 9.26 | 9.26 | 9.15 | 9.29 | 1.32 | 1.23 | 1.78 | 1.40 | 1.34 |
Ba | 1480 | 1040 | 1290 | 1320 | 1340 | 1300 | 1330 | 1660 | 3190 | 1680 | 2130 | 1460 |
La | 47.5 | 56.8 | 48.3 | 58.1 | 56.7 | 55.7 | 57 | 78.90 | 38.70 | 47.00 | 124 | 80.80 |
Ce | 88.2 | 104 | 84.4 | 89.4 | 84.7 | 88.7 | 86.1 | 116.00 | 72.20 | 78.90 | 165 | 93.40 |
Pr | 9.97 | 11.3 | 10.7 | 9.73 | 9.35 | 9.72 | 9.1 | 13.30 | 8.26 | 9.56 | 16.9 | 13.60 |
Nd | 34.5 | 36 | 42 | 33.5 | 32.1 | 32.7 | 30.5 | 43.20 | 28.80 | 33.70 | 50.50 | 44.10 |
Sm | 4.75 | 5.34 | 8.7 | 5.4 | 5.08 | 5.08 | 4.75 | 6.11 | 4.56 | 5.32 | 6.32 | 6.11 |
Eu | 1.76 | 0.94 | 1.411 | 1.054 | 1.010 | 1.036 | 1.021 | 1.52 | 1.25 | 1.35 | 1.47 | 1.52 |
Gd | 3.4 | 3.71 | 7.734 | 4.480 | 4.241 | 4.320 | 4.016 | 4.41 | 3.35 | 3.71 | 4.50 | 3.80 |
Tb | 0.367 | 0.55 | 1.16 | 0.58 | 0.55 | 0.56 | 0.53 | 0.55 | 0.43 | 0.52 | 0.53 | 0.47 |
Dy | 1.48 | 2.69 | 6.32 | 2.87 | 2.76 | 2.86 | 2.64 | 2.54 | 1.88 | 2.19 | 2.33 | 1.98 |
Ho | 0.236 | 0.5 | 1.32 | 0.59 | 0.58 | 0.60 | 0.55 | 0.43 | 0.35 | 0.39 | 0.41 | 0.32 |
Er | 0.697 | 1.54 | 3.53 | 1.67 | 1.59 | 1.69 | 1.56 | 1.24 | 1.00 | 1.09 | 1.18 | 0.99 |
Tm | 0.087 | 0.235 | 0.51 | 0.24 | 0.23 | 0.24 | 0.22 | 0.17 | 0.14 | 0.15 | 0.16 | 0.12 |
Yb | 0.54 | 1.56 | 3.43 | 1.66 | 1.6 | 1.68 | 1.57 | 1.19 | 0.94 | 0.95 | 1.06 | 0.80 |
Lu | 0.084 | 0.238 | 0.48 | 0.25 | 0.24 | 0.25 | 0.24 | 0.16 | 0.16 | 0.14 | 0.15 | 0.11 |
Hf | 2.8 | 5.58 | 5.08 | 4.93 | 4.88 | 4.99 | 4.89 | 6.87 | 7.22 | 7.23 | 6.91 | 6.00 |
Ta | 0.9625 | 0.8778 | 2.70 | 1.15 | 1.22 | 1.27 | 1.18 | 0.96 | 0.81 | 1.04 | 0.94 | 0.72 |
Pb | 14.5 | 15.6 | 25.62 | 18.62 | 19.46 | 18.48 | 20.58 | 25.50 | 21.70 | 25.90 | 21.10 | 24.80 |
Th | 12.1 | 13.7 | 14.9 | 10.8 | 13.9 | 11.5 | 10.8 | 21.80 | 20.50 | 16.20 | 16.90 | 20.60 |
U | 1.21 | 1.37 | 2.47 | 1.41 | 1.72 | 1.46 | 1.38 | 2.40 | 1.98 | 2.90 | 2.62 | 3.56 |
ΣREE | 225.41 | 219.99 | 209.52 | 200.73 | 205.14 | 199.79 | 269.72 | 162.02 | 184.98 | 374.50 | 248.14 | 225.41 |
LREE | 214.38 | 195.51 | 197.18 | 188.94 | 192.94 | 188.47 | 259.03 | 153.77 | 175.83 | 364.19 | 239.53 | 214.38 |
HREE | 11.02 | 24.48 | 12.34 | 11.79 | 12.20 | 11.32 | 10.69 | 8.25 | 9.15 | 10.31 | 8.60 | 11.02 |
LREE/HREE | 19.45 | 7.99 | 15.98 | 16.03 | 15.82 | 16.65 | 24.23 | 18.64 | 19.22 | 35.31 | 27.84 | 19.45 |
LaN/YbN | 26.12 | 10.10 | 25.11 | 25.42 | 23.78 | 26.04 | 47.56 | 29.50 | 35.41 | 83.91 | 72.63 | 26.12 |
δEu | 0.65 | 0.53 | 0.66 | 0.66 | 0.68 | 0.71 | 0.89 | 0.98 | 0.93 | 0.84 | 0.97 | 0.65 |
δCe | 1.01 | 0.91 | 0.92 | 0.90 | 0.93 | 0.93 | 0.88 | 0.99 | 0.91 | 0.88 | 0.69 | 1.01 |
Spot | U ppm | Th ppm | 232Th /238U | ppm 206Pb* | 207Pb* /206Pb* | ±% | 207Pb* /235U | ±% | 206Pb* /238U | ±% | Err Corr | Age | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZJG-1.1 | 198 | 85 | 0.45 | 4.18 | 0.0435 | 17 | 0.142 | 17 | 0.0236 | 1.4 | 0.086 | 150.6 | ±2.1 |
ZJG-2.1 | 124 | 77 | 0.64 | 2.68 | 0.0452 | 12 | 0.154 | 12 | 0.0248 | 1.1 | 0.097 | 157.6 | ±1.8 |
ZJG-3.1 | 71 | 63 | 0.91 | 1.54 | 0.041 | 25 | 0.140 | 25 | 0.0245 | 1.8 | 0.070 | 155.9 | ±2.8 |
ZJG-4.1 | 798 | 465 | 0.60 | 242 | 0.1210 | 0.30 | 5.895 | 0.42 | 0.3534 | 0.29 | 0.684 | 1951.0 | ±4.8 |
ZJG-5.1 | 113 | 104 | 0.96 | 2.43 | 0.0398 | 18 | 0.134 | 18 | 0.0245 | 2.0 | 0.111 | 156.0 | ±3.0 |
ZJG-6.1 | 145 | 115 | 0.82 | 3.19 | 0.0379 | 6.2 | 0.132 | 6.4 | 0.0252 | 1.6 | 0.244 | 160.6 | ±2.5 |
ZJG-7.1 | 196 | 42 | 0.22 | 4.54 | 0.042 | 38 | 0.138 | 38 | 0.0239 | 2.3 | 0.061 | 152.5 | ±3.5 |
ZJG-8.1 | 77 | 63 | 0.84 | 1.67 | 0.0446 | 22 | 0.149 | 22 | 0.0243 | 2.2 | 0.100 | 154.7 | ± 3.3 |
ZJG-9.1 | 197 | 348 | 1.83 | 55.7 | 0.1082 | 0.65 | 4.907 | 1.5 | 0.3290 | 1.3 | 0.897 | 1769.6 | ±12.1 |
ZJG-10.1 | 674 | 80 | 0.12 | 14.7 | 0.0454 | 7.6 | 0.157 | 7.7 | 0.0250 | 1.3 | 0.169 | 159.3 | ±2.1 |
ZJG-11.1 | 281 | 189 | 0.69 | 5.64 | 0.0480 | 5.9 | 0.154 | 6.0 | 0.0233 | 0.79 | 0.133 | 148.1 | ±1.2 |
YH-1.1 | 267 | 339 | 1.31 | 8.18 | 0.0503 | 4.0 | 0.245 | 4.2 | 0.0353 | 1.4 | 0.323 | 223.8 | ±3.0 |
YH-2.1 | 472 | 574 | 1.26 | 14.5 | 0.0480 | 3.4 | 0.235 | 3.6 | 0.0356 | 1.3 | 0.358 | 225.2 | ±2.8 |
YH-3.1 | 119 | 137 | 1.19 | 3.74 | 0.0464 | 13 | 0.227 | 13 | 0.0356 | 1.7 | 0.131 | 225.5 | ±3.8 |
YH-4.1 | 244 | 252 | 1.07 | 7.68 | 0.0484 | 3.5 | 0.243 | 3.7 | 0.0365 | 1.4 | 0.368 | 230.8 | ±3.1 |
YH-5.1 | 273 | 230 | 0.87 | 8.36 | 0.0477 | 2.3 | 0.234 | 2.7 | 0.0356 | 1.3 | 0.502 | 225.3 | ±3.0 |
YH-6.1 | 589 | 517 | 0.91 | 17.8 | 0.0499 | 2.2 | 0.241 | 2.5 | 0.0350 | 1.3 | 0.493 | 221.5 | ±2.7 |
YH-7.1 | 238 | 269 | 1.16 | 7.39 | 0.0466 | 7.3 | 0.229 | 7.5 | 0.0356 | 1.4 | 0.192 | 225.7 | ±3.2 |
YH-8.1 | 385 | 511 | 1.37 | 12.0 | 0.0489 | 3.2 | 0.242 | 3.2 | 0.0359 | 0.58 | 0.178 | 227.3 | ±1.3 |
YH-9.1 | 378 | 371 | 1.01 | 12.0 | 0.0483 | 7.3 | 0.243 | 7.3 | 0.0365 | 0.80 | 0.110 | 230.8 | ±1.8 |
YH-10.1 | 605 | 751 | 1.28 | 18.6 | 0.0494 | 3.1 | 0.243 | 3.1 | 0.0357 | 0.48 | 0.153 | 225.9 | ±1.1 |
YH-11.1 | 399 | 559 | 1.45 | 12.3 | 0.0478 | 4.2 | 0.234 | 4.3 | 0.0355 | 0.60 | 0.141 | 224.7 | ±1.3 |
YH-12.1 | 522 | 848 | 1.68 | 16.2 | 0.0450 | 3.4 | 0.223 | 3.4 | 0.0359 | 0.52 | 0.150 | 227.3 | ±1.2 |
YH-13.1 | 218 | 262 | 1.25 | 6.66 | 0.0473 | 5.1 | 0.230 | 5.2 | 0.0353 | 0.79 | 0.151 | 223.6 | ±1.7 |
YH-14.1 | 308 | 341 | 1.14 | 9.57 | 0.0468 | 3.7 | 0.232 | 3.7 | 0.0359 | 0.65 | 0.173 | 227.5 | ±1.4 |
YH-15.1 | 505 | 548 | 1.12 | 15.6 | 0.0485 | 3.8 | 0.239 | 3.8 | 0.0358 | 0.53 | 0.139 | 226.6 | ±1.2 |
Sample No. | Rb (ppm) | Sr (ppm) | 87Rb/ 86Sr | 87Sr/ 86Sr | 2sigma | ISr | Sm (ppm) | Nd (ppm) | 147Sm/ 144Nd | 143Nd/ 144Nd | 2sigma | TDM (Ma) | INd | fSm/Nd | ƐNd(0) | ƐNd(t) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZJG-1 | 92.9 | 1080 | 0.249 | 0.714841 | 0.000009 | 0.714841 | 4.75 | 34.5 | 0.083 | 0.511128 | 0.000002 | 2352 | 0.511041 | −0.58 | −29.4 | −27.1 |
ZJG-2 | 170 | 355 | 0.386 | 0.710979 | 0.000007 | 0.710979 | 5.34 | 36 | 0.090 | 0.510983 | 0.000004 | 2650 | 0.510889 | −0.54 | −32.3 | −30.1 |
YH-1 | 111 | 1030 | 0.312 | 0.707725 | 0.000007 | 0.706703 | 6.11 | 43.2 | 0.086 | 0.511994 | 0.000004 | 1374 | 0.511865 | −0.57 | −12.6 | −9.3 |
YH-2 | 114 | 908 | 0.363 | 0.707767 | 0.000008 | 0.706577 | 4.56 | 28.8 | 0.096 | 0.512039 | 0.000006 | 1435 | 0.511894 | −0.51 | −11.7 | −8.7 |
YH-3 | 122 | 827 | 0.427 | 0.708188 | 0.000006 | 0.706790 | 5.32 | 33.7 | 0.095 | 0.511980 | 0.000005 | 1507 | 0.511836 | −0.51 | −12.8 | −9.9 |
YH-5 | 106 | 618 | 0.496 | 0.707956 | 0.000006 | 0.706330 | 6.11 | 44.1 | 0.084 | 0.511997 | 0.000008 | 1352 | 0.511871 | −0.57 | −12.5 | −9.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, F.; Li, P.; Liu, C. Zircon U-Pb Ages of the Granitoids in Shanxi and Its Significance for Tectonic Evolution of North China Craton in Mesozoic. Minerals 2024, 14, 940. https://doi.org/10.3390/min14090940
Qi F, Li P, Liu C. Zircon U-Pb Ages of the Granitoids in Shanxi and Its Significance for Tectonic Evolution of North China Craton in Mesozoic. Minerals. 2024; 14(9):940. https://doi.org/10.3390/min14090940
Chicago/Turabian StyleQi, Fuhui, Pengpeng Li, and Chao Liu. 2024. "Zircon U-Pb Ages of the Granitoids in Shanxi and Its Significance for Tectonic Evolution of North China Craton in Mesozoic" Minerals 14, no. 9: 940. https://doi.org/10.3390/min14090940
APA StyleQi, F., Li, P., & Liu, C. (2024). Zircon U-Pb Ages of the Granitoids in Shanxi and Its Significance for Tectonic Evolution of North China Craton in Mesozoic. Minerals, 14(9), 940. https://doi.org/10.3390/min14090940