Evolution of Auriferous Fluids in the Kraaipan-Amalia Greenstone Belts: Evidence from Mineralogical and Isotopic Constraints
Abstract
:1. Introduction
2. Geological Setting
3. Hydrothermal Alteration and Gold Mineralization
4. Analytical Procedure
4.1. Mineral Chemistry of Chlorite
4.2. Carbon and Oxygen Isotope Analysis of Carbonates
4.3. Strontium Isotopic Measurements
4.4. Fluid Inclusion Analysis
5. Mineralization Temperatures Based on Chlorite Geothermometry
6. Isotopic (Sr, C and O) Signatures and Rb Concentrations
7. Discussion
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kerrich, R. Geochemical evidences of the sources of fluids and solutes for shear zone hosted mesothermal gold deposits. In Mineralization and Shear Zones; Bursnall, J.T., Ed.; Short Course; Geological Association of Canada: St. John’s, NL, Canada, 1989; Volume 6. [Google Scholar]
- Ho, S.E.; Groves, D.I.; McNaughton, N.J.; Mikucki, E.J. The source of ore fluids and solutes in Archaean lode-gold deposits of Western Australia. J. Volcanol. Geotherm. Res. 1992, 50, 173–196. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits—A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold. Common or evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M.; Deng, J.; Wang, Q.; Yang, L.; Zhang, L. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Miner. Depos. 2020, 55, 275–292. [Google Scholar] [CrossRef]
- Glodny, J.; Grauert, B. Evolution of a hydrothermal fluid-rock interaction system as recorded by Sr isotopes: A case study from the Schwarzwald, SW Germany. Mineral. Petrol. 2009, 95, 163–178. [Google Scholar] [CrossRef]
- Toki, T.; Nohara, T.; Urata, Y.; Shinjo, R.; Hokakubo-Watanabe, S.; Ishibashi, J.; Kawagucci, S. Sr isotopic ratios of hydrothermal fluids from the Okinawa Trough and the implications of variation in fluid–sediment interactions. Prog. Earth Planet Sci. 2022, 9, 59. [Google Scholar] [CrossRef]
- Armstong, R.L. A model for the evolution of strontium and lead isotopes in a dynamic earth. Rev. Geophys. 1968, 6, 175–199. [Google Scholar] [CrossRef]
- Smith, C.B. Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature 1983, 304, 51–54. [Google Scholar] [CrossRef]
- Jacobsen, S.B.; Pimentel-Klose, M.R. Nd isotopic variations in Precambrian banded iron formations. Geophys. Res. Lett. 1988, 15, 393–396. [Google Scholar] [CrossRef]
- Mitchell, R.H. Kimberlites, Orangeites, and Related Rocks; Plenum Press: New York, NY, USA, 1995. [Google Scholar]
- Shields, G.A.; Veizer, J. Precambrian marine carbonate isotope database: Version 1.1. Geochem. Geophys. Geosyst. 2002, 6, 1–12. [Google Scholar] [CrossRef]
- Donnelly, C.L.; Griffin, W.L.; O’Reilly, S.L.; Pearson, N.J.; Shee, S.R. The Kimberlites and related rocks of the Kuruman Kimberlite Province, Kaapvaal Craton, South Africa. Contrib. Mineral. Petrol. 2011, 161, 351–371. [Google Scholar] [CrossRef]
- Hochscheid, F.; Coltat, R.; Ulrich, M.; Munoz, M.; Manatschal, G.; Boulvais, P. The Sr isotope geochemistry of oceanic ultramafic-hosted mineralization. Ore Geol. Rev. 2022, 144, 104824. [Google Scholar] [CrossRef]
- Anhaeusser, C.R.; Walraven, F. Episodic granitoid emplacement in the western Kaapvaal Craton. Evidence from the Archean-Kraaipan granite-greenstone terrane, South Africa. J. Afr. Earth Sci. 1999, 28, 289–309. [Google Scholar] [CrossRef]
- Hammond, N.Q.; Moore, J.M. Archean lode gold mineralization in banded iron formation at the Kalahari Goldridge deposit, Kraaipan greenstone belt, South Africa. Miner. Depos. 2006, 41, 483–503. [Google Scholar] [CrossRef]
- Brandl, G.; Cloete, M.; Anhaeusser, C.R. Archaean greenstone belts. In The Geology of South Africa; Johnson, M.R., Anhaeusser, C.R., Thomas, R.J., Eds.; Geological Society of South Africa/Council for Geoscience Johannesburg/Pretoria: Pretoria, South Africa, 2006; pp. 9–56. [Google Scholar]
- Hammond, N.Q.; Moore, J.M.; Sheets, R.W. Physico-chemical conditions of ore-bearing fluids associated with the genesis of the Kalahari Goldridge deposit, Kraaipan greenstone belt, South Africa. Ore Geol. Rev. 2007, 30, 106–134. [Google Scholar] [CrossRef]
- Adomako-Ansah, K.; Mizuta, T.; Ishiyama, D.; Hammond, N.Q. Nature of ore-forming fluid and formation conditions of BIF-hosted gold mineralization in the Archean Amalia greenstone belt, South Africa: Constraints from fluid inclusion and stable isotope studies. Ore Geol. Rev. 2017, 89, 609–626. [Google Scholar] [CrossRef]
- Hammond, N.Q.; Morishita, Y. Source of ore fluids at the Kalahari Goldridge deposit, Kraaipan greenstone belt, South Africa: Evidence from Sr, C and O isotope signatures in carbonates. Geofluids 2009, 9, 356–364. [Google Scholar] [CrossRef]
- Corner, B.; Durrheim, R.J.; Nicolaysen, L.O. Relationships between the Vredefort structure and the Witwatersrand basin within the tectonic framework of the Kaapvaal Craton as interpreted from regional gravity and aeromagnetic data. Tectonophysics 1990, 171, 49–61. [Google Scholar] [CrossRef]
- de Wit, M.J.; Roering, C.; Hart, R.J.; Armstrong, R.A.; de Ronde, C.E.J.; Green, R.W.E.; Tredoux, M.; Peberdy, E.; Hart, R.A. Formation of an Archaean continent. Nature 1992, 357, 553–562. [Google Scholar] [CrossRef]
- McCourt, S. The crustal architecture of the Kaapvaal crustal block South Africa, between 3.5 and 2.0 Ga: A synopsis. Miner. Depos. 1995, 30, 89–97. [Google Scholar] [CrossRef]
- Richardson, S.H.; Shirey, S.B.; Harris, J.W.; Carlson, R.W. Archean subduction recorded by Re-Os isotopes in eclogitic sulfide inclusions in Kimberley diamonds. Earth Planet. Sci. Lett. 2001, 191, 257–266. [Google Scholar] [CrossRef]
- Schmitz, M.D.; Bowring, S.A.; de Wit, M.J.; Gartz, V. Subduction and terrane collision stabilize the western Kaapvaal craton tectosphere 2.9 billion years ago. Earth Planet. Sci. Lett. 2004, 222, 363–376. [Google Scholar] [CrossRef]
- Eriksson, P.G.; Banerjee, S.; Nelson, D.R.; Rigby, M.J.; Catuneanu, O.; Sarkar, S.; Roberts, R.J.; Ruban, D.; Mtimkulu, M.N.; Raju, P.V.S. A Kaapvaal craton debate: Nucleus of an early small supercontinent or affected by an enhanced accretion event? Gondwana Res. 2009, 15, 354–372. [Google Scholar] [CrossRef]
- Poujol, M.; Anhaeusser, C.R.; Armstrong, R.A. Episodic granitoid emplacement in the Archean Amalia-Kraaipan terrane, South Africa: Confirmation from zircon U-Pb geochronology. J. Afr. Earth Sci. 2002, 35, 147–161. [Google Scholar] [CrossRef]
- Robb, L.J.; Meyer, F.M. The Witwatersrand Basin: Geological framework and mineralization processes. Ore Geol. Rev. 1995, 10, 67–94. [Google Scholar] [CrossRef]
- Jones, I.M.; Anhaeusser, C.R. Accretionary lapilli associated with Achaean banded iron formations of the Kraaipan Group, Amalia greenstone belt, South Africa. Precambrian Res. 1993, 61, 117–136. [Google Scholar] [CrossRef]
- de Wit, M.; Tinker, J. Crustal structures across the central Kaapvaal craton from deep-seismic reflection data. S. Afr. J. Geol. 2004, 107, 185–206. [Google Scholar] [CrossRef]
- Adomako-Ansah, K.; Mizuta, T.; Hammond, N.Q.; Ishiyama, D.; Ogata, T.; Chiba, H. Gold mineralization in banded iron formation in the Amalia greenstone belt, South Africa: A mineralogical and sulfur isotope study. Resour. Geol. 2013, 63, 119–140. [Google Scholar] [CrossRef]
- Yamamoto, M.; Maruyama, T. The Sr and Nd isotopic analysis and quantitative analysis of Rb and Sr by using MAT 261. Rep. Res. Inst. Nat. Resour. Min. Coll. Akita Univ. 1996, 61, 7–30, (In Japanese with English Abstract). [Google Scholar]
- Bryndzia, T.; Scott, S.D. The composition of chlorite as a function of sulfur and oxygen fugacity: An experimental study. Am. J. Sci. 1987, 287, 50–76. [Google Scholar] [CrossRef]
- De Caritat, P.; Hutcheon, I.; Walshe, J.L. Chlorite geothermometry: A review. Clays Clay Miner. 1993, 41, 219–239. [Google Scholar] [CrossRef]
- Vidal, O.; Lanari, P.; Munoz, M.; Bourdelle, F.; De Andrade, V. Deciphering temperature, pressure and oxygen-activity conditions of chlorite formation. Clay Miner. 2016, 51, 615–633. [Google Scholar] [CrossRef]
- Shikazono, N.; Kawahata, H. Compositional differences in chlorite from hydrothermally altered rocks and hydrothermal ore deposit. Can. Miner. 1987, 25, 465–474. [Google Scholar]
- Bobos, I.; Noronha, F.; Mateus, A. Fe-, Fe, Mn- and Fe, Mg-chlorite: A genetic linkage to W, (Cu, Mo) mineralization in the magmatic-hydrothermal system at Borralha, northern Portugal. Mineral. Mag. 2018, 82, 259–279. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Yan, X.; Li, S. Characteristics of hydrothermal chlorite from the Niujuan Ag-Au-Pb-Zn deposit in the north margin of NCC and implications for exploration tools for ore deposits. Ore Geol. Rev. 2018, 101, 398–412. [Google Scholar] [CrossRef]
- Cathelineau, M. Cation site occupancy in chlorites and illites asa function of temperature. Clay Miner. 1988, 23, 471–485. [Google Scholar] [CrossRef]
- Cathelineau, M.; Nieva, D. A chlorite solid solution geothermometer. The Los Aufres geothermal system (Mexico). Contrib. Mineral. Petrol. 1985, 91, 235–244. [Google Scholar] [CrossRef]
- Kerrich, R.; Fryer, B.J.; King, R.W.; Willmore, L.M.; van Hees, E. Crustal outgassing and LILE enrichment in major lithosphere structures, Archean Abitibi greenstone belt: Evidence on the source reservoir from strontium and carbon isotope tracers. Contrib. Mineral. Petrol. 1987, 97, 156–168. [Google Scholar] [CrossRef]
- Morishita, Y.; Nakano, T. Role of basement in epithermal deposits: The Kushikino and Hishikari gold deposits, southwestern Japan. Ore Geol. Rev. 2008, 34, 597–609. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R.O. Isotopes of sulphur and carbon. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; John Wiley and Sons: New York, NY, USA, 1979; pp. 509–562. [Google Scholar]
- McCuaig, T.C.; Kerrich, R. P-T-t-deformation-fluid characteristics of lode gold deposits: Evidence from alteration systematics. Ore Geol. Rev. 1998, 12, 381–453. [Google Scholar] [CrossRef]
- Giuliani, A.; Phillips, D.; Kamenetsky, V.S.; Fiorentini, M.L.; Farquhar, J.; Kendrick, M.A. Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: A review. Chem. Geol. 2014, 374–375, 61–63. [Google Scholar] [CrossRef]
- Kerrich, R. The stable isotope geochemistry of Au-Ag vein deposits in metamorphic rocks. In Stable Isotope Geochemistry of Low Temperature Processes: GAC-MAC Short Course; Kyser, T.K., Ed.; Mineralogical Association of Canada: Quebec City, QC, Canada, 1987; Volume 11, pp. 318–361. [Google Scholar]
- Kiefer, R. Regional Geology, Tectonic Evolution, and Controls of Gold Mineralization in the Archean Amalia Greenstone Belt, South Africa. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2004; 542p. [Google Scholar]
- Rye, R.O.; Ohmoto, H. Sulphur and carbon isotopes and ore genesis: A review. Econ. Geol. 1974, 69, 642–826. [Google Scholar] [CrossRef]
- McLennan, S.M.; Taylor, S.R.; McCulloch, M.T.; Maynard, J.B. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonics. Geochim. Cosmochim. Acta 1990, 54, 2015–2050. [Google Scholar] [CrossRef]
(A) | ||||||||||
Mineral | δ18OSMOW (per mil) | δ13CPDB (per mil) | 87Rb/86Sr | Rb (ppm) | Sr (ppm) | Rb/Sr | 1/Sr (ppm−1) | 87Sr/86Sr | Std | |
C17-20 | Ank | 17.2 | −4.0 | 0.010 | 0.55 | 157.20 | 0.004 | 0.006 | 0.703023 | (±7; 2σ) |
C11-5A-3 | Ank | 16.3 | −4.5 | 0.076 | 1.00 | 38.15 | 0.026 | 0.026 | 0.703747 | (±6; 2σ) |
C17-15B | Ank | 13.5 | −5.6 | 1.23 | 1.46 | 3.43 | 0.426 | 0.292 | 0.706643 | (±6; 2σ) |
C17-23 | Ank | 16.3 | −3.9 | 0.371 | 0.89 | 6.94 | 0.128 | 0.144 | 0.704895 | (±6; 2σ) |
N23-7A | Ank | 17.4 | −3.5 | 0.382 | 1.88 | 14.22 | 0.132 | 0.070 | 0.705781 | (±12; 2σ) |
C17-6 | Ank | 16.3 | −4.6 | 0.078 | 2.11 | 78.45 | 0.027 | 0.013 | 0.704318 | (±7; 2σ) |
(B) | ||||||||||
Mineral | δ18OSMOW (per mil) | δ13CPDB (per mil) | 87Rb/86Sr | Rb (ppm) | Sr (ppm) | Rb/Sr | 1/Sr (ppm−1) | 87Sr/86Sr | Std | |
ARC 236/11A | Ank | 11.3 | −5.6 | 0.034 | 0.1 | 23.3 | 0.004 | 0.043 | 0.71042 | (±1; 2σ) |
ARC 236/11X | Sid | 10.1 | −5.8 | 0.188 | 0.3 | 4.5 | 0.067 | 0.222 | 0.72325 | (±1; 2σ) |
ARC 236/16 | Sid | 15.1 | −5.4 | 0.04 | 0.04 | 3.5 | 0.011 | 0.286 | 0.71138 | (±1; 2σ) |
MSH/W-3 | Ank | 9.8 | −7.6 | 0.005 | 0.3 | 168 | 0.002 | 0.006 | 0.70354 | (±1; 2σ) |
GDP 531/9C | Sid | 11.5 | −6.9 | 0.513 | 0.2 | 1.1 | 0.182 | 0.909 | 0.72907 | (±2; 2σ) |
DZ 40/1 | Sid | 10.3 | −6.7 | 0.389 | 0.4 | 2.9 | 0.138 | 0.345 | 0.73914 | (±2; 2σ) |
DZ 40/2 | Sid | 10.6 | −6.7 | 0.047 | 0.2 | 12.1 | 0.017 | 0.083 | 0.71583 | (±1; 2σ) |
DZ 40/3 | Sid | 10.8 | −6.6 | 0.047 | 0.3 | 18.2 | 0.016 | 0.055 | 0.71235 | (±1; 2σ) |
GDP 531/16B | Sid | 10.8 | −6.1 | 0.006 | 0.1 | 18.1 | 0.006 | 0.055 | 0.70564 | (±2; 2σ) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adomako-Ansah, K.; Hammond, N.Q.; Morishita, Y.; Ishiyama, D. Evolution of Auriferous Fluids in the Kraaipan-Amalia Greenstone Belts: Evidence from Mineralogical and Isotopic Constraints. Minerals 2024, 14, 1171. https://doi.org/10.3390/min14111171
Adomako-Ansah K, Hammond NQ, Morishita Y, Ishiyama D. Evolution of Auriferous Fluids in the Kraaipan-Amalia Greenstone Belts: Evidence from Mineralogical and Isotopic Constraints. Minerals. 2024; 14(11):1171. https://doi.org/10.3390/min14111171
Chicago/Turabian StyleAdomako-Ansah, Kofi, Napoleon Q. Hammond, Yuichi Morishita, and Daizo Ishiyama. 2024. "Evolution of Auriferous Fluids in the Kraaipan-Amalia Greenstone Belts: Evidence from Mineralogical and Isotopic Constraints" Minerals 14, no. 11: 1171. https://doi.org/10.3390/min14111171
APA StyleAdomako-Ansah, K., Hammond, N. Q., Morishita, Y., & Ishiyama, D. (2024). Evolution of Auriferous Fluids in the Kraaipan-Amalia Greenstone Belts: Evidence from Mineralogical and Isotopic Constraints. Minerals, 14(11), 1171. https://doi.org/10.3390/min14111171