Ore Formation and Mineralogy of the Alattu–Päkylä Gold Occurrence, Ladoga Karelia, Russia
Abstract
:1. Introduction
2. Geological Setting of the Alattu–Päkylä Ore Occurrence
3. Materials and Methods
4. Results
4.1. Geological Structure and Composition of the Alattu–Päkylä Intrusion
4.2. Types of Ore Mineralization in the Alattu–Päkylä Occurrence
4.2.1. Copper–Molybdenum–Porphyry with Gold (Intrusion–Related)-Type Mineralization
4.2.2. Gold–Arsenopyrite–Sulfide Mineralization in Shear–Zones
5. Discussion
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morey, A.A.; Tomkins, A.G.; Bierlein, F.P.; Weinberg, R.F.; Davidson, G.J. Bimodal Distribution of Gold in Pyrite and Arsenopyrite: Examples from the Archean Boorara and Bardoc Shear Systems, Yilgarn Craton, Western Australia. Econ. Geol. 2008, 103, 599–614. [Google Scholar] [CrossRef]
- Cabri, L.J.; Chryssoulis, S.L.; de Villiers, J.P.R.; Laflamme, J.H.G.; Buseck, P.R. The nature of “invisible” gold in arsenopyrite. Can. Mineral. 1989, 27, 353–362. [Google Scholar]
- Cabri, L.J.; Newville, M.; Gordon, R.A.; Crozier, E.D.; Sutton, S.R.; Mcmahon, G.; Jiang, D.-T. Chemical speciation of gold in arsenopyrite. Can. Mineral. 2000, 38, 1265–1281. [Google Scholar] [CrossRef]
- Cathelineau, M.; Boiron, M.-C.; Holliger, P.; Marion, P.; Denis, M. Gold in arsenopyrites; Crystal chemistry, location and state, physical and chemical conditions of deposition. Econ. Geol. Monogr. 1989, 6, 328–341. [Google Scholar]
- Eilu, P.; Sorjonen-Ward, P.; Nurmi, P.; Niiranen, T. A Review of Gold Mineralization Styles in Finland. Econ. Geol. 2003, 98, 1329–1353. [Google Scholar] [CrossRef]
- Oberthür, T.; Weiser, T.; Amanor, J.A.; Chryssoulis, S.L. Mineralogical siting and distribution of gold in quartz veins and sulphide ores of the Ashanti mine and other deposits in the Ashanti belt of Ghana: Genetic implications. Miner. Depos. 1997, 32, 2–15. [Google Scholar] [CrossRef]
- Genkin, A.D.; Bortnikov, N.S.; Cabri, L.J.; Wagner, F.E.; Stanley, C.J.; Safonov, Y.G.; McMahon, G.; Friedl, J.; Kerzin, A.L.; Gamyanin, G.N. A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation. Econ. Geol. 1998, 93, 463–487. [Google Scholar] [CrossRef]
- Tomkins, A.G.; Mavrogenes, J.A. Redistribution of gold within arsenopyrite and löllingite during pro- and retrograde metamorphism: Application to timing of mineralization. Econ. Geol. 2001, 96, 525–534. [Google Scholar] [CrossRef]
- Trigub, A.L.; Tagirov, B.R.; Kvashnina, K.O.; Chareev, D.A.; Nickolsky, M.S.; Shiryaev, A.A.; Baranova, N.N.; Kovalchuk, E.V.; Mokhov, A.V. X-ray spectroscopy study of the chemical state of “invisible” Au in synthetic minerals in the Fe-As-S system. Am. Mineral. 2017, 102, 1057–1065. [Google Scholar]
- Morishita, Y.; Shimada, N.; Shimada, K. Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: Significance of variation and distribution of Au/As ratios in pyrite. Ore Geol. Rev. 2018, 95, 79–93. [Google Scholar] [CrossRef]
- Sung, Y.-H.; Brugger, J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Nugus, M. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Miner. Depos. 2009, 44, 765–791. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Robert, F.; Hart, C.J.R. Gold Deposits in Metamorphic Belts: Overview of Current Understanding, Outstanding Problems, Future Research, and Exploration Significance. Econ. Geol. 2003, 98, 1–29. [Google Scholar]
- Wah, A.S.; Moiseenko, V.G.; Stepanov, V.A.; Avchenko, O.V. Berezit gold-polymetallic deposit. Dokl. Acad. Nauk. 2009, 425, 204–207. (In Russian) [Google Scholar]
- Koistinen, T.; Laitakari, I.; Virronsalo, P.; Korsman, K.; Puura, V.; Vaher, R.; Klein, V.; Niin, M.; Koppelmaa, H.; Tikhomirov, S. Precambrian Basement of the Gulf of Finland and Surrounding Area (Map 1:1 000 000); Geological Survey of Finland: Espoo, Finland, 1994. [Google Scholar]
- Ivashchenko, V.; Lavrov, O. Ore deposits and occurrences in the North Ladoga region, Southwest Karelia. In 12th Quadrennial IAGOD Symposium: Understanding the Genesis of Ore Deposits to Meet the Demands of the 21st Century: Field Trip Guidebook; Science and Our Future: Moscow, Russia, 2006; pp. 41–64. [Google Scholar]
- Ivanikov, V.V.; Bogachev, V.A. Molybdenum-bearing granite-porphyry complexes of Karelia. In Abstracts of the 11th International Conference. Geological Correlation of Fennoscandia; St.-Petersburg Univ.: St. Peterburg, Russia, 1996; pp. 25–26. (In Russian) [Google Scholar]
- Ivashchenko, V.I.; Lavrov, O.B. Noble metal mineralization in southwestern Karelia. In Gold and Diamond Potential of North European Russia; Petrozavodsk, Russia, 1997; pp. 44–51. (In Russian) [Google Scholar]
- Bulavin, A.V.; Ryabukhin, V.T. Geologo-economic aspects of the study and development of noble metal deposits in Karelia. In Gold and Diamond Potential of North European Russia; Petrozavodsk, Russia, 1997; pp. 5–8. (In Russian) [Google Scholar]
- Konopelko, D.L.; Stepanov, K.I.; Petrov, S.V.; Pupkov, O.M. Hypabyssal gabbro-plagiogranite complex in the northern Lake Ladoga region. Vestn. St.-Petersburg Univ. Ser. 7 1999, 4, 21–31. (In Russian) [Google Scholar]
- Ivashchenko, V.I.; Ruchyev, A.M.; Lavrov, O.B.; Kondrashova, N.I. Päkylä gold occurrence—A new promising type of noble metal mineralization in the northern Lake Ladoga region. In Geology and Commercial Minerals of Karelia; Karelian Research Centre of the RAS: Petrozavodsk, Russia, 2001; Volume 3, pp. 40–53. (In Russian) [Google Scholar]
- Ivashchenko, V.I.; Ruchyev, A.M.; Lavrov, O.B.; Kondrashova, N.I.; Ternovoy, A.N. Endogenic gold ore system of the Suistamo plutonic complex, northern Lake Ladoga region. In Geology and Commercial Minerals of Karelia; Karelian Research Centre of the RAS: Petrozavodsk, Russia, 2004; Volume 7, pp. 127–146. (In Russian) [Google Scholar]
- Stepanov, K.I.; Sanina, G.N.; Bogachev, V.A.; Betkhatova, M.K.; Belousova, I.V. Report on Additional Geological Study of 1:200 000 Scale Sortavala Prospect, Compiling and EDITING of a Set of State Geological Map Sheets P-35-XXIV, P-36-XIX, 2nd ed.; GGUP SF Mineral: St. Petersburg, Russia, 2006; p. 264. (In Russian) [Google Scholar]
- Ivashchenko, V.I.; Golubev, A.I. Gold and Platinum in Karelia: Formational-Genetic Types of Mineralization and Prospects; Karelian Research Centre of the RAS: Petrozavodsk, Russia, 2011; p. 369. (In Russian) [Google Scholar]
- Lavrov, O.B. Productive and accompanying mineral associations in the Päkylä ore occurrence, northern Lake Ladoga region. In Geology and Commercial Minerals of Karelia; Karelian Research Centre of the RAS: Petrozavodsk, Russia, 2009; Volume 12, pp. 60–64. (In Russian) [Google Scholar]
- Nironen, M. The Svecofennian Orogen: A tectonic model. Precambrian Res. 1997, 86, 21–44. [Google Scholar] [CrossRef]
- Alexeyev, I.A.; Amantov, A.V.; Amantova, M.G.; Babichev, A.V.; Baltybaev, S.K.; Bugayenko, I.V.; Voinov, A.S.; Golubtsova, N.S.; Ivashchenko, V.I.; Zhamaletdinov, A.A.; et al. Proterozoic Ladoga Structure: Geology, Deep Structure and Minerageny; Sharov, N.V., Ed.; Karelian Research Centre of the RAS: Petrozavodsk, Russia, 2019; p. 435. (In Russian) [Google Scholar]
- Baltybaev, S.K.; Larionov, A.N.; Levchenkov, O.A.; Glebovitcky, V.A.; Makeev, A.F.; Rizvanova, N.G.; Fedoseenko, A.M. U-Pb dating of migmatite leukosomes using мeтoдa SIMS method for zircon and comparison with data obtained by TIMS-ID method for monazite. Dokl. Akad. Nauk. 2009, 427, 806–809. (In Russian) [Google Scholar]
- Larin, A.M. Rapakivi Granites and Associated Rocks; Nauka: St. Petersburg, Russia, 2011; p. 402. (In Russian) [Google Scholar]
- Salminen, J.; Donadini, F.; Pesonen, L.J.; Masaitis, V.L.; Naumov, M.V. Paleomagnetism and petrophysics of the Jänisjärvi impact structure, Russian Karelia. Meteorit. Planet. Sci. 2006, 41, 1853–1870. [Google Scholar] [CrossRef]
- Jourdan, F.; Renne, P.R.; Reimold, W.U. High-precision 40Ar/39Ar age of the Jänisjärvi impact structure (Russia). Earth Planet. Sci. Lett. 2008, 265, 438–449. [Google Scholar] [CrossRef]
- Eskola, P. Around Pitkäranta. Ann. Acad. Sci. Fenn. Geol. Geogr. 1951, 3, 90. [Google Scholar]
- Sudovikov, N.G. Problems in Rapakivi and Late Orogenic Intrusions; Nauka: Moscow, Russia, 1967; p. 118. (In Russian) [Google Scholar]
- Krats, K.O. Geology of the Karelides in Karelia. In Transactions of LAGED AN SSSR; Leningrad, Russia, 1963; Volume 16, p. 181. (In Russian) [Google Scholar]
- Grigoryeva, L.V.; Shinkarev, N.F. Conditions of formation of domal structures in the Trans-Ladoga region. 704 Izv. An SSSR Ser. Geol. 1981, 3, 41–51. (In Russian) [Google Scholar]
- Morozov, Y.A. Structure-forming role of transpression and transtension. Geotektonika 2002, 6, 3–28. (In Russian) [Google Scholar]
- Bogachev, V.A.; Ivanikov, V.V.; Kozyreva, I.V.; Konopelko, D.L.; Levchenkov, O.A.; Shuldiner, V.I. Results of U–Pb zircon dating of synorogenic gabbro-diorite and granitoid intrusions (1.89–1.87 Ga) in the northern Lake Ladoga region. Vestn. St.-Petersburg Univ. Ser. 7 1999, 3, 23–31. (In Russian) [Google Scholar]
- Nurmi, P.A.; Front, K.; Lampio, E.; Nironen, M. Svecokarelian porphyry-type molibdenum and copper occurences, southern Finland: Theeir granitoid host rocks and lithogeochemical exploration. Geol. Surv. Finl. Rep. Investig. 1984, 67, 88. [Google Scholar]
- Kontoniemi, O. Geology of the Paleoproterozoic synkinematic Osikonmaki granitoid intrusion at Rantasalmi, southeastern Finland. Geol. Surv. Finl. Spec. Pap. 1998, 25, 19–38. [Google Scholar]
- Eilu, P. Fingold—A public database on gold deposits in Finland. Geological Survey of Finland. Rep. Investig. 1999, 146, 18. [Google Scholar]
- Svetov, S.A.; Stepanova, A.V.; Chazhengina, S.Y.; Svetova, E.N.; Mikhailova, A.I.; Rybnikova, Z.P.; Paramonov, A.S.; Utitsina, V.L.; Kolodei, V.S.; Ekhova, M.V. Precise ICP-MS and LA-ICP-MS analysis of rock and mineral composition: Technique application and assessment of accuracy of the obtained results on the example of Early Precambrian mafic complexes. Tr. Karel. Nauchn. Tsentr Ross. Akad. Nauk. 2015, 7, 54–73. (In Russian) [Google Scholar]
- Fershtater, G.B.; Borodina, N.S. Petrology of Igneous Granitoids; Nauka: Moscow, Russia, 1975; p. 288. (In Russian) [Google Scholar]
- Uchida, E.; Endo, S.; Makino, M. Relationship Between Solidification Depth of Granitic Rocks and Formation of Hydrothermal Ore Deposits. Resour. Geol. 2006, 57, 47–56. [Google Scholar] [CrossRef]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rocks series using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Middlemost, E.A.M. Magma and Magmatic Rocks: An Introduction to Igneous Petrology; Longman Inc.: New York, NY, USA, 1985; p. 651. [Google Scholar]
- Frost, B.R.; Barnes, C.G.; Collins, W.J.; Arculus, R.J.; Ellis, D.J.; Frost, C.D. A geochemical classification for granitic rocks. J. Petrol. 2001, 42, 2033–2048. [Google Scholar] [CrossRef]
- Chappell, B.W.; White, A.J.R. I-and S-type granites in the Lachlan Fold Belt. Trans. R. Soc. Edinb. Earth Sci. 1992, 83, 1–26. [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace elements discrimination diagrams for the geotectonic interpretation of granite rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Bogachev, V.A.; Ivannikov, V.V.; Krymsky, R.S.; Ivaschenko, V.I.; Belyatsky, B.V.; Goltsin, N.A.; Sergeev, S.A. Re–Os Molybdenite Isochron Age for Early Precambrian Porphyry Deposits in Karelia. Vestn. St.-Petersburg Univ. Ser. 7 2013, 2, 3–20. (In Russian) [Google Scholar]
- Kretschmar, U.; Scott, S.D. Phase relations involving arsenopyrite in the system Fe–As–S and their application. Can. Mineral. 1976, 14, 364–386. [Google Scholar]
- Sharp, Z.D.; Essene, E.J.; Kelly, W.C. A re-examination of the arsenopvrite geothermometer: Pressure considerations and applications to natural assemblages. Can. Mineral. 1985, 23, 517–534. [Google Scholar]
- Ostashchenko, B.; Shumilov, I. Problems in fine gold beneficiation. Vestn. IG Komi NC RAS 1999, 4, 6–7. (In Russian) [Google Scholar]
- Okamoto, H.; Massalski, T.B. The Au-Hg (Gold-mercury) system. Bull. Alloy Phase Diagr. 1989, 10, 50–58. [Google Scholar] [CrossRef]
- Gulbin, Y.L. P−T trends and modelling of the evolution of the mineral composition of metapelites in the northern Lake Ladoga region in MnNCKFMASH system. Zap. RMO 2014, 6, 34–52. (In Russian) [Google Scholar]
- Baltybaev, S.K.; Ovchinnikova, G.V.; Kuznetsov, A.B.; Vasilieva, I.M.; Rizvanova, N.G.; Alekseev, I.A.; Kirillova, P.A. Two stage of gold-bearing sulfide ores of early Proterozoic gabbroids in the North Ladoga area. Vestn. St.-Petersburg Univ. Earth Sci. 2021, 66, 559–577. (In Russian) [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 7th ed.; Springer International Publishing: Cham, Switzerland, 2015; p. 389. [Google Scholar]
- Möller, P.; Kersten, G. Electrochemical accumulation of visible gold on pyrite and arsenopyrite surfaces. Miner. Depos. 1994, 29, 404–413. [Google Scholar] [CrossRef]
- Tomkins, A.G. On the source of orogenic gold. Geology 2013, 41, 1255–1256. [Google Scholar] [CrossRef]
- Wagner, F.E.; Marion, P.H.; Regnard, J.R. Mossbauer study of the chemical state of gold in gold ores. In Proceedings of the Gold 100: South African Institute of Mining and Metallurgy International Conference on Gold, South African Institute of Mining and Metallurgy, Johannesburg, South Africa, 15–17 September 1986; Volume 2, pp. 435–443. [Google Scholar]
- Wagner, T.; Klemd, R.; Wenzel, T.; Mattsson, B. Gold upgrading in metamorphosed massive sulfi de ore deposits: Direct evidence from laser-ablation-inductively coupled plasma-mass spectrometry analysis of invisible gold. Geology 2007, 35, 775–778. [Google Scholar] [CrossRef]
- Sack, R.O.; Fredericks, R.; Hardy, L.S.; Ebel, D.S. Origin of high-Ag fahlores from the Galena Mine, Wallace, Idaho, U.S.A. Am. Miner. 2005, 90, 1000–1007. [Google Scholar] [CrossRef]
wt.% | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | 37.24 | 33.81 | 29.66 | 27.20 | 25.31 | 24.98 | 24.44 | 25.44 | 23.21 | 22.55 | 22.65 | 21.10 | 17.31 | 15.61 |
Fe | 5.09 | 5.81 | 4.35 | 6.14 | 5.76 | 5.37 | 5.62 | 5.13 | 5.22 | 5.75 | 5.87 | 5.69 | 7.65 | 5.72 |
Zn | 2.10 | 2.44 | 2.89 | 1.29 | 4.50 | 1.11 | 1.33 | bd | 1.45 | bd | bd | bd | 1.15 | bd |
Ag | 1.78 | 4.88 | 8.81 | 13.49 | 14.37 | 16.04 | 16.27 | 16.83 | 18.58 | 18.83 | 19.35 | 22.00 | 27.05 | 31.33 |
Sb | 22.82 | 28.92 | 29.47 | 28.13 | 25.52 | 28.16 | 27.85 | 28.56 | 27.88 | 27.13 | 27.80 | 27.58 | 25.20 | 26.19 |
As | 4.96 | bd | bd | bd | 0.58 | bd | bd | bd | bd | bd | bd | bd | bd | bd |
S | 26.39 | 23.67 | 25.30 | 23.26 | 24.36 | 23.76 | 23.64 | 23.42 | 24.04 | 23.70 | 23.53 | 23.48 | 21.65 | 21.28 |
U | bd | bd | bd | bd | bd | bd | bd | bd | bd | 1.17 | bd | bd | bd | bd |
Total | 100.38 | 99.53 | 100.51 | 99.51 | 100.40 | 99.42 | 99.15 | 99.38 | 100.38 | 99.14 | 99.19 | 99.87 | 99.72 | 100.13 |
Chemical formula | ||||||||||||||
Cu | 9.431 | 9.121 | 7.955 | 7.572 | 6.873 | 7.006 | 6.876 | 7.195 | 6.490 | 6.435 | 6.447 | 6.029 | 5.063 | 4.695 |
Fe | 1.467 | 1.784 | 1.328 | 1.946 | 1.781 | 1.714 | 1.801 | 1.650 | 1.662 | 1.858 | 1.900 | 1.853 | 2.549 | 1.957 |
Zn | 0.516 | 0.638 | 0.757 | 0.351 | 1.186 | 0.305 | 0.365 | 0.394 | 0.325 | |||||
Ag | 0.267 | 0.777 | 1.392 | 2.213 | 2.300 | 2.648 | 2.697 | 2.804 | 3.060 | 3.164 | 3.248 | 3.703 | 4.663 | 5.551 |
Sb | 3.016 | 4.072 | 4.124 | 4.086 | 3.619 | 4.121 | 4.089 | 4.217 | 4.069 | 4.040 | 4.130 | 4.115 | 3.848 | 4.112 |
As | 1.064 | 0.133 | ||||||||||||
S | 13.241 | 12.609 | 13.444 | 12.833 | 13.108 | 13.204 | 13.175 | 13.134 | 13.325 | 13.403 | 13.273 | 13.299 | 12.551 | 12.682 |
U | 0.090 |
wt.% | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Pb | 41.93 | 41.85 | 41.57 | 41.90 | 41.35 | 40.37 | 41.99 | 42.45 | 42.59 | 41.89 |
Cu | 12.81 | 12.46 | 12.47 | 12.84 | 12.63 | 12.93 | 12.43 | 12.53 | 12.05 | 12.42 |
Sb | 25.54 | 25.70 | 25.54 | 25.44 | 24.82 | 25.53 | 25.17 | 25.01 | 25.32 | 25.13 |
S | 18.51 | 19.34 | 19.57 | 19.59 | 20.05 | 20.19 | 19.62 | 19.08 | 19.35 | 19.33 |
Total | 98.79 | 99.36 | 99.14 | 99.77 | 98.85 | 99.03 | 99.20 | 99.07 | 99.31 | 98.96 |
Chemical formula | ||||||||||
Pb | 1.019 | 0.999 | 0.989 | 0.991 | 0.976 | 0.944 | 0.999 | 1.022 | 1.022 | 1.009 |
Cu | 1.015 | 0.970 | 0.968 | 0.991 | 0.972 | 0.986 | 0.964 | 0.984 | 0.943 | 0.971 |
Sb | 1.057 | 1.045 | 1.034 | 1.024 | 0.997 | 1.016 | 1.019 | 1.025 | 1.034 | 1.025 |
S | 2.909 | 2.986 | 3.009 | 2.995 | 3.056 | 3.053 | 3.017 | 2.969 | 3.001 | 2.995 |
wt.% | 1 | 2 | 3 |
---|---|---|---|
Fe | 1.63 | bd | 12.61 |
Sb | 71.18 | 72.39 | 57.56 |
S | 26.57 | 27.25 | 28.98 |
Total | 99.38 | 99.64 | 99.16 |
Chemical formula | |||
Fe | 0.101 | 0.987 | |
Sb | 2.026 | 2.058 | 2.065 |
S | 2.873 | 2.942 | 3.948 |
wt.% | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ni | 28.36 | 27.76 | 26.44 | 25.86 | 25.24 | 25.71 | 25.62 | 27.14 | 25.15 | 24.00 | 23.36 | 18.52 | 6.96 | 4.11 |
Co | bd | bd | bd | bd | bd | 0.59 | 1.33 | 1.50 | 1.70 | 1.79 | 3.30 | 5.45 | 17.71 | 21.24 |
Fe | bd | 1.28 | 1.04 | bd | bd | 2.81 | 3.38 | 1.31 | bd | 3.09 | 1.54 | 4.73 | 4.90 | 2.66 |
Sb | 55.19 | 56.70 | 57.86 | 58.38 | 59.37 | 56.55 | 54.96 | 56.50 | 56.99 | 56.12 | 55.81 | 53.40 | 52.87 | 56.43 |
S | 15.86 | 13.39 | 15.17 | 15.07 | 15.06 | 13.97 | 15.37 | 14.03 | 15.61 | 14.54 | 15.15 | 17.31 | 18.17 | 15.89 |
Total | 99.41 | 99.13 | 100.51 | 99.31 | 99.67 | 99.62 | 100.66 | 100.48 | 99.45 | 99.54 | 99.16 | 99.41 | 100.61 | 100.33 |
Chemical formula | ||||||||||||||
Ni | 1.030 | 1.028 | 0.953 | 0.951 | 0.929 | 0.940 | 0.910 | 0.982 | 0.911 | 0.870 | 0.845 | 0.644 | 0.236 | 0.146 |
Co | 0.021 | 0.047 | 0.054 | 0.061 | 0.065 | 0.119 | 0.188 | 0.598 | 0.752 | |||||
Fe | 0.050 | 0.039 | 0.108 | 0.101 | 0.050 | 0.118 | 0.059 | 0.173 | 0.175 | 0.099 | ||||
Sb | 0.967 | 1.013 | 1.006 | 1.035 | 1.055 | 0.997 | 0.941 | 0.986 | 0.994 | 0.981 | 0.974 | 0.895 | 0.864 | 0.968 |
S | 1.004 | 0.909 | 1.001 | 1.014 | 1.016 | 0.935 | 1.000 | 0.929 | 1.034 | 0.966 | 1.004 | 1.101 | 1.128 | 1.034 |
Cu–Mo with Apy and Au Mineralization | Au–Apy Mineral Association | Qz–Apy Mineral Association | Polysulfide Mineral Association | |||||
---|---|---|---|---|---|---|---|---|
Apy with Visible Au | Apy with Invisible Au | Apy with Visible Au | Apy with Invisible Au | Apy with Visible Au | Apy with Invisible Au | Apy with Visible Au | Apy with Invisible Au | |
As/S | 0.763–0.926 | 0.804–1.028 | 0.734–1.145 | 0.748–0.975 | 0.753–0.931 | 0.882–1.033 | 0.891 | 0.773–0.989 |
Fe, at.% | 33.50–33.60 | 31.53–34.67 | 32.17–34.40 | 32.37–34.63 | 32.67–34.27 | 32.30–33.87 | 33.87 | 32.00–33.87 |
As, at.% | 28.73–31.97 | 30.51–33.10 | 28.65–35.30 | 28.63–32.24 | 28.74–32.07 | 31.70–34.33 | 33.55 | 29.08–33.04 |
S, at.% | 34.53–37.67 | 32.23–37.96 | 30.83–39.02 | 34.23–38.70 | 34.43–38.13 | 33.37–35.93 | 34.96 | 33.25–37.75 |
T °C | 270–410 | 310–490 | 260–560 | 260–370 | 270–420 | 340–470 | 330 | 280–490 |
Log fS2 | −12.5–−7.0 | −12.6–−4.3 | −14–−4.3 | −13.8–−8.5 | −11.3–7.0 | −11.3–−7.7 | −11.8 | −12.0–−4.6 |
wt.% | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Ag | bd | 26.52 | 34.95 | bd | bd |
Au | 15.06 | 4.76 | bd | 52.37 | 53.42 |
Bi | 70.06 | 45.26 | bd | 48.22 | 47.31 |
Sb | bd | bd | 41.54 | bd | bd |
Pb | 4.61 | bd | bd | bd | bd |
S | 9.44 | 23.24 | 22.42 | bd | bd |
Total | 99.17 | 99.76 | 98.91 | 100.59 | 100.73 |
Chemical formula | |||||
Ag | 0.811 | 0.950 | |||
Au | 1.051 | 0.080 | 0.535 | 0.545 | |
Bi | 4.606 | 0.715 | 0.465 | 0.455 | |
Sb | 1.000 | ||||
Pb | 0.306 | ||||
S | 4.036 | 2.394 | 1.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivashchenko, V.I. Ore Formation and Mineralogy of the Alattu–Päkylä Gold Occurrence, Ladoga Karelia, Russia. Minerals 2024, 14, 1172. https://doi.org/10.3390/min14111172
Ivashchenko VI. Ore Formation and Mineralogy of the Alattu–Päkylä Gold Occurrence, Ladoga Karelia, Russia. Minerals. 2024; 14(11):1172. https://doi.org/10.3390/min14111172
Chicago/Turabian StyleIvashchenko, Vasily I. 2024. "Ore Formation and Mineralogy of the Alattu–Päkylä Gold Occurrence, Ladoga Karelia, Russia" Minerals 14, no. 11: 1172. https://doi.org/10.3390/min14111172
APA StyleIvashchenko, V. I. (2024). Ore Formation and Mineralogy of the Alattu–Päkylä Gold Occurrence, Ladoga Karelia, Russia. Minerals, 14(11), 1172. https://doi.org/10.3390/min14111172