Prediction of Lithium Oilfield Brines Based on Seismic Data: A Case Study from L Area, Northeastern Sichuan Basin, China
Abstract
:1. Introduction
2. Methodology
2.1. Porosity and Water Saturation Calculation
2.2. Prediction of Well-Logging Properties Constrained by Waveform Clustering
2.2.1. Waveform Clustering Based on SVD
2.2.2. Sample Set of Well-Logging Properties and Frequency Analysis
2.2.3. Prediction in Different Frequency Ranges under Seismic Waveform Constraints
2.3. Workflow
3. Geologic Setting and Data Description
4. Application
4.1. Sensitive Parameter Analysis
4.2. Number of Effective Samples Analysis
4.3. Best Cutoff Frequency Analysis
4.4. Prediction and Verification Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, M.-Y.; Luo, C.-G.; Yang, H.-J.; Kong, F.-C.; Li, Y.-L.; Deng, L.; Zhang, X.-Y.; Yang, K.-Y. Sources and a proposal for comprehensive exploitation of lithium brine deposits in the Qaidam Basin on the northern Tibetan Plateau, China: Evidence from Li isotopes. Ore Geol. Rev. 2020, 117, 103277. [Google Scholar] [CrossRef]
- Bradley, D.C.; Stillings, L.L.; Jaskula, B.W.; Munk, L.A.; McCauley, A.D. Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply. Geol. Surv. 2017, 1802, K1–K21. [Google Scholar]
- Cabello, J. Lithium brine production, reserves, resources and exploration in Chile: An updated review. Ore Geol. Rev. 2021, 128, 103883. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, X.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O.; Lu, G.; Lou, X.W. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 2022, 375, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Gil-Alana, L.A.; Monge, M. Lithium: Production and estimated consumption: Evidence of persistence. Resour. Policy 2019, 60, 198–202. [Google Scholar] [CrossRef]
- Kesler, S.E.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Everson, M.P.; Wallington, T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [Google Scholar] [CrossRef]
- Christmann, P.; Gloaguen, E.; Labbé, J.F.; Jérémie, M.; Patrice, P. Global lithium resources and sustainability issues. In Lithium Process Chemistry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–40. [Google Scholar]
- Meng, F.; McNeice, J.; Zadeh, S.S.; Ghahreman, A. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Miner. Process. Extr. Metall. Rev. 2021, 42, 123–141. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Wu, C.; Fan, Q.; Qin, Z.; Chen, L.; Wei, H.; Du, Y.; Yuan, Q.; Li, J.; et al. Hydrochemistry and Sr-S isotope constraints on the source of lithium in the Nalenggele river and its terminal lakes, Qaidam basin. Acta Geol. Sin. 2021, 95, 2169–2182. [Google Scholar]
- Gong, Y.; Liu, X.; Zhou, Q. Study on the composition and variation trend of oilfield brine in an oilfield of Jilin Province. IOP Conf. Ser. Earth Environ. Sci. 2020, 592, 012036. [Google Scholar]
- Al-Thukair, A.A.; Ali, M.Y.; Al-Haddad, A.A.; Al-Zahrani, A.A.; Khan, S.A. Heavy metals distribution in the oilfield produced brine from the Al Khafji oilfield, Saudi Arabia. J. Environ. Sci. Health A 2013, 48, 393–399. [Google Scholar]
- Moosavi, V.; Kazemi, G.A. Lithium recovery from oilfield-produced brines: A comprehensive review. J. Petrol. Sci. Eng. 2020, 184, 106698. [Google Scholar]
- Yang, Y.; Lu, J.; Wang, Y. Separation of split shear waves based on a hodogram analysis of HTI media. Acta Geophys. 2018, 66, 643–658. [Google Scholar] [CrossRef]
- Yi, J.; Bao, H.; Zheng, A.; Zhang, B.; Shu, Z.; Li, J.; Wang, C. Main factors controlling marine shale gas enrichment and high-yield wells in South China: A case study of the Fuling shale gas field. Mar. Petrol. Geol. 2019, 103, 114–125. [Google Scholar] [CrossRef]
- Wen, H.; Wen, L.; Chen, H.; Zheng, R.; Dang, L.; Li, Y. Geochemical characteristics and diagenetic fluids of dolomite reservoirs in the Huanglong Formation, Eastern Sichuan Basin, China. Petrol. Sci. 2014, 11, 52–66. [Google Scholar] [CrossRef]
- Ni, Y.; Zou, C.; Cui, H.; Li, J.; Lauer, N.E.; Harkness, J.S.; Kondash, A.J.; Coyte, R.M.; Dwyer, G.S.; Liu, D.; et al. Origin of flowback and produced waters from Sichuan Basin, China. Environ. Sci. Technol. 2018, 52, 14519–14527. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Xu, C.; Wang, T.; Wang, H.; Wang, Z.; Bian, C.; Li, X. Comparative study of gas accumulations in the Permian Changxing reefs and Triassic Feixianguan oolitic reservoirs between Longgang and Luojiazhai-Puguang in the Sichuan Basin. Chin. Sci. Bull. 2011, 56, 3310–3320. [Google Scholar] [CrossRef]
- Araoka, D.; Kawahata, H.; Takagi, T.; Watanabe, Y.; Nishimura, K.; Nishio, Y. Lithium and strontium isotopic systematics in playas in Nevada, USA: Constraints on the origin of lithium. Miner. Depos. 2014, 49, 371–379. [Google Scholar] [CrossRef]
- Orberger, B.; Rojas, W.; Millot, R.; Flehoc, C. Stable isotopes (Li, O, H) combined with brine chemistry: Powerful tracers for Li origins in salar deposits from the Puna Region. Procedia Earth Planet. Sci. 2015, 13, 307–311. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.; Yang, K.; Pei, W.B.; Zhang, S.M.; Xiao, W. Salt accumulation, potassium formation mechanism and enrichment model of Triassic in northeast Sichuan Basin. Earth Sci. 2022, 47, 15–26. [Google Scholar]
- Yu, X.C.; Liu, C.L.; Wang, C.L.; Xu, H.M.; Zhao, Y.J.; Huang, H.; Li, R.Q. Genesis of lithium brine deposits in the Jianghan Basin and progress in resource exploration: A review. Earth Sci. Front. 2022, 29, 107. [Google Scholar] [CrossRef]
- Jiao, P.; Liu, C.; Bai, D.; Wang, M.; Chen, Y. Application of self-potential technique to the exploration of potassium-rich brine in Lop Nur, Xinjiang. Acta Geosci. Sin. 2005, 26, 381–385. [Google Scholar]
- Yan, J.G.; Hou, L.; Zhao, Y.H.; Yang, X.Y. Application of seismic exploration method in east sichuan deep-seated potassium-rich brine exploration. Eng. Sci. 2013, 15, 59–65. [Google Scholar]
- Huang, H.; Liu, C.L.; Zhang, S.W.; Xu, H.M.; Ye, J.Z.; Wang, C.L.; Peng, W.; Wen, H. Application of geophysical detection method to exploration of deep potassium rich brine formation: A case study of Jiangling depression. Miner. Depos. 2014, 33, 1101–1107. [Google Scholar]
- Hou, X.H.; Feng, L.; Zheng, M.P.; Wang, W.; Fan, F.; Zhao, W.Y.; Gao, X.F. Recognition method of potassium-rich lithium brine reservoir in Nanyishan. Earth. Sci. 2022, 47, 45–55. [Google Scholar]
- Smith, G.; Gidlow, P. Weighted stacking for rock property estimation and detection of gas. Geophys. Prospect. 1987, 35, 993–1014. [Google Scholar] [CrossRef]
- Ruiz, F.; Cheng, A. A rock physics model for tight gas sand. Lead. Edge 2010, 29, 1484–1489. [Google Scholar] [CrossRef]
- Lu, J.; Meng, X.; Wang, Y.; Yang, Z. Prediction of coal seam details and mining safety using multicomponent seismic data: A case history from China. Geophysics 2016, 81, B149–B165. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, J.; Li, H.; Qi, Q.; Zhou, H. Fracture prediction based on walkaround 3D3C vertical seismic profiling data: A case study from the Tarim Basin in China. Geophysics 2022, 87, D123–D136. [Google Scholar] [CrossRef]
- Khoshdel, H.; Javaherian, A.; Saberi, M.R.; Varnousfaderani, S.R.; Shabani, M. Permeability estimation using rock physics modeling and seismic inversion. J. Petrol. Sci. Eng. 2022, 219, 111128. [Google Scholar] [CrossRef]
- Keys, R.G.; Xu, S. An approximation for the Xu-White velocity model approximation for the Xu-White model. Geophysics 2002, 67, 1406–1414. [Google Scholar] [CrossRef]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Dvorkin, J.; Nur, A. Elasticity of high-porosity sandstones: Theory for two North Sea data sets. Geophysics 1996, 61, 1363–1370. [Google Scholar] [CrossRef]
- Ruiz, F.; Azizov, I. Tight shale elastic properties using the soft-porosity and single aspect ratio models. In Proceedings of the 2011 SEG Annual Meeting, San Antonio, TX, USA, 18–23 September 2011; Expanded Abstracts of 81st Annual International SEG Meeting. pp. 2241–2245. [Google Scholar]
- Xu, S.; White, R.E. A new velocity model for clays and mixtures. Geophys. Prospect. 1995, 43, 91–118. [Google Scholar] [CrossRef]
- Xu, S.; Payne, M.A. Modeling elastic properties in carbonate rocks. Lead. Edge 2009, 28, 66–74. [Google Scholar] [CrossRef]
- Schoenberg, M.; Sayers, C.M. Seismic anisotropy of fractured rock. Geophysics 1995, 60, 204–211. [Google Scholar] [CrossRef]
- Bakulin, A.; Grechka, V.; Tsvankin, I. Estimation of fracture parameters from reflection seismic data—Part 1: HTI model due to a single fracture set. Geophysics 2000, 65, 1788–1802. [Google Scholar] [CrossRef]
- Cooke, D.A.; Schneider, W.A. Generalized linear inversion of reflection seismic data. Geophysics 1983, 48, 665–676. [Google Scholar] [CrossRef]
- Russell, B.; Hampson, D. Comparison of poststack seismic inversion methods. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 1991; pp. 876–878. [Google Scholar]
- Kumar, R.; Das, B.; Chatterjee, R.; Sain, K. A methodology of porosity estimation from inversion of post-stack seismic data. J. Nat. Gas Sci. Eng. 2016, 28, 356–364. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P.G. Quantitative Seismology; W. H. Freeman & Co.: New York, NY, USA, 1980. [Google Scholar]
- Zong, Z.; Li, K.; Yin, X.; Zhu, M.; Du, J.; Chen, W.; Zhang, W. Broadband seismic amplitude variation with offset inversion. Geophysics 2017, 82, M43–M53. [Google Scholar] [CrossRef]
- Zong, Z.; Yin, X.; Yin, X.; Wu, G. Fluid identification method based on compressional and shear modulus direct inversion. Chin. J. Geophys. 2012, 55, 284–292. [Google Scholar] [CrossRef]
- Lu, J.; Yang, Z.; Wang, Y.; Shi, Y. Joint PP and PS AVA seismic inversion using exact Zoeppritz equations. Geophysics 2015, 80, R239–R250. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Y.; Chen, J.; An, Y. Joint anisotropic amplitude variation with offset inversion of PP and PS seismic data. Geophysics 2018, 83, N31–N50. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J. Seismic-controlled nonlinear extrapolation of well parameters using neural networks. Geophysics 1998, 63, 2035–2041. [Google Scholar] [CrossRef]
- Torres, A.; Reveron, J.; Infant, J. Lithofacies discrimination using support vector machines, rock physics and simultaneous seismic inversion in clastic reservoirs in the Orinoco Oil Belt, Venezuela. In Proceedings of the 2013 SEG Annual Meeting, Houston, TX, USA, 22–27 September 2013. [Google Scholar]
- Cheng, Y.; Fu, L.-Y. Nonlinear seismic inversion by physics-informed Caianiello convolutional neural networks for overpressure prediction of source rocks in the offshore Xihu depression, East China. J. Petrol. Sci. Eng. 2022, 215, 110654. [Google Scholar] [CrossRef]
- Wu, M.; Fu, L.; Li, W. A high-resolution nonlinear inversion method of reservoir parameters and its application to oil/gas exploration. Chin. J. Geophys. 2008, 51, 386–399. [Google Scholar]
- GiGiraud, J.; Pakyuz-Charrier, E.; Jessell, M.; Lindsay, M.; Martin, R.; Ogarko, V. Uncertainty reduction through geologically conditioned petrophysical constraints in joint inversion. Geophysics 2017, 82, ID19–ID34. [Google Scholar] [CrossRef]
- Mosser, L.; Dubrule, O.; Blunt, M.J. Stochastic seismic waveform inversion using generative adversarial networks as a geological prior. Math. Geosci. 2020, 52, 53–79. [Google Scholar] [CrossRef]
- Yao, F.; Gan, L. Application and restriction of seismic inversion. Pet. Explor. Dev. 2000, 27, 53–56. [Google Scholar]
- Yin, X.; Cao, D.; Wang, B.; Zong, Z. Research progress of fluid discrimination with pre-stack seismic inversion. Oil Geophys. Prospect. 2014, 49, 22–34+46. [Google Scholar]
- Pan, H.; Li, H.; Grana, D.; Zhang, Y.; Liu, T.; Geng, C. Quantitative characterization of gas hydrate bearing sediment using elastic-electrical rock physics models. Mar. Petrol. Geol. 2019, 105, 273–283. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Z.; Lin, W.; Wang, J. Permeability prediction of tight conglomerates by integrating fractal characteristics and seismic meme inversion: A case study from the Triassic Baikouquan Formation, Junggar Basin, Western China. Fractals 2023, 31, 2340010. [Google Scholar] [CrossRef]
- Chen, Y.; Bi, J.; Qiu, X.; Chen, Y.; Yang, H.; Cao, J.; Di, Y.; Zhao, H.; Li, Z. A method of seismic meme inversion and its application. Pet. Explor. Dev. 2020, 47, 1235–1245. [Google Scholar] [CrossRef]
- Clavier, C.; Coates, G.; Dumanoir, J. Theoretical and experimental bases for the dual-water model for interpretation of shaly sands. Soc. Petrol. Eng. J. 1984, 24, 153–168. [Google Scholar] [CrossRef]
- Atlas, W. Introduction to Wireline Log Analysis; Western Atlas International Inc.: Houston, TX, USA, 1995. [Google Scholar]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Golub, G.; Loan, C. Matrix Computations; Johns Hopkins University Press: Baltimore, MD, USA, 2013. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Zhu, D.; Gibson, R. Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method. Geophysics 2018, 83, R321–R334. [Google Scholar] [CrossRef]
- de Figueiredo, L.P.; Grana, D.; Roisenberg, M.; Rodrigues, B.B. Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion. Geophysics 2019, 84, M1–M13. [Google Scholar] [CrossRef]
- Gu, Y.; Jiang, Y.; Fu, Y.; Chen, Z.; Zhang, J.; Zhou, L.; Jiang, Z. Hydrocarbon accumulation and main controlling factors of reef-shoal gas reservoirs in Changxing Formation in the complex tectonic area, eastern Sichuan Basin. Arab. J. Geosci. 2019, 12, 776–788. [Google Scholar] [CrossRef]
- Huang, X. The Enrichment Regularity of Triassic Potassium—Rich Brines of the Salt—Bearing Sichuan Basin. Ph.D Thesis, China University of Geosciences, Beijing, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Li, R.-Q.; Liu, C.-L.; Jiao, P.-C.; Wang, J.-Y. The tempo-spatial characteristics and forming mechanism of Lithium-rich brines in China. China Geol. 2018, 1, 72–83. [Google Scholar] [CrossRef]
- Fu, L.Y. Application of the Caianiello neuron-based network to joint inversion. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 1997; pp. 1624–1627. [Google Scholar]
Well Name | Stratum | Li+ (mg/L) | Br− (mg/L) |
---|---|---|---|
L11 | T1f | 32.95 | 150 |
L172 | T2l4 | 25.9 | 116 |
L3 | T1f3-T1f1 | 25.1 | 225 |
L177 | T2l4 | 17.7 | 105 |
L16 | T2l4 | 13.18 | 709 |
L21 | T1f3 | 10.4 | 173 |
L170 | T1j4 | 7.565 | 156 |
L17 | T2l4 | 7.79 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Yang, Y.; Wang, Z.; Zhang, B.; Zhou, H.; Wang, Y. Prediction of Lithium Oilfield Brines Based on Seismic Data: A Case Study from L Area, Northeastern Sichuan Basin, China. Minerals 2024, 14, 159. https://doi.org/10.3390/min14020159
Zhou Y, Yang Y, Wang Z, Zhang B, Zhou H, Wang Y. Prediction of Lithium Oilfield Brines Based on Seismic Data: A Case Study from L Area, Northeastern Sichuan Basin, China. Minerals. 2024; 14(2):159. https://doi.org/10.3390/min14020159
Chicago/Turabian StyleZhou, Yuxuan, Yuyong Yang, Zhengyang Wang, Bing Zhang, Huailai Zhou, and Yuanjun Wang. 2024. "Prediction of Lithium Oilfield Brines Based on Seismic Data: A Case Study from L Area, Northeastern Sichuan Basin, China" Minerals 14, no. 2: 159. https://doi.org/10.3390/min14020159
APA StyleZhou, Y., Yang, Y., Wang, Z., Zhang, B., Zhou, H., & Wang, Y. (2024). Prediction of Lithium Oilfield Brines Based on Seismic Data: A Case Study from L Area, Northeastern Sichuan Basin, China. Minerals, 14(2), 159. https://doi.org/10.3390/min14020159