Real-Time Ambient Seismic Noise Tomography of the Hillside Iron Oxide–Copper–Gold Deposit
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
3.1. Data Collection
3.2. Further Data Processing
3.3. Dispersion Measurement
3.4. Three-Dimensional Model Development
3.5. Temporal Stability of 3D Model
3.6. Three-Dimensional Model Uncertainty
4. Results and Discussion
4.1. Velocity Structure of the Hillside Deposit and Setting
4.2. Comparison with Geological Model, Other Geophysical Data, and Drilling
4.3. Future Exploration at Hillside Confirmed by ANT Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Funk, C. Geophysical vectors to IOCG mineralisation in the Gawler Craton. ASEG Ext. Abstr. 2013, 2013, 1–5. [Google Scholar] [CrossRef]
- Okan, E.O. Feasibility of Using Regional Seismic Reflections Surveys to Discover Iron Oxide Copper Gold (IOCG) Deposits in the Gawler Craton, South Australia. Ph.D. Thesis, Curtin University, Singapore, 2018. [Google Scholar]
- Skirrow, R.; Bastrakov, E.; Davidson, G.; Raymond, O.; Heithersay, P. The geological framework, distribution and controls of Fe-oxide Cu-Au mineralisation in the Gawler Craton, South Australia. Part II-alteration and mineralisation. In Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective; PGC Publishing: Toronto, ON, Canada, 2002; Volume 2, pp. 33–47. [Google Scholar]
- Gum, J. Gold mineral systems and exploration, Gawler Craton, South Australia. MESA J. 2019, 3, 51–65. [Google Scholar]
- Reid, A. The Olympic Cu-Au Province, Gawler Craton: A Review of the Lithospheric Architecture, Geodynamic Setting, Alteration Systems, Cover Successions and Prospectivity. Minerals 2019, 9, 371. [Google Scholar] [CrossRef]
- Teale, G.; Say, P.; Green, N.; Forgan, H.; Went, C.; Cole, L. Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide-copper-gold deposit, Yorke Peninsula, South Australia. Lithos 2014, 184, 456–477. [Google Scholar]
- Conor, C.; Raymond, O.; Baker, T.; Teale, G.; Say, P.; Lowe, G.; Porter, T. Alteration and mineralisation in the Moonta-Wallaroo copper-gold mining field region, Olympic Domain, South Australia. Hydrothermal Iron Oxide-Copp.-Gold Relat. Depos. Glob. Perspect. 2010, 3, 147–170. [Google Scholar]
- Thompson, C. Thermal and Exhumation History of the Central Yorke Peninsula, Southern Gawler Craton. Honours Thesis, University of Adelaide, Adelaide, SA, USA, 2013. Available online: https://digital.library.adelaide.edu.au/dspace/bitstream/2440/106460/2/02wholeGeoHon.pdf (accessed on 11 December 2023).
- Ismail, R. Spatial-Temporal Evolution of Skarn Alteration in IOCG Systems: Evidence from Petrography, Mineral Trace Element Signatures and Fluid Inclusion Studies at Hillside, Yorke Peninsula, South Australia. Ph.D. Thesis, University of Adelaide, Adelaide, SA, USA, 2015. Available online: https://digital.library.adelaide.edu.au/dspace/handle/2440/112582 (accessed on 11 December 2023).
- Lobkis, O.I.; Weaver, R.L. On the emergence of the Green’s function in the correlations of a diffuse field. J. Acoust. Soc. Am. 2001, 110, 3011–3017. [Google Scholar] [CrossRef]
- Snieder, R. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase. Phys. Rev. E 2004, 69, 046610. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, N.M.; Campillo, M.; Stehly, L.; Ritzwoller, M.H. High-resolution surface-wave tomography from ambient seismic noise. Science 2005, 307, 1615–1618. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, J.; Thiel, S.; Robertson, K.; Gorbatov, A.; Eakin, C. Using seismic tomography to inform mineral exploration in South Australia: The AusArray SA broadband seismic array. MESA J. 2020, 93, 24–31. [Google Scholar]
- Chen, S.; Gao, R.; Lu, Z.; Liang, Y.; Cai, W.; Cao, L.; Chen, Z.; Wang, G. Shear wave velocity structure of the upper crust in north Xiaojiang fault zone in SE Tibet via short-period ambient noise dense seismic array. Phys. Earth Planet. Inter. 2023, 344, 107110. [Google Scholar] [CrossRef]
- Olivier, G.; Borg, B.; Trevor, L.; Combeau, B.; Dales, P.; Gordon, J.; Chaurasia, H.; Pearson, M. Fleet’s geode: A breakthrough sensor for real-time ambient seismic noise tomography over DtS-IoT. Sensors 2022, 22, 8372. [Google Scholar] [CrossRef] [PubMed]
- Gal, M.; Reading, A.M. Beamforming and polarisation analysis. In Seismic Ambient Noise; Cambridge University Press: Cambridge, UK, 2019; pp. 32–72. [Google Scholar]
- Bensen, G.; Ritzwoller, M.; Barmin, M.; Levshin, A.L.; Lin, F.; Moschetti, M.; Shapiro, N.; Yang, Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int. 2007, 169, 1239–1260. [Google Scholar] [CrossRef]
- Aki, K. Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull. Earthq. Res. Inst. 1957, 35, 415–456. [Google Scholar]
- Ekström, G.; Abers, G.A.; Webb, S.C. Determination of surface-wave phase velocities across USArray from noise and Aki’s spectral formulation. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Levshin, A.L.; Pisarenko, V.F.; Pogrebinsky, G.A. On a frequency-time analysis of oscillations. Ann. Geophys. 1972, 28, 211–218. [Google Scholar]
- Luo, Y.; Yang, Y.; Xu, Y.; Xu, H.; Zhao, K.; Wang, K. On the limitations of interstation distances in ambient noise tomography. Geophys. J. Int. 2015, 201, 652–661. [Google Scholar] [CrossRef]
- Fang, H.; Yao, H.; Zhang, H.; Huang, Y.C.; van der Hilst, R.D. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application. Geophys. J. Int. 2015, 201, 1251–1263. [Google Scholar] [CrossRef]
- Rawlinson, N.; Sambridge, M. Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys. J. Int. 2004, 156, 631–647. [Google Scholar] [CrossRef]
- Smith, N.R.A.; Reading, A.M.; Asten, M.W.; Funk, C.W. Constraining depth to basement for mineral exploration using microtremor: A demonstration study from remote inland Australia. Geophysics 2013, 78, B227–B242. [Google Scholar] [CrossRef]
- Brocher, T.M. Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull. Seismol. Soc. Am. 2005, 95, 2081–2092. [Google Scholar] [CrossRef]
Rock Type | Samples | Min | Max | Mean | Mean (S-Wave) | Comments |
---|---|---|---|---|---|---|
Dolomite | 10 | 3950 | 6610 | 5589 | 3056 | Cambrian dolomite |
Gabbro | 8 | 2760 | 5360 | 4113 | 2289 | |
Pegmatite | 4 | 3700 | 5190 | 4390 | 2561 | |
Granite | 7 | 3370 | 5510 | 4707 | 2748 | Hillside syenite |
East granite | 6 | 3040 | 4740 | 4148 | 2383 | Eastern footwall |
Metasediment | 2 | 3380 | 4180 | 3780 | 2088 | Host sequence |
Skarn | 25 | 1180 | 5470 | 3504 | 1971 | Mineralised host |
West metased. | 10 | 3750 | 5240 | 4610 | 2728 | Hanging wall sequence |
Breccia | 3 | 4250 | 5300 | 4670 | 2772 | Silicified mineralisation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, T.; Olivier, G.; Murphy, B.; Cole, L.; Went, C.; Olsen, S.; Smith, N.; Gal, M.; North, B.; Burrows, D. Real-Time Ambient Seismic Noise Tomography of the Hillside Iron Oxide–Copper–Gold Deposit. Minerals 2024, 14, 254. https://doi.org/10.3390/min14030254
Jones T, Olivier G, Murphy B, Cole L, Went C, Olsen S, Smith N, Gal M, North B, Burrows D. Real-Time Ambient Seismic Noise Tomography of the Hillside Iron Oxide–Copper–Gold Deposit. Minerals. 2024; 14(3):254. https://doi.org/10.3390/min14030254
Chicago/Turabian StyleJones, Timothy, Gerrit Olivier, Bronwyn Murphy, Lachlan Cole, Craig Went, Steven Olsen, Nicholas Smith, Martin Gal, Brooke North, and Darren Burrows. 2024. "Real-Time Ambient Seismic Noise Tomography of the Hillside Iron Oxide–Copper–Gold Deposit" Minerals 14, no. 3: 254. https://doi.org/10.3390/min14030254
APA StyleJones, T., Olivier, G., Murphy, B., Cole, L., Went, C., Olsen, S., Smith, N., Gal, M., North, B., & Burrows, D. (2024). Real-Time Ambient Seismic Noise Tomography of the Hillside Iron Oxide–Copper–Gold Deposit. Minerals, 14(3), 254. https://doi.org/10.3390/min14030254