Full-Waveform Modeling of Complex Media Seismic Waves for Irregular Topography and Its Application in Metal Ore Exploration
Abstract
:1. Introduction
2. Method of Free-Surface Parameter Correction for Different Media
2.1. Elastic Scenario
2.2. Anisotropic Scenario
2.3. Viscoelastic Scenario
2.4. Anisotropic–Viscoelastic Scenario
3. Numerical Experiments of a Simple Model
3.1. The Influence of Topography
3.2. The Influence of Complex Medium Conditions
3.3. Accuracy Analysis
4. Numerical Simulation for the Half Mile Lake Deposit
4.1. Geological Background and 2D Model
4.2. FD Modeling Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, G.D.; Hao, T.Y. Searching of hidden mineral deposits by geophysical methods. Chin. J. Geophys. 1995, 38, 850–854. (In Chinese) [Google Scholar]
- Witherly, K. The evolution of minerals exploration over 60 years and the imperative to explore undercover. Lead. Edge 2012, 31, 292–295. [Google Scholar] [CrossRef]
- Bohlen, T.; Müller, C.; Milkereit, B. 5. Elastic Seismic-Wave Scattering from Massive Sulfide Orebodies: On the Role of Composition and Shape. In Hardrock Seismic Exploration; Society of Exploration Geophysicists: Houston, TX, USA, 2003; Volume 70–89. [Google Scholar]
- Bellefleur, G.; Malehmir, A.; Müller, C. Elastic finite-difference modeling of volcanic-hosted massive sulfide deposits: A case study from Half Mile Lake, New Brunswick, Canada. Geophysics 2012, 77, Wc25–Wc36. [Google Scholar] [CrossRef]
- Dehghannejad, M.; Malehmir, A.; Juhlin, C.; Skyttä, P. 3D constraints and finite-difference modeling of massive sulfide deposits: The Kristineberg seismic lines revisited, northern Sweden. Geophysics 2012, 77, Wc69–Wc79. [Google Scholar] [CrossRef]
- Malinowski, M.; Schetselaar, E.; White, D.J. 3D seismic imaging of volcanogenic massive sulfide deposits in the Flin Flon mining camp, Canada: Part 2-Forward modeling. Geophysics 2012, 77, Wc81–Wc93. [Google Scholar] [CrossRef]
- Pang, Y.; Yan, L.; Liu, Y.; Tang, L.; Zhu, R.; Liu, G. Seismic Wave Finite-Difference forward Modeling for Orogenic Gold Deposits. Minerals 2022, 12, 1465. [Google Scholar] [CrossRef]
- Malehmir, A.; Urosevic, M.; Bellefleur, G.; Juhlin, C.; Milkereit, B. Seismic methods in mineral exploration and mine planning—Introduction. Geophysics 2012, 77, Wc1–Wc2. [Google Scholar] [CrossRef]
- Komatitsch, D.; Tromp, J. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 1999, 139, 806–822. [Google Scholar] [CrossRef]
- Komatitsch, D.; Vilotte, J.-P.; Vai, R.; Castillo-Covarrubias, J.M.; Sánchez-Sesma, F.J. The spectral element method for elastic wave equations—Application to 2-D and 3-D seismic problems. Int. J. Numer. Methods Eng. 1999, 45, 1139–1164. [Google Scholar] [CrossRef]
- Kelly, K.R.; Ward, R.W.; Treitel, S.; Alford, R.M. Synthetic Seismograms: A Finite-Difference Approach. Geophysics 1976, 41, 2–27. [Google Scholar] [CrossRef]
- Virieux, J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 1986, 51, 889–901. [Google Scholar] [CrossRef]
- Virieux, J. SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics 1984, 49, 1933–1942. [Google Scholar] [CrossRef]
- Levander, A.R. Fourth-order finite-difference P-SV seismograms. Geophysics 1988, 53, 1425–1436. [Google Scholar] [CrossRef]
- Tarrass, I.; Giraud, L.; Thore, P. New curvilinear scheme for elastic wave propagation in presence of curved topography. Geophys. Prospect. 2011, 59, 889–906. [Google Scholar] [CrossRef]
- Alterman, Z.; Karal, F.C., Jr. Propagation of elastic waves in layered media by finite difference methods. Bull. Seismol. Soc. Am. 1968, 58, 367–398. [Google Scholar]
- Alterman, Z.S.; Rotenberg, A. Seismic waves in a quarter plane. Bull. Seismol. Soc. Am. 1969, 59, 347–368. [Google Scholar] [CrossRef]
- Ilan, A.; Ungar, A.; Alterman, Z. An Improved Representation of Boundary Conditions in Finite Difference Schemes for Seismological Problems. Geophys. J. Int. 1975, 43, 727–745. [Google Scholar] [CrossRef]
- Ilan, A.; Loewenthal, D. Instability of Finite Difference Schemes due to Boundary Conditions in Elastic Media*. Geophys. Prospect. 1976, 24, 431–453. [Google Scholar] [CrossRef]
- Vidale, J.E.; Clayton, R.W. A Stable Free-Surface Boundary-Condition for Two-Dimensional Elastic Finite-Difference Wave Simulation. Geophysics 1986, 51, 2247–2249. [Google Scholar] [CrossRef]
- Cao, J.; Chen, J.B. A parameter-modified method for implementing surface topography in elastic-wave finite-difference modeling. Geophysics 2018, 83, T313–T332. [Google Scholar] [CrossRef]
- Cao, J.; Chen, J.B.; Dai, M.X. An adaptive free-surface expression for three-dimensional finite-difference frequency-domain modelling of elastic wave. Geophys. Prospect. 2018, 66, 707–725. [Google Scholar] [CrossRef]
- Zhou, X.H.; Huo, S.D.; Wang, H.; Dong, S.L.; Liang, Y.; Cao, J. Model parameter design for modeling surface topography in VTI elastic finite-difference near-surface simulations. Geophysics 2023, 88, C33–C52. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Chen, X. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids. Geophys. J. Int. 2012, 190, 358–378. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuang, Y.; Chung, E.T. A new spectral finite volume method for elastic wave modelling on unstructured meshes. Geophys. J. Int. 2016, 206, 292–307. [Google Scholar] [CrossRef]
- Tessmer, E.; Kosloff, D.; Behle, A. Elastic wave propagation simulation in the presence of surface topography. Geophys. J. Int. 1992, 108, 621–632. [Google Scholar] [CrossRef]
- Hestholm, S.; Ruud, B. 3D free-boundary conditions for coordinate-transform finite-difference seismic modelling. Geophys. Prospect. 2002, 50, 463–474. [Google Scholar] [CrossRef]
- Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P. An improved vacuum formulation for 2D finite-difference modeling of Rayleigh waves including surface topography and internal discontinuities. Geophysics 2012, 77, T1–T9. [Google Scholar] [CrossRef]
- Zahradník, J.Í.; Moczo, P.; Hron, F.E. Testing four elastic finite-difference schemes for behavior at discontinuities. Bull. Seismol. Soc. Am. 1993, 83, 107–129. [Google Scholar]
- Bohlen, T.; Saenger, E.H. Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves. Geophysics 2006, 71, T109–T115. [Google Scholar] [CrossRef]
- Robertsson, J.O.A. A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography. Geophysics 1996, 61, 1921–1934. [Google Scholar] [CrossRef]
- Kristek, J.; Moczo, P.; Archuleta, R.J. Efficient Methods to Simulate Planar Free Surface in the 3D 4th-Order Staggered-Grid Finite-Difference Schemes. Stud. Geophys. Et Geod. 2002, 46, 355–381. [Google Scholar] [CrossRef]
- Mittet, R. Free-surface boundary conditions for elastic staggered-grid modeling schemes. Geophysics 2002, 67, 1616–1623. [Google Scholar] [CrossRef]
- Xu, Y.X.; Xia, J.H.; Miller, R.D. Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach. Geophysics 2007, 72, Sm147–Sm153. [Google Scholar] [CrossRef]
- Dong, S.L.; Zhou, X.H.; Chen, J.B. Finite-difference modeling with topography using 3D viscoelastic parameter-modified free-surface condition. Geophysics 2023, 88, T211–T226. [Google Scholar] [CrossRef]
- Fryer, G.J.; Frazer, L.N. Seismic waves in stratified anisotropic media. Geophys. J. Int. 1984, 78, 691–710. [Google Scholar] [CrossRef]
- Petrov, I.B.; Golubev, V.I.; Petrukhin, V.Y.; Nikitin, I.S. Simulation of Seismic Waves in Anisotropic Media. Dokl. Math. 2021, 103, 146–150. [Google Scholar] [CrossRef]
- Robertsson, J.O.; Blanch, J.O.; Symes, W.W. Viscoelastic finite-difference modeling. Geophysics 1994, 59, 1444–1456. [Google Scholar] [CrossRef]
- Moczo, P.; Kristek, J.; Vavryčuk, V.C.; Archuleta, R.J.; Halada, L. 3D Heterogeneous Staggered-Grid Finite-Difference Modeling of Seismic Motion with Volume Harmonic and Arithmetic Averaging of Elastic Moduli and Densities. Bull. Seismol. Soc. Am. 2002, 92, 3042–3066. [Google Scholar] [CrossRef]
- Hayashi, K.; Burns, D.R.; Toksöz, M.N. Discontinuous-Grid Finite-Difference Seismic Modeling Including Surface Topography. Bull. Seismol. Soc. Am. 2001, 91, 1750–1764. [Google Scholar] [CrossRef]
- Postma, G.W. Wave Propagation in a Stratified Medium. Geophysics 1955, 20, 780–806. [Google Scholar] [CrossRef]
- Crampin, S. Seismic-wave propagation through a cracked solid: Polarization as a possible dilatancy diagnostic. Geophys. J. Int. 1978, 53, 467–496. [Google Scholar] [CrossRef]
- Crampin, S. Effective anisotropic elastic constants for wave propagation through cracked solids. Geophys. J. Int. 1984, 76, 135–145. [Google Scholar] [CrossRef]
- Carcione, J.M.; Kosloff, D.; Kosloff, R. Wave propagation simulation in a linear viscoelastic medium. Geophys. J. Int. 1988, 95, 597–611. [Google Scholar] [CrossRef]
- Carcione, J.M. Constitutive Model and Wave-Equations for Linear, Viscoelastic, Anisotropic Media. Geophysics 1995, 60, 537–548. [Google Scholar] [CrossRef]
- Malehmir, A.; Durrheim, R.; Bellefleur, G.; Urosevic, M.; Juhlin, C.; White, D.J.; Milkereit, B.; Campbell, G. Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future. Geophysics 2012, 77, Wc173–Wc190. [Google Scholar] [CrossRef]
- Komatitsch, D.; Martin, R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 2007, 72, SM155–SM167. [Google Scholar] [CrossRef]
- Komatitsch, D.; Vilotte, J.-P. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 1998, 88, 368–392. [Google Scholar] [CrossRef]
- Tromp, J.; Komatitsch, D.; Liu, Q.Y. Spectral-element and adjoint methods in seismology. Commun. Comput. Phys. 2008, 3, 1–32. [Google Scholar]
- Xie, Z.; Komatitsch, D.; Martin, R.; Matzen, R. Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML. Geophys. J. Int. 2014, 198, 1714–1747. [Google Scholar] [CrossRef]
- Komatitsch, D.; Xie, Z.; Bozdağ, E.; Sales de Andrade, E.; Peter, D.; Liu, Q.; Tromp, J. Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion. Geophys. J. Int. 2016, 206, 1467–1478. [Google Scholar] [CrossRef]
- Adair, R.N. Stratigraphy, structure, and geochemistry of the Halfmile Lake massive-sulfide deposit, New Brunswick. Explor. Min. Geol. 1992, 1, 151–166. [Google Scholar]
Lithology | Vp (m/s) | Vs (m/s) | ρ (kg/m3) |
---|---|---|---|
Metal ore | 6800 | 4500 | 4700 |
Wall rock | 5600 | 3300 | 2820 |
Medium | Thomsen Parameters | Quality Factors | ||
---|---|---|---|---|
ε | δ* | QKappa | Qμ | |
Viscoelastic | – | – | 40 | 20 |
Anisotropic | 0.2 | –0.2 | – | – |
Anisotropic–viscoelastic | 0.2 | –0.2 | 40 | 20 |
Medium | Receiver | L2 Misfit Norms | |
---|---|---|---|
vx (%) | vz (%) | ||
Elasticity | R1 | 1.19 | 0.094 |
R2 | 1.279 | 1.148 | |
R3 | 1.408 | 2.081 | |
Viscoelasticity | R1 | 0.643 | 0.151 |
R2 | 0.997 | 0.508 | |
R3 | 2.021 | 0.893 | |
Anisotropy | R1 | 1.042 | 0.085 |
R2 | 1.498 | 1.065 | |
R3 | 1.009 | 1.393 | |
Anisotropic–viscoelasticity | R1 | 0.902 | 0.186 |
R2 | 1.057 | 0.545 | |
R3 | 3.74 | 1.651 |
Lithology | Vp (m/s) | Vs (m/s) | Density (kg/m3) |
---|---|---|---|
Rhyolite | 5800 | 3370 | 2580 |
Mafic volcanics | 5800 | 3330 | 2690 |
Sediments | 5820 | 3380 | 2680 |
Q–F porphyry | 5830 | 3350 | 2460 |
Felsic volcanics | 5800 | 3370 | 2580 |
Stringer zone | 5600 | 3250 | 2820 |
Sulfide | 5690 | 3840 | 3420 |
Red stripe | 5830 | 3350 | 2460 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, W.; Huo, S.; Zhou, X. Full-Waveform Modeling of Complex Media Seismic Waves for Irregular Topography and Its Application in Metal Ore Exploration. Minerals 2024, 14, 664. https://doi.org/10.3390/min14070664
Su W, Huo S, Zhou X. Full-Waveform Modeling of Complex Media Seismic Waves for Irregular Topography and Its Application in Metal Ore Exploration. Minerals. 2024; 14(7):664. https://doi.org/10.3390/min14070664
Chicago/Turabian StyleSu, Wenchao, Shoudong Huo, and Xuhui Zhou. 2024. "Full-Waveform Modeling of Complex Media Seismic Waves for Irregular Topography and Its Application in Metal Ore Exploration" Minerals 14, no. 7: 664. https://doi.org/10.3390/min14070664
APA StyleSu, W., Huo, S., & Zhou, X. (2024). Full-Waveform Modeling of Complex Media Seismic Waves for Irregular Topography and Its Application in Metal Ore Exploration. Minerals, 14(7), 664. https://doi.org/10.3390/min14070664