Coupled Microstructural EBSD and LA-ICP-MS Trace Element Mapping of Pyrite Constrains the Deformation History of Breccia-Hosted IOCG Ore Systems
Abstract
:1. Introduction
2. Deposit Geology and Sample Suite
3. Analytical Methodology
4. Results
4.1. Pyrite Textures and EBSD Mapping
4.1.1. Distal Satellite
4.1.2. NW-SE Transect
4.2. Interpretation of EBSD Textures
4.3. Pyrite Trace Element Mapping
5. Discussion
5.1. Pyrite Deformation Textures
5.2. Pyrite Geochemistry and Syn-Deformational Geochemical Remobilization
5.3. Pyrite Deformation History—Early Stages
5.4. Were All Microstructures Obliterated by Coupled Dissolution Reprecipitation Reactions?
6. Conclusions
7. Implications and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prior, D.J.; Boyle, A.P.; Brenker, F.; Cheadle, M.C.; Day, A.; Lopez, G.; Peruzzi, L.; Potts, G.; Reddy, S.; Spiess, R. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am. Mineral. 1999, 84, 1741–1759. [Google Scholar]
- Craig, J.R.; Vokes, F.M. The metamorphism of pyrite and pyritic ores: An overview. Mineral. Mag. 1993, 57, 3–18. [Google Scholar] [CrossRef]
- Freitag, K.; Boyle, A.P.; Nelson, E.; Hitzman, M.; Churchill, J.; Lopez-Pedrosa, M. The use of electron backscatter diffraction and orientation contrast imaging as tools for sulphide textural studies: Example from the Greens Creek deposit (Alaska). Miner. Depos. 2004, 39, 103–113. [Google Scholar]
- Barrie, C.D.; Boyle, A.P.; Cook, N.J.; Prior, D.J. Pyrite deformation textures in the massive sulfide ore deposits of the Norwegian Caledonides. Tectonophysics 2010, 483, 269–286. [Google Scholar] [CrossRef]
- Barrie, C.D.; Cook, N.J.; Boyle, A.P. Textural variation in the pyrite-rich ore deposits of the Røros district, Trondheim Region, Norway: Implications for pyrite deformation mechanisms. Mineral. Depos. 2010, 45, 51–68. [Google Scholar] [CrossRef]
- Li, Q.; Song, H.; Chi, G.; Zhang, G.; Xu, Z. Genesis of visible gold in pyrite in the Zhaoxian gold deposit, Jiaodong gold province, China: Constraints from EBSD micro-structural and LA-ICP-MS elemental analyses. Ore Geol. Rev. 2021, 139, 104591. [Google Scholar] [CrossRef]
- Graf, J.L.; Skinner, B.J.; Bras, J.; Fagot, M.; Levade, C.; Couderc, J.J. Transmission electron microscopic observation of plastic deformation in experimentally deformed pyrite. Econ. Geol. 1981, 76, 738–742. [Google Scholar] [CrossRef]
- Cox, S.; Etheridge, M.; Hobbs, B. The experimental ductile deformation of polycrystalline and single crystal pyrite. Econ. Geol. 1981, 76, 2105–2117. [Google Scholar] [CrossRef]
- Levade, C.; Couderc, J.; Bras, J.; Fagot, M. Transmission electron microscopy study of experimentally deformed pyrite. Philos. Mag. A 1982, 46, 307–325. [Google Scholar] [CrossRef]
- Boyle, A.; Prior, D.; Banham, M.; Timms, N. Plastic deformation of metamorphic pyrite: New evidence from electron-backscatter diffraction and forescatter orientation-contrast imaging. Miner. Depos. 1988, 34, 71–81. [Google Scholar] [CrossRef]
- Barrie, C.D.; Boyle, A.P.; Prior, D.J. An analysis of the microstructures developed in experimentally deformed polycrystalline pyrite and minor sulphide phases using electron backscatter diffraction. J. Struct. Geol. 2007, 29, 1494–1511. [Google Scholar] [CrossRef]
- Barrie, C.D.; Boyle, A.; Salter, M. How low can you go? Extending downwards the limits of plastic deformation in pyrite. Mineral. Mag. 2009, 73, 895–913. [Google Scholar] [CrossRef]
- Barrie, C.D.; Pearce, M.A.; Boyle, A.P. Reconstructing the pyrite deformation mechanism map. Ore Geol. Rev. 2011, 39, 265–276. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Zhao, H.-X.; Frimmel, H.E.; Jiang, S.-Y.; Dai, B.-Z. LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis. Ore Geol. Rev. 2011, 43, 142–153. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Meria, D.; Silcock, D.; Wade, B. Arsenopyrite-pyrite association in an orogenic gold ore: Tracing mineralization history from textures and trace elements. Econ. Geol. 2013, 108, 1273–1283. [Google Scholar] [CrossRef]
- Reich, M.; Deditus, A.; Chryssoulis, S.; Li, J.-W.; Ma, C.-Q.; Parada, M.A.; Barra, F.; Mittermayr, F. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim. Cosmochim. Acta 2013, 104, 42–62. [Google Scholar] [CrossRef]
- Large, R.R.; Maslennikov, V.V. Invisible gold paragenesis and geochemistry in pyrite from orogenic and sediment-hosted gold deposits. Minerals 2020, 10, 339. [Google Scholar] [CrossRef]
- Fougerouse, D.; Micklethwaite, S.; Halfpenny, A.; Reddy, S.M.; Cliff, J.B.; Martin, L.A.; Kilburn, M.; Guagliardo, P.; Ulrich, S. The golden ark: Arsenopyrite crystal plasticity and the retention of gold through high strain and metamorphism. Terra Nova 2016, 28, 181–187. [Google Scholar] [CrossRef]
- Fougerouse, D.; Reddy, S.M.; Aylmore, M.; Yang, L.; Guagliardo, P.; Saxey, D.W.; Rickard, W.D.A.; Timms, N. A new kind of invisible gold in pyrite hosted in deformation-related dislocations. Geology 2021, 49, 1225–1229. [Google Scholar] [CrossRef]
- Dubosq, R.; Lawley, C.J.M.; Rogowitz, A.; Schneider, D.A.; Jackson, S. Pyrite deformation and connections to gold mobility: Insight from micro-structural analysis and trace element mapping. Lithos 2018, 310–311, 86–104. [Google Scholar] [CrossRef]
- Dubosq, R.; Rogowitz, A.; Sparwasser, K.; Gault, B.; Schenider, D.A. A 2D and 3D Nanostructural Study of Naturally Deformed Pyrite: Assessing the Links Between Trace Element Mobility and Defect Structures. Contrib. Mineral. Petrol. 2019, 174, 72. [Google Scholar] [CrossRef]
- Börner, F.; Keith, M.; Fougerouse, D.; Macauley, C.; Felfer, P.; Yokosawa, T.; Zubiri, B.A.; Spiecker, E. Between defects and inclusions: The fate of tellurium in pyrite. Chem. Geol. 2023, 635, 121633. [Google Scholar] [CrossRef]
- Abramovich, M.G.; Shmakin, B.M.; Tauson, V.L.; Akimov, V.V. Mineral typochemistry: Anomalous trace-element concentrations in solid solutions with defect structures. Internat. Geol. Rev. 1990, 32, 608–615. [Google Scholar] [CrossRef]
- Reddy, S.M.; Hough, R.M. Microstructural evolution and trace element mobility in Witwatersrand pyrite. Contrib. Mineral. Petrol. 2013, 166, 1269–1284. [Google Scholar] [CrossRef]
- Yesares, L.; Piña, R.; González-Jiménez, J.M.; Sáez, R.; Ruíz de Almodóvar, G.; Fanlo, I.; Manuel Pons, J.; Vega, R. Distribution of critical metals in evolving pyrite from massive sulfide ores of the Iberian Pyrite Belt. Ore Geol. Rev. 2023, 153, 105275. [Google Scholar] [CrossRef]
- BHP 2022. Annual Report 2022. Available online: https://www.bhp.com/investors/annual-reporting/annual-report-2022 (accessed on 6 November 2023).
- Ehrig, K.; McPhie, J.; Kamenetsky, V.S. Geology and mineralogical zonation of the Olympic Dam iron oxide Cu–U–Au–Ag deposit, South Australia. In Geology and Genesis of Major Copper Deposits and Districts of the World, a Tribute to Richard Sillitoe; Hedenquist, J.W., Harris, M., Camus, F., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2012; Volume 16, pp. 237–268. [Google Scholar]
- Reid, A. The Olympic Cu-Au Province, Gawler Craton: A review of the lithospheric architecture, geodynamic setting, alteration systems, cover successions and prospectivity. Minerals 2019, 9, 371. [Google Scholar] [CrossRef]
- Courtney-Davies, L.; Ciobanu, C.L.; Tapster, S.R.; Cook, N.J.; Ehrig, K.; Crowley, J.L.; Verdugo-Ihl, M.R.; Wade, B.P.; Condon, D.J. Opening the magmatic-hydrothermal window: High precision U-Pb geochronology of the Mesoproterozoic Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ. Geol. 2020, 115, 1855–1870. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Cook, N.J.; Ehrig, K. Ore minerals down to the nanoscale: Cu-(Fe)-sulphides from the iron oxide copper gold deposit at Olympic Dam, South Australia. Ore Geol. Rev. 2017, 81, 1218–1235. [Google Scholar] [CrossRef]
- Ehrig, K.; Ciobanu, C.L.; Verdugo-Ihl, M.R.; Dmitrijeva, M.; Cook, N.J.; Slattery, A. Lifting the cloak of invisibility: Gold in pyrite from the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Am. Mineral. 2023, 108, 259–276. [Google Scholar] [CrossRef]
- Macmillan, E.; Ciobanu, C.L.; Ehrig, K.; Cook, N.J.; Pring, A. Chemical zoning and lattice distortion in uraninite from Olympic Dam, South Australia. Am. Mineral. 2016, 101, 2351–2354. [Google Scholar] [CrossRef]
- Rollog, M.; Cook, N.J.; Guagliardo, P.; Ehrig, K.; Kilburn, M. Radionuclide distributions in Olympic Dam copper concentrates: The significance of minor hosts, incorporation mechanisms, and the role of mineral surfaces. Miner. Eng. 2020, 148, 106–176. [Google Scholar] [CrossRef]
- Babedi, L.; Adie, M.; Neethling, P.; Von der Heyden, B.P. A fundamental assessment of the impacts of cation (Cd, Co, Fe) substitution on the molecular chemistry and surface reactivity of sphalerite. Miner. Eng. 2021, 160, 106695. [Google Scholar] [CrossRef]
- Can, İ.; Özçelik, S.; Ekmekçi, Z. Effects of Pyrite Texture on Flotation Performance of Copper Sulfide Ores. Minerals 2021, 11, 1218. [Google Scholar] [CrossRef]
- Jefferson, M.; Yenial-Arslan, U.; Evans, C.; Curtis-Morar, C.; O’Donnell, R.; Parbhakar-Fox, A.; Forbes, E. Effect of pyrite textures and composition on flotation performance: A review. Miner. Eng. 2023, 201, 108234. [Google Scholar] [CrossRef]
- Skirrow, R.G.; Bastrakov, E.N.; Barovich, K.; Fraser, G.L.; Creaser, R.A.; Fanning, C.M.; Raymond, O.L.; Davidson, G.J. Timing of iron oxide Cu-Au-(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler craton, South Australia. Econ. Geol. 2007, 102, 1441–1470. [Google Scholar] [CrossRef]
- Jagodzinski, E.A.; Reid, A.J.; Crowley, J.L.; Wade, C.E.; Curtis, S. Precise zircon U-Pb dating of the Mesoproterozoic Gawler large igneous province, South Australia. Results Geochem. 2023, 10, 100020. [Google Scholar] [CrossRef]
- Flint, R.B.; Blissett, A.H.; Conor, C.H.H.; Cowley, W.M.; Cross, K.C.; Creaser, R.A.; Daly, S.J.; Krieg, G.W.; Major, R.B.; Teale, G.S.; et al. Mesoproterozoic. In The Geology of South Australia I. The Precambrian; Drexel, J.F., Preiss, W.V., Parker, A.J., Eds.; Geological Survey of South Australia Bulletin 54: Adelaide, Australia, 1993; pp. 106–169. [Google Scholar]
- Allen, S.; McPhie, L.; Ferris, J.; Simpson, C. Evolution and architecture of a large felsic igneous province in western Laurentia: The 1.6 Ga Gawler Range Volcanics, South Australia. J. Volcanol. Geotherm. Res. 2008, 172, 132–147. [Google Scholar] [CrossRef]
- Jagodzinski, E.A. Compilation of SHRIMP U-Pb geochronological data Olympic Domain, Gawler Craton, South Australia, 2001-2003. Record 2005/20. Geosci. Aust. Canberra 2005, 211, 197. [Google Scholar]
- Cowley, W.; Conor, C.; Zang, W. New and revised Proterozoic stratigraphic units on northern Yorke Peninsula. MESA J. 2003, 29, 46–58. [Google Scholar]
- Reeve, J.S.; Cross, K.C.; Smith, R.N.; Oreskes, N. Olympic Dam copper-uranium-gold-silver deposit. In Geology of the Mineral Deposits of Australia and Papua New Guinea; Hughes, F.E., Ed.; Australasian Institute of Mining and Metallurgy: Carlton, VIC, Australia, 1990; Volume 14, pp. 1009–1035. [Google Scholar]
- Creaser, R.A. Petrogenesis of a Mesoproterozoic quartz latite-granitoid suite from the Roxby Downs area, South Australia. Precambr. Res. 1996, 79, 371–394. [Google Scholar] [CrossRef]
- Mauger, A.J.; Ehrig, K.; Kontonikas-Charos, A.; Ciobanu, C.L.; Cook, N.J.; Kamenetsky, V.S. Alteration at the Olympic Dam IOCG–U deposit: Insights into distal to proximal feldspar and phyllosilicate chemistry from infrared reflectance spectroscopy. Austral. J. Earth Sci. 2016, 63, 959–972. [Google Scholar]
- Kontonikas-Charos, A.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.; Kreneta, S.; Kamenetsky, V.S. Feldspar evolution in the Roxby Downs granite, host to Fe-oxide cu-au-(U) mineralisation at Olympic dam, South Australia. Ore Geol. Rev. 2017, 80, 838–859. [Google Scholar] [CrossRef]
- Verdugo-Ihl, M.R.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.; Courtney-Davies, L. Defining early stages of IOCG systems: Evidence from iron oxides in the outer shell of the Olympic Dam deposit, South Australia. Miner. Depos. 2020, 55, 429–452. [Google Scholar] [CrossRef]
- Clark, J. Syn-to post-mineralization structural dismemberment of the Olympic Dam Fe Oxide- Cu-U-Au-Ag Deposit. Abstract and poster. In Proceedings of the Society of Economic Geologists Conference, Keystone, CO, USA, 22–25 September 2018. [Google Scholar]
- Betts, P.G.; Valenta, R.K.; Finlay, J. Evolution of the Mount Woods Inlier, northern Gawler Craton, Southern Australia: An integrated structural and aeromagnetic analysis. Tectonophysics 2003, 366, 83–111. [Google Scholar] [CrossRef]
- Huang, Q.; Kamenetsky, V.; McPhie, J.; Ehrig, K.; Meffre, S.; Maas, R.; Thompson, J.; Kamenetsky, M.; Chambefort, I.; Apukhtina, O.; et al. Neoproterozoic (ca. 820–830 Ma) mafic dykes at Olympic Dam, South Australia: Links with the Gairdner Large Igneous Province. Precambr. Res. 2015, 271, 160–172. [Google Scholar] [CrossRef]
- Preiss, W. The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambr. Res. 2000, 100, 21–63. [Google Scholar] [CrossRef]
- Foden, J.; Elburg, M.A.; Dougherty-Page, J.; Burtt, A. The timing and duration of the Delamerian Orogeny: Correlation with the Ross Orogen and implications for Gondwana assembly. J. Geol. 2006, 114, 189–210. [Google Scholar] [CrossRef]
- Ehrig, K.; Kamenetsky, V.S.; McPhie, J.; Cook, N.J.; Ciobanu, C.L. Olympic Dam iron oxide Cu-U-Au-Ag deposit. In Australian Ore Deposits; Phillips, G.N., Ed.; The Australasian Institute of Mining and Metallurgy: Melbourne, VIC, Australia, 2017; pp. 601–610. [Google Scholar]
- Belousov, I.; Danyushevsky, L.; Goemann, K.; Gilbert, S.; Olin, P.; Thompson, J.; Lounejeva, E.; Garbe-Schönberg, D. STDGL3, a reference material for analysis of sulfide minerals by Laser Ablation ICP-MS: An assessment of matrix effects and the impact of laser wavelengths and pulse widths. Geostand. Geoanal. Res. 2023, 47, 493–508. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. Atom. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Passchier, C.W.; Trouw, R.A.J. Microtectonics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Craig, J.R. Ore-mineral textures and the tales they tell. Can. Mineral. 2001, 39, 937–956. [Google Scholar] [CrossRef]
- Cox, S. Flow mechanisms in sulphide minerals. Ore Geol. Rev. 1987, 2, 133–171. [Google Scholar] [CrossRef]
- Raleigh, C.B. Glide Mechanisms in Experimentally Deformed Minerals. Science 1965, 150, 739–741. [Google Scholar] [CrossRef] [PubMed]
- Dmitrijeva, M.; Cook, N.J.; Ehrig, K.; Ciobanu, C.L.; Metcalfe, A.V.; Kamenetsky, M.; Kamenetsky, V.S.; Gilbert, S. Multivariate statistical analysis of trace elements in pyrite: Prediction, bias and artefacts in defining mineral signatures. Minerals 2020, 10, 61. [Google Scholar] [CrossRef]
- Ciobanu, C.L. Cu(Fe)-Sulphides from Olympic Dam; Unpublished report prepared for BHP Billiton: M 2014.
- Huston, D.L.; Sie, S.H.; Suter, G.F.; Cooke, D.R.; Both, R.A. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite. Econ. Geol. 1995, 90, 1167–1196. [Google Scholar] [CrossRef]
- Steadman, J.A.; Large, R.R.; Olin, P.H.; Danyushevsky, L.V.; Meffre, S.; Huston, D.; Fabris, A.; Listitsin, V.; Wells, T. Pyrite trace element behavior in magmatic-hydrothermal environments: An LA-ICPMS imaging study. Ore Geol. Rev. 2021, 128, 103878. [Google Scholar] [CrossRef]
- Hannington, M.D.; Barrie, C.T.; Bleeker, W. The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada: Summary and Synthesis. Soc. Econ. Geol. Monogr. Ser. 1999, 10, 1–30. [Google Scholar]
- Yuan, B.; Yu, H.; Yang, Y.; Zhao, Y.; Yang, J.; Xu, Y.; Lin, Z.; Tang, X. Zone refinement related to the mineralization process as evidenced by mineralogy and element geochemistry in a chimney fragment from the Southwest Indian Ridge at 49.6°E. Chem. Geol. 2018, 482, 46–60. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Ciobanu, C.L. Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geol. Rev. 2016, 77, 97–116. [Google Scholar] [CrossRef]
- George, L.L.; Cook, N.J.; Crowe, B.B.; Ciobanu, C.L. Trace elements in hydrothermal chalcopyrite. Mineral. Mag. 2018, 82, 59–88. [Google Scholar] [CrossRef]
- Petukhov, B.; Klyuchnik, P. Dynamic interaction of dislocations with impurity subsystem in crystalline materials. Crystallogr. Rep. 2012, 57, 388–392. [Google Scholar] [CrossRef]
- Cottrell, A.H. Theory of dislocations. Prog. Phys. Met. 1953, 4, 205–264. [Google Scholar] [CrossRef]
- Cottrell, A.H.; Bilby, B.A. Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. 1949, A62, 49. [Google Scholar] [CrossRef]
- Piazolo, S.; La Fontaine, A.; Trimby, P.; Harley, S.; Yang, L.; Armstrong, R.; Cairney, J.M. Deformation-induced trace element redistribution in zircon revealed using atom probe tomography. Nat. Comms. 2016, 7, 10490. [Google Scholar] [CrossRef] [PubMed]
- Fougerouse, D.; Reddy, S.M.; Kirkland, C.L.; Saxey, D.W.; Rickard, W.D.; Hough, R.M. Time-resolved, defect-hosted, trace element mobility in deformed Witwatersrand pyrite. Geosci. Front. 2019, 10, 55–63. [Google Scholar] [CrossRef]
- Krneta, S.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.; Kontonikas-Charos, A. Rare earth element behaviour in apatite from the Olympic Dam Cu–U–Au–Ag deposit, South Australia. Minerals 2017, 7, 135. [Google Scholar] [CrossRef]
- Yund, R.A.; Kullerud, G. Thermal stability of assemblages in the Cu—Fe—S system. J. Petrol. 1966, 7, 454–488. [Google Scholar] [CrossRef]
- Cabri, L.J. New data on phase relations in the Cu-Fe-S system. Econ. Geol. 1973, 68, 443–454. [Google Scholar] [CrossRef]
- Craig, J.R.; Vokes, F.M.; Solberg, T.N. Pyrite: Physical and chemical textures. Miner. Depos. 1998, 34, 82–101. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Wade, B.P.; Cook, N.J.; Schmidt Mumm, A.; Giles, D. Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: A geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambr. Res. 2013, 238, 129–147. [Google Scholar] [CrossRef]
- Macmillan, E.; Ciobanu, C.L.; Ehrig, K.; Cook, N.J.; Pring, A. Replacement of uraninite by bornite via coupled dissolution-reprecipitation: Evidence from texture and microstructure. Can. Mineral. 2016, 54, 1369–1383. [Google Scholar] [CrossRef]
- Verdugo-Ihl, M.R.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.J.; Courtney-Davies, L.; Gilbert, S. Textures and U-W-Sn-Mo signatures in hematite from the Olympic Dam Cu-U-Au-Ag deposit, South Australia: Defining the archetype for IOCG deposits. Ore Geol. Rev. 2017, 91, 173–195. [Google Scholar] [CrossRef]
- Owen, N.D.; Ciobanu, C.L.; Cook, N.J.; Slattery, A.; Basak, A. Nanoscale study of clausthalite-bearing symplectites in Cu-Au-(U) ores: Implications for ore genesis. Minerals 2018, 8, 67. [Google Scholar] [CrossRef]
- Barrie, C.D.; Boyle, A.P.; Cox, S.F.; Prior, D.J. Slip systems and critical resolved shear stress in pyrite: An electron backscatter diffraction (EBSD) investigation. Mineral. Mag. 2008, 72, 1181–1199. [Google Scholar] [CrossRef]
- McLaren, S.; Sandiford, M.; Hand, M.; Neumann, N.; Wyborn, L.; Bastrakova, I. The hot southern continent: Heat flow and heat production in Australian Proterozoic terranes. Spec. Pap. Geol. Soc. Am. 2003, 22, 151–161. [Google Scholar]
- De Vries Van Leeuwen, A.T.; Hand, M.; Morrissey, L.J.; Raimondo, T. Th–U powered metamorphism: Thermal consequences of a chemical hotspot. J. Metamor. Geol. 2021, 39, 541–565. [Google Scholar] [CrossRef]
- Bockmann, M.J.; Hand, M.; Morrissey, L.J.; Payne, J.L.; Hasterok, D.; Teale, G.; Conor, C. Punctuated geochronology within a sustained high-temperature thermal regime in the southeastern Gawler Craton. Lithos 2022, 430–431, 106860. [Google Scholar] [CrossRef]
- Houseman, G.A.; Cull, J.P.; Muir, P.M.; Paterson, H.L. Geothermal signatures and uranium ore deposits on the Stuart Shelf of South Australia. Geophysics 1989, 54, 158–170. [Google Scholar] [CrossRef]
- Neumann, N.; Sandiford, M.; Foden, J. Regional geochemistry and continental heat flow: Implications for the origin of the South Australian heat flow anomaly. Earth Plan. Sci. Lett. 2000, 183, 107–120. [Google Scholar] [CrossRef]
- Owen, N.D.; Cook, N.J.; Ram, R.; Brugger, J.; Maas, R.; Schmandt, D.S.; Ciobanu, C.L. Pb-bearing Cu-(Fe)-sulfides: Evidence for continuous hydrothermal activity in the northern Olympic Cu-Au Province, South Australia. Precambr. Res. 2023, 398, 107225. [Google Scholar] [CrossRef]
- Ehrig, K.; Kamenetsky, V.S.; McPhie, J.; Macmillan, E.; Thompson, J.; Kamenetsky, M.; Maas, R. Staged formation of the supergiant Olympic Dam uranium deposit, Australia. Geology 2021, 49, 1312–1316. [Google Scholar] [CrossRef]
- Maas, R.; Apukhtina, O.B.; Kamenetsky, V.S.; Ehrig, K.; Sprung, P.; Münker, C. Carbonates at the supergiant Olypmic Dam Cu-U-Au-Ag deposit, South Australia part 2: Sm-Nd, Lu-Hf and Sr-Pb isotope constraints on the chronology of carbonate deposition. Ore Geol. Rev. 2022, 140, 103745. [Google Scholar] [CrossRef]
- McPhie, J.; Orth, K.; Kamenetsky, V.; Kamenetsky, M.; Ehrig, K. Characteristics, origin and significance of Mesoproterozoic bedded clastic facies at the Olympic Dam Cu–U–Au–Ag deposit, South Australia. Precambr. Res. 2016, 276, 85–100. [Google Scholar] [CrossRef]
- Li, K.; Brugger, J.; Pring, A. Exsolution of chalcopyrite from bornite-digenite solid solution: An example of a fluid-driven back-replacement reaction. Miner. Depos. 2018, 53, 903–908. [Google Scholar] [CrossRef]
- Chaudhari, A.; Brugger, J.; Ram, R.; Chowdhury, P.; Etschmann, B.; Guagliardo, P.; Xia, F.; Pring, A.; Gervinskas, G.; Liu, A.; et al. Synchronous solid-state diffusion, dissolution-reprecipitation, and recrystallization leading to isotopic resetting: Insights from chalcopyrite replacement by copper sulfides. Geochim. Cosmochim. Acta 2022, 331, 48–68. [Google Scholar]
- Adegoke, I.A.; Xia, F.; Deditius, A.P.; Pearce, M.A.; Roberts, M.P.; Brugger, J. A new mode of mineral replacement reactions involving the synergy between fluid-induced solid state diffusion and dissolution-reprecipitation: A case study of the replacement of bornite by copper sulphides. Geochim. Cosmochim. Acta 2022, 330, 165–190. [Google Scholar] [CrossRef]
Deposit Area | Drillhole | Length along Drillhole (M) | Sample | Analysis | Description |
---|---|---|---|---|---|
Middle (core margin) | RU65-7976a (magnetite drillcore) | 90.7 | CLC6 | EBSD, LA-ICP-MS | Disseminated pyrite as large aggregates or fragments in breccias with hematite clasts and as fine-grained matrix. The latter also comprises minor chalcopyrite and gangue minerals. |
431.4 | CLC23 | EBSD | |||
SE lobe-outer shell | RD2366 (nodular Fe-oxide granite drillcore) | 458.6 | MV18B | EBSD, LA-ICP-MS | Pyrite and chalcopyrite as fine stringers in rock flour, siderite-rich, hematite breccia. Further explanation is given in [48]. |
SE lobe | RD2786A | 2349.3 | MV37 | EBSD, LA-ICP-MS | Fine-grained pyrite within fractures crosscutting quartz and chlorite domains showing slight deformation in a hematite breccia. |
Distal satellite | RD2316 | 798.1 | MV65 | EBSD | Coarse pyrite grains and/or aggregates along fractures in altered granite; minor chalcopyrite and hematite present. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
King, S.A.; Cook, N.J.; Ciobanu, C.L.; Ehrig, K.; Campo Rodriguez, Y.T.; Basak, A.; Gilbert, S. Coupled Microstructural EBSD and LA-ICP-MS Trace Element Mapping of Pyrite Constrains the Deformation History of Breccia-Hosted IOCG Ore Systems. Minerals 2024, 14, 198. https://doi.org/10.3390/min14020198
King SA, Cook NJ, Ciobanu CL, Ehrig K, Campo Rodriguez YT, Basak A, Gilbert S. Coupled Microstructural EBSD and LA-ICP-MS Trace Element Mapping of Pyrite Constrains the Deformation History of Breccia-Hosted IOCG Ore Systems. Minerals. 2024; 14(2):198. https://doi.org/10.3390/min14020198
Chicago/Turabian StyleKing, Samuel Anthony, Nigel John Cook, Cristiana Liana Ciobanu, Kathy Ehrig, Yuri Tatiana Campo Rodriguez, Animesh Basak, and Sarah Gilbert. 2024. "Coupled Microstructural EBSD and LA-ICP-MS Trace Element Mapping of Pyrite Constrains the Deformation History of Breccia-Hosted IOCG Ore Systems" Minerals 14, no. 2: 198. https://doi.org/10.3390/min14020198
APA StyleKing, S. A., Cook, N. J., Ciobanu, C. L., Ehrig, K., Campo Rodriguez, Y. T., Basak, A., & Gilbert, S. (2024). Coupled Microstructural EBSD and LA-ICP-MS Trace Element Mapping of Pyrite Constrains the Deformation History of Breccia-Hosted IOCG Ore Systems. Minerals, 14(2), 198. https://doi.org/10.3390/min14020198