Computed Tomography of Scheelite Ore, Kara, Australia: Morphological Characterisation and Modal Mineralogy
Abstract
:1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Deposit Geology
2.3. Deposit Mineralogy
3. Materials and Methods
3.1. Conventional Analysis
3.2. Computed Tomography
Image Processing
4. Results
4.1. Petrographic Description and Modal Mineralogy
4.2. Validation
5. Discussion
5.1. CT Data Acquisition
5.2. Implications of CT Analysis
5.2.1. Scheelite Ore Genesis
5.2.2. Mineral Processing
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Pitfield, P.; Brown, T.; Rayner, D. Tungsten Profile; British Geological Survey: Nottingham, UK, 2011. [Google Scholar]
- European Commission. Study on the EU’s List of Critical Raw Materials; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Sandler, R.B. Tungsten; U.S. Geological Survey: Reston, VA, USA, 2023.
- Hughes, A. Australian Resource Reviews Tungsten; Geoscience Australia, Canberra: Symonston, Australia, 2020. [Google Scholar]
- Todesco, R. The Tungsten Revival. Mining Magazine. 2023. Available online: https://miningmagazine.com.au/the-tungsten-revival/ (accessed on 1 March 2024).
- Butcher, A.R.; Dehaine, Q.; Menzies, A.H.; Michaux, S.P. Characterisation of Ore Properties for Geometallurgy. Elements 2023, 19, 352–358. [Google Scholar] [CrossRef]
- Zhan, Q.; Gao, X.-Y.; Meng, L.; Zhao, T.-P. Ore genesis and fluid evolution of the Sandaozhuang supergiant W-Mo skarn deposit, southern margin of the North China Craton: Insights from scheelite, garnet and clinopyroxene geochemistry. Ore Geol. Rev. 2021, 139, 104551. [Google Scholar] [CrossRef]
- Miranda, A.C.R.; Beaudoin, G.; Rottier, B. Scheelite chemistry from skarn systems: Implications for ore-forming processes and mineral exploration. Min. Depos. 2022, 57, 1469–1497. [Google Scholar] [CrossRef]
- Soloviev, S.G. Geology, mineralization, and fluid inclusion characteristics of the Kumbel oxidized W–Cu–Mo skarn and Au–W stockwork deposit in Kyrgyzstan, Tien Shan. Min. Depos. 2015, 50, 187–220. [Google Scholar] [CrossRef]
- Withers, P.J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C.K.; Maire, E.; Manley, M.; Du Plessis, A.; Stock, S.R. X-ray Computed Tomography. Nat. Rev. Methods Primers 2021, 1, 18. [Google Scholar] [CrossRef]
- Krebbers, L.; Gainov, R.; Lottermoser, B.G.; Lohmeier, S.; Hennig, A. Applications of Industrial Computed Tomography in the Mining Sector. Min. Rep. Glückauf 2020, 157, 360–369. [Google Scholar]
- Mees, F.; Swennen, R.; van Geet, M.; Jacobs, P. Applications of X-ray Computed Tomography in the Geosciences; Geological Society Publishing House: Bath, UK, 2003; ISBN 9781862391390. [Google Scholar]
- Cnudde, V.; Boone, M.N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Sci. Rev. 2013, 123, 1–17. [Google Scholar] [CrossRef]
- Guntoro, P.I. X-ray Microcomputed Tomography (µCT) as a Potential Tool in Geometallurgy. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2019. [Google Scholar]
- Krebbers, L.T.; Lottermoser, B.G.; Liu, X. Computed tomography of flake graphite ore: Data acquisition and image processing. Minerals 2023, 13, 247. [Google Scholar] [CrossRef]
- Kyle, J.R.; Ketcham, R.A. Application of high resolution X-ray computed tomography to mineral deposit origin, evaluation, and processing. Ore Geol. Rev. 2015, 65, 821–839. [Google Scholar] [CrossRef]
- Ferraz da Costa, M.; Kyle, J.R.; Lobato, L.M.; Ketcham, R.A.; Figueiredo e Silva, R.C.; Fernandes, R.C. Orogenic gold ores in three-dimensions: A case study of distinct mineralization styles at the world-class Cuiabá deposit, Brazil, using high-resolution X-ray computed tomography on gold particles. Ore Geol. Rev. 2022, 140, 104584. [Google Scholar] [CrossRef]
- Chisambi, J.; von der Heyden, B.P.; Tshibalanganda, M.; Le Roux, S.G. Gold Exploration in Two and Three Dimensions: Improved and Correlative Insights from Microscopy and X-Ray Computed Tomography. Minerals 2020, 10, 476. [Google Scholar] [CrossRef]
- Lohmeier, S.; Gainov, R.R.; Hodgkin, A. Morphological characterization of lode gold in the auriferous quartz veins at M’Popo mine, Angola, by computed tomography and optical microscopy. Appl. Earth Sci. 2023, 132, 65–89. [Google Scholar] [CrossRef]
- Le Roux, S.G.; Du Plessis, A.; Rozendaal, A. The quantitative analysis of tungsten ore using X-ray microCT: Case study. Comput. Geosci. 2015, 85, 75–80. [Google Scholar] [CrossRef]
- Warlo, M.; Bark, G.; Wanhainen, C.; Butcher, A.R.; Forsberg, F.; Lycksam, H.; Kuva, J. Multi-Scale X-ray Computed Tomography Analysis to Aid Automated Mineralogy in Ore Geology Research. Front. Earth Sci. 2021, 9, 789372. [Google Scholar] [CrossRef]
- Rozendaal, A.; Le Roux, S.G.; Du Plessis, A. Application of microCT scanning in the recovery of endo-skarn associated scheelite from the Riviera Deposit, South Africa. Miner. Eng. 2017, 116, 163–178. [Google Scholar] [CrossRef]
- Barret, D.E. Geology, Mineralogy and Conditions of Formation of the Kara Scheelite Skarn; University of Tasmania: Hobart, Australia, 1980. [Google Scholar]
- Fudge, A.D. Kara No. 1 Magnetite Deposit Ore Reserve Report January 2016. Available online: https://minedocs.com/17/TasmaniaMines_Ore_Reserve_2016.pdf (accessed on 21 March 2024).
- Callaghan, T. Kara No. 1 Mineral Resource Estimate. Available online: https://www.asx.com.au/asxpdf/20150218/pdf/42wpdfqky18shb.pdf (accessed on 21 March 2024).
- Zaw, K.; Singoyi, B. Formation of Magnetite-Scheelite Skarn Mineralization at Kara, Northwestern Tasmania: Evidence from Mineral Chemistry and Stable Isotopes. Econ. Geol. 2000, 95, 1215–1230. [Google Scholar] [CrossRef]
- Singoyi, B.; Zaw, K. A petrological and fluid inclusion study of magnetite–scheelite skarn mineralization at Kara, Northwestern Tasmania: Implications for ore genesis. Chem. Geol. 2001, 173, 239–253. [Google Scholar] [CrossRef]
- Collins, P.L.F.; Brown, S.G.; Dronseika, E.V.; Morland, R. Mid-Paleozoic Ore Deposits; Geological Society of Australia Special Publication: Parkes, Australia, 1989; pp. 270–292. [Google Scholar]
- Banks, M.R.; Baillie, P.W. Late Cambrian to Devonian. Geol. Miner. Resour. Tasman. 1989, 15, 182–237. [Google Scholar]
- Leaman, D.E.; Richardson, R.G. Production of a Residual Gravity Field Map for Tasmania and Some Implications. Explor. Geophys. 1989, 20, 181–184. [Google Scholar] [CrossRef]
- Williams, E.; McClenaghan, M.P.; Collins, P.L.D. Mid-Paleozoic Deformaiton, Granitoid and Ore Deposits; Geological Society of Australia Special Publication: Parkes, Australia, 1989; Volume 15, pp. 238–292. [Google Scholar]
- Berry, R.F. The history of movement on the Henty Fault Zone, western Tasmania: An analysis of fault striations. Aust. J. Earth Sci. 1989, 36, 189–205. [Google Scholar] [CrossRef]
- Stock, S.R. MicroComputed Tomography: Methodology and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9780429186745. [Google Scholar]
- van Grieken, R.; Markowicz, A. Handbook of X-Ray Spectrometry; CRC Press: Boca Raton, FL, USA, 2001; ISBN 9780203908709. [Google Scholar]
- Krebbers, L.T.; Grozmani, N.; Lottermoser, B.G.; Schmitt, R.H. Dual-energy computed tomography for improved contrast on a polyphase graphitic ore. Tomogr. Mater. Struct. 2024, 4, 100021. [Google Scholar] [CrossRef]
- Volume Graphics GmbH. VGSTUDIO MAX 3.5.1; Volume Graphics: Heidelberg, Germany, 2021. [Google Scholar]
- Object Research Systems. Dragonfly; Object Research Systems: Montreal, QC, Canada, 2022. [Google Scholar]
- Novikov, A.; Major, D.; Wimmer, M.; Lenis, D.; Bühler, K. Deep Sequential Segmentation of Organs in Volumetric Medical Scans. IEEE Trans. Med. Imaging 2019, 38, 1207–1215. [Google Scholar] [CrossRef]
- Berger, M.J.; Hubbell, J.H.; Seltzer, S.M.; Chang, J.; Coursey, J.S.; Sukumar, R.; Zucker, D.S.; Olsen, K. X-COM: Photon Cross Sections Database. Available online: https://www.nist.gov/pml/xcom-photon-cross-sections-database (accessed on 5 December 2023).
- Li, X.; Zhang, G.; Li, K.; Zheng, W. Deep Learning and Its Parallelization. In Big Data: Principles and Paradigms; Buyya, R., Calheiros, R.N., Dastjerdi, A.(E.)V., Eds.; Elsevier/Morgan Kaufmann: Cambridge, MA, USA, 2016; pp. 95–118. ISBN 978-0-12-805394-2. [Google Scholar]
- Kyle, J.R.; Mote, A.S.; Ketcham, R.A. High resolution X-ray computed tomography studies of Grasberg porphyry Cu-Au ores, Papua, Indonesia. Min. Depos. 2008, 43, 519–532. [Google Scholar] [CrossRef]
- Yang, X. Beneficiation studies of tungsten ores—A review. Miner. Eng. 2018, 125, 111–119. [Google Scholar] [CrossRef]
- Sivamohan, R.; Forssberg, E. Recovery of heavy minerals from slimes. Int. J. Miner. Process. 1985, 15, 297–314. [Google Scholar] [CrossRef]
- Krishna Rao, N. Beneficiation of tungsten ores in India: A review. Bull. Mater. Sci. 1996, 19, 201–265. [Google Scholar] [CrossRef]
Skarn Formation Stage | Paragenesis |
---|---|
Stage I | Clinopyroxene ± garnet ± vesuvianite ± wollastonite ± quartz ± scheelite |
Stage II | Garnet-vesuvianite-magnetite ± scheelite ± apatite ± quartz |
Stage III | Magnetite-amphibole-epidote-fluorite-quartz ± chlorite ± garnet ± vesuvianite ± scheelite ± carbonate ± pyrite ± clinopyroxene |
Stage IV | Hematite ± fluorite ± calcite ± quartz |
Parameter | ROM1 | ROM4 | |
---|---|---|---|
Voltage (kV) | 150 | 150 | 180 |
Power (W) | 8 | 8 | 8 |
Binning (# × #) | 2 × 2 | 2 × 2 | 2 × 2 |
Exposure time (s) | 1.6 | 0.8 | 1.9 |
Number of projections (#) | 1600 | 1600 | 1600 |
Resolution (µm × µm × µm) | 7.8 | 7.8 | 8.4 |
Prefilter (-) | Cu0.4 1 | None | Cu0.4 1 |
Averaging (#) | 4 | 4 | 12 |
Mineral | 150 kV | 180 kV |
---|---|---|
K-feldspar | 0.36 | 0.34 |
Albite | 0.36 | 0.34 |
Kaolinite | 0.37 | 0.35 |
Quartz | 0.37 | 0.35 |
Muscovite | 0.40 | 0.37 |
Fluorite | 0.47 | 0.43 |
Apatite | 0.48 | 0.44 |
Actinolite | 0.48 | 0.43 |
Ferro-edenite | 0.48 | 0.43 |
Biotite | 0.48 | 0.44 |
Diopside | 0.49 | 0.45 |
Epidote | 0.51 | 0.46 |
Chamosite | 0.51 | 0.45 |
Ferro-kaersutite | 0.52 | 0.46 |
Titanite | 0.52 | 0.48 |
Andradrite | 0.61 | 0.54 |
Chalcopyrite | 0.79 | 0.66 |
Ilmenite | 0.80 | 0.69 |
Pyrite | 0.86 | 0.74 |
Magnetite | 0.93 | 0.79 |
Bornite | 1.02 | 0.83 |
Zircon | 1.54 | 1.09 |
Monazite | 2.96 | 2.00 |
Scheelite | 6.48 | 4.23 |
Vol. (mm3) | ROM1 | ROM4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ESD (µm) | P (n) | P (%) | Vol. (mm3) | Vol. (%) | ESD (µm) | P (n) | P (%) | Vol. (mm3) | Vol. (%) | |
≥0.00001 | 10.13–26.56 | 36 | 8.28 | 0.0002 | 0.12 | 10.48–26.42 | 238 | 26.65 | 0.001 | 0.04 |
<0.00001–0.0001 | 27.51–57.64 | 251 | 57.7 | 0.01 | 7.25 | 26.96–57.5 | 388 | 43.45 | 0.01 | 0.59 |
<0.0001–0.001 | 57.75–122.41 | 134 | 30.8 | 0.04 | 26.16 | 57.62–126.38 | 212 | 23.74 | 0.06 | 2.64 |
<0.001–0.01 | 129.66–265.96 | 10 | 2.3 | 0.03 | 20.64 | 126.31–265.69 | 46 | 5.15 | 0.15 | 6.68 |
<0.01–0.1 | 282.74–360.88 | 4 | 0.92 | 0.07 | 45.82 | 278.67–473.35 | 5 | 0.56 | 0.14 | 6.08 |
<0.1–1 | - | - | - | - | 698.62–1238.93 | 4 | 0.45 | 1.94 | 83.96 | |
Total | 435 | 100 | 0.15 | 100 | 893 | 100 | 2.31 | 100 |
Sample | Weight (g) | CT | ICP-OES | Difference in WO3 Grade (%) | ||
---|---|---|---|---|---|---|
Sch Vol (mm3) | Sch wt (g) | WO3 Grade (wt%) | WO3 Grade (wt%) | |||
ROM1 | 1.3664 | 0.154 | 0.000939 | 0.055 | 0.059 | 6.85% |
ROM4 | 3.961 | 2.311 | 0.0141 | 0.29 | 0.32 | 9.12% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krebbers, L.T.; Hunt, J.A.; Lottermoser, B.G. Computed Tomography of Scheelite Ore, Kara, Australia: Morphological Characterisation and Modal Mineralogy. Minerals 2024, 14, 345. https://doi.org/10.3390/min14040345
Krebbers LT, Hunt JA, Lottermoser BG. Computed Tomography of Scheelite Ore, Kara, Australia: Morphological Characterisation and Modal Mineralogy. Minerals. 2024; 14(4):345. https://doi.org/10.3390/min14040345
Chicago/Turabian StyleKrebbers, Leonard T., Julie A. Hunt, and Bernd G. Lottermoser. 2024. "Computed Tomography of Scheelite Ore, Kara, Australia: Morphological Characterisation and Modal Mineralogy" Minerals 14, no. 4: 345. https://doi.org/10.3390/min14040345
APA StyleKrebbers, L. T., Hunt, J. A., & Lottermoser, B. G. (2024). Computed Tomography of Scheelite Ore, Kara, Australia: Morphological Characterisation and Modal Mineralogy. Minerals, 14(4), 345. https://doi.org/10.3390/min14040345