The Role of Sulfuric Acid, Abiotic–Organic Acids, and Biotic Acids on Serpentinite Dissolution and Trace Metal Release
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Solution Chemistry
2.4. Secondary Mineral Characterization
2.5. Statistical Methods
3. Results
3.1. Solution pH As a Function of Time
3.2. Statistical Results
3.2.1. Statistical Results for Research Question 1 (Model 1): How Does the Dissolution of Serpentinite Vary in Systems Reacted with Nitric Acid, Sulfuric Acid, Abiotic–Organic Acids, and Biotic Acids?
3.2.2. Statistical Results for Model 2
Model 2 Results for Research Question 2: Do Biotic Acids Facilitate the Preferential Release of Certain Cations from the Rock Structure over Abiotic–Organic or Inorganic Acids That May Be Used as Biosignatures?
Statistical Results for Research Question 3 (Model 2B): Would these Biosignatures Be Different in a High-Sulfur Environment?
3.3. Characterization of Secondary Precipitates
4. Discussion
4.1. Biotically Enhanced Serpentinite Dissolution
4.2. Sulfuric Acid Enhances Serpentinite Dissolution
4.3. Preferential Release of Trace Elements in Abiotic–Organic and Biotic Environments: Potential Biosignatures
4.4. Broader Implications for Mineral Stability in the Presence of Organic Acids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moody, J.B. An experimental study on the serpentinization of iron-bearing olivines. Can. Mineral. 1976, 14, 462–478. [Google Scholar]
- Ehlmann, B.L.; Mustard, J.F.; Clark, R.N.; Swayze, G.A.; Murchie, S.L. Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages. Clays Clay Miner. 2011, 59, 359–377. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Mustard, J.F.; Murchie, S.L. Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Mustard, J.F.; Swayze, G.A.; Clark, R.N.; Bishop, J.L.; Poulet, F.; Des Marais, D.J.; Roach, L.H.; Milliken, R.E.; Wray, J.J.; et al. Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. Planets 2009, 114. [Google Scholar] [CrossRef]
- Quantin, C.; Flahaut, J.; Clenet, H.; Allemand, P.; Thomas, P. Composition and structures of the subsurface in the vicinity of Valles Marineris as revealed by central uplifts of impact craters. Icarus 2012, 221, 436–452. [Google Scholar] [CrossRef]
- Wang, A.; Crumpler, L.; Farrand, W.H.; Herkenhoff, K.E.; de Souza, P., Jr.; Kusack, A.G.; Hurowitz, J.A.; Tosca, N.J.; Korotev, R.L.; Jolliff, B.L.; et al. Evidence of phyllosilicates in Wooly Patch, an altered rock encountered at West Spur, Columbia Hills, by the Spirit rover in Gusev crater, Mars. J. Geophys. Res. Planets 2006, 111. [Google Scholar] [CrossRef]
- Bristow, T.F.; Grotzinger, J.P.; Rampe, E.B.; Cuadros, J.; Chipera, S.J.; Downs, G.W.; Fedo, C.M.; Frydenvang, J.; McAdam, A.C.; Morris, R.V.; et al. Brine-driven destruction of clay minerals in Gale crater, Mars. Science 2021, 373, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.I.; Hickman-Lewis, K.; Cohen, B.A.; Mayhew, L.E.; Shuster, D.L.; Debaille, V.; Hausrath, E.M.; Weiss, B.P.; Bosak, T.; Zorzano, M.-P.; et al. Samples Collected from the Floor of Jezero Crater with the Mars 2020 Perseverance Rover. J. Geophys. Res. Planets 2023, 128, e2022JE007474. [Google Scholar] [CrossRef]
- Hicks, L.J.; Bridges, J.C.; Gurman, S.J. Ferric saponite and serpentine in the nakhlite martian meteorites. Geochim. Cosmochim. Acta 2014, 136, 194–210. [Google Scholar] [CrossRef]
- Bass, M.N. Montmorillonite and serpentine in orgueil meteorite. Geochim. Cosmochim. Acta 1971, 35, 139–147. [Google Scholar] [CrossRef]
- Vance, S.; Harnmeijer, J.; Kimura, J.; Hussmann, H.; Demartin, B.; Brown, J.M. Hydrothermal systems in small ocean planets. Astrobiology 2007, 7, 987–1005. [Google Scholar] [CrossRef]
- Lowell, R.P.; Dubose, M. Hydrothermal systems on Europa. Geophys. Res. Lett. 2005, 32, 4–7. [Google Scholar] [CrossRef]
- Czechowski, L. Some remarks on the early evolution of Enceladus. Planet. Space Sci. 2014, 104, 185–199. [Google Scholar] [CrossRef]
- Malamud, U.; Prialnik, D. Modeling serpentinization: Applied to the early evolution of Enceladus and Mimas. Icarus 2013, 225, 763–774. [Google Scholar] [CrossRef]
- Vance, S.D.; Daswani, M.M. Serpentinite and the search for life beyond Earth. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2020, 378, 20180421. [Google Scholar] [CrossRef] [PubMed]
- Cardace, D.; Hoehler, T.M. Serpentinizing Fluids Craft Microbial Habitat. Northeast. Nat. 2009, 16, 272–284. [Google Scholar] [CrossRef]
- McCollom, T.M.; Seewald, J.S. Serpentinites, Hydrogen, and Life. Elements 2013, 9, 129–134. [Google Scholar] [CrossRef]
- Schulte, M.; Blake, D.; Hoehler, T.; McCollom, T. Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 2006, 6, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Guillot, S.; Hattori, K. Serpentinites: Essential Roles in Geodynamics, Arc Volcanism, Sustainable Development, and the Origin of Life. Elements 2013, 9, 95–98. [Google Scholar] [CrossRef]
- Okland, I.; Huang, S.; Dahle, H.; Thorseth, I.H.; Pedersen, R.B. Low temperature alteration of serpentinized ultramafic rock and implications for microbial life. Chem. Geol. 2012, 318, 75–87. [Google Scholar] [CrossRef]
- Menez, B.; Pasini, V.; Brunelli, D. Life in the hydrated suboceanic mantle. Nat. Geosci. 2012, 5, 133–137. [Google Scholar] [CrossRef]
- Sleep, N.H.; Bird, D.K.; Pope, E. Paleontology of Earth’s Mantle. Annu. Rev. Earth Planet. Sci. 2012, 40, 277–300. [Google Scholar] [CrossRef]
- Mayhew, L.E.; Ellison, E.T.; Miller, H.M.; Kelemen, P.B.; Templeton, A.S. Iron transformations during low temperature alteration of variably serpentinized rocks from the Samail ophiolite, Oman. Geochim. Cosmochim. Acta 2018, 222, 704–728. [Google Scholar] [CrossRef]
- Templeton, A.S.; Ellison, E.T.; Glombitza, C.; Morono, Y.; Rempfert, K.R.; Hoehler, T.M.; Zeigler, S.D.; Kraus, E.A.; Spear, J.R.; Nothaft, D.B.; et al. Accessing the Subsurface Biosphere within Rocks Undergoing Active Low-Temperature Serpentinization in the Samail Ophiolite (Oman Drilling Project). J. Geophys. Res.-Biogeosciences 2021, 126, e2021JG006315. [Google Scholar] [CrossRef]
- Alexander, E.B.; Coleman, R.G.; Keeler-Wolfe, T.; Harrison, S.P. Serpentine Geoecology of Western North America: Geology, Soils, and Vegetation; Illustrated Edition; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Olsen, A.A.; Bodkin, M.A.; Hausrath, E.M. Quantifying early mineral weathering reactions in serpentinite bedrock. Appl. Geochem. 2023, 148, 105543. [Google Scholar] [CrossRef]
- Baumeister, J.L.; Hausrath, E.M.; Olsen, A.A.; Tschauner, O.; Adcock, C.T.; Metcalf, R.V. Biogeochemical weathering of serpentinites: An examination of incipient dissolution affecting serpentine soil formation. Appl. Geochem. 2015, 54, 74–84. [Google Scholar] [CrossRef]
- Amrhein, C.; Suarez, D.L. The use of a surface complexation model to describe the kinetics of ligand-promoted dissolution of Anorthite. Geochim. Cosmochim. Acta 1988, 52, 2785–2793. [Google Scholar] [CrossRef]
- Blum, A.E.; Stillings, L.L. Feldspar dissolution kinetics. In Chemical Weathering Rates of Silicate Minerals; White, A.F., Brantley, S.L., Eds.; Mineralogical Society of America: Washington, DC, USA, 1995; Volume 31, p. 583. [Google Scholar]
- Cama, J.; Metz, V.; Ganor, J. The effect of pH and temperature on kaolinite dissolution rate under acidic conditions. Geochim. Cosmochim. Acta 2002, 66, 3913–3926. [Google Scholar] [CrossRef]
- Manley, E.P.; Evans, L.J. Dissolution of feldspars by low-molecular-weight aliphatic and aromatic acids. Soil Sci. 1986, 141, 106–112. [Google Scholar] [CrossRef]
- Mast, A.M.; Drever, J.I. The effect of oxalate on the dissolution rates of oligoclase and tremolite. Geochim. Cosmochim. Acta 1987, 51, 2559–2568. [Google Scholar] [CrossRef]
- Stillings, L.L.; Drever, J.I.; Brantley, S.L.; Sun, Y.; Oxburgh, R. Rates of feldspar dissolution at pH 3–7 with 0–8 mM oxalic acid. Chem. Geol. 1996, 132, 79–89. [Google Scholar] [CrossRef]
- Welch, S.A.; Ullman, W.J. The effect of organic acids on plagioclase dissolution rates and stoichiometry. Geochim. Cosmochim. Acta 1993, 57, 2725–2736. [Google Scholar] [CrossRef]
- Olsen, A.A.; Rimstidt, D. Oxalate-promoted forsterite dissolution at low pH. Geochim. Cosmochim. Acta 2008, 72, 1758–1766. [Google Scholar] [CrossRef]
- Hausrath, E.M.; Neaman, A.; Brantley, S.L. Elemental release rates from dissolving basalt and granite with and without organic ligands. Am. J. Sci. 2009, 309, 633–660. [Google Scholar] [CrossRef]
- Brantley, S.L.; Olsen, A.A. Reaction Kinetics of Primary Rock-Forming Minerals under Ambient Conditions. In Volume 7: Surface And Groundwater, Weathering and Soils, 2nd ed.; Drever, J.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Wolff-Boenisch, D.; Wenau, S.; Gislason, S.R.; Oelkers, E.H. Dissolution of basalts and peridotite in seawater, in the presence of ligands, and CO2: Implications for mineral sequestration of carbon dioxide. Geochim. Cosmochim. Acta 2011, 75, 5510–5525. [Google Scholar] [CrossRef]
- Bartlett, C.L.; Hausrath, E.M.; Adcock, C.T.; Huang, S.C.; Harrold, Z.R.; Udry, A. Effects of Organic Compounds on Dissolution of the Phosphate Minerals Chlorapatite, Whitlockite, Merrillite, and Fluorapatite: Implications for Interpreting Past Signatures of Organic Compounds in Rocks, Soils and Sediments. Astrobiology 2018, 18, 1543–1558. [Google Scholar] [CrossRef]
- Hausrath, E.M.; Navarre-Sitchler, A.K.; Sak, P.B.; Williams, J.Z.; Brantley, S.L. Soil profiles as indicators of mineral weathering rates and organic interactions for a Pennsylvania diabase. Chem. Geol. 2011, 290, 89–100. [Google Scholar] [CrossRef]
- Neaman, A.; Chorover, J.; Brantley, S.L. Element mobility patterns record organic ligands in soils on early Earth. Geology 2005, 33, 117–120. [Google Scholar] [CrossRef]
- Neaman, A.; Chorover, J.O.N.; Brantley, S.L. Implications of the evolution of organic acid moieties for basalt weathering over geologic time. Am. J. Sci. 2005, 305, 147–185. [Google Scholar] [CrossRef]
- Furrer, G.; Stumm, W. The role of surface coordination in the dissolution of delta-Al2O3 in dilute acids. Chimia 1983, 37, 338–341. [Google Scholar]
- Sigg, L.; Stumm, W. The interaction of anions and weak acids with the hydrous goethite (alpha-feooh) surface. Colloids Surf. 1981, 2, 101–117. [Google Scholar] [CrossRef]
- Kubicki, J.D.; Schroeter, L.M.; Itoh, M.J.; Nguyen, B.N.; Apitz, S.E. Attenuated total reflectance Fourier-transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces. Geochim. Cosmochim. Acta 1999, 63, 2709–2725. [Google Scholar] [CrossRef]
- Oelkers, E.H.; Schott, J. Does organic acid adsorption affect alkali-feldspar dissolution rates? Chem. Geol. 1998, 151, 235–245. [Google Scholar] [CrossRef]
- Martins, Z. Organic Chemistry of Carbonaceous Meteorites. Elements 2011, 7, 35–40. [Google Scholar] [CrossRef]
- Botta, O.; Bada, J.L. Extraterrestrial organic compounds in meteorites. Surv. Geophys. 2002, 23, 411–467. [Google Scholar] [CrossRef]
- Pizzarello, S.; Shock, E. The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story Ahead of Biochemistry. Cold Spring Harb. Perspect. Biol. 2010, 2, a002105. [Google Scholar] [CrossRef]
- Benner, S.A.; Devine, K.G.; Matveeva, L.N.; Powell, D.H. The missing organic molecules on Mars. Proc. Natl. Acad. Sci. USA 2000, 97, 2425–2430. [Google Scholar] [CrossRef]
- Formisano, V.; Atreya, S.; Encrenaz, T.; Ignatiev, N.; Giuranna, M. Detection of methane in the atmosphere of Mars. Science 2004, 306, 1758–1761. [Google Scholar] [CrossRef]
- Webster, C.R.; Mahaffy, P.R.; Atreya, S.K.; Flesch, G.J.; Mischna, M.A.; Meslin, P.-Y.; Farley, K.A.; Conrad, P.G.; Christensen, L.E.; Pavlov, A.A.; et al. Mars methane detection and variability at Gale crater. Science 2015, 347, 415–417. [Google Scholar] [CrossRef]
- Webster, C.R.; Mahaffy, P.R.; Atreya, S.K.; Moores, J.E.; Flesch, G.J.; Malespin, C.; McKay, C.P.; Martinez, G.; Smith, C.L.; Martin-Torres, J.; et al. Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 2018, 360, 1093–1096. [Google Scholar] [CrossRef]
- Mumma, M.J.; Villanueva, G.L.; Novak, R.E.; Hewagama, T.; Bonev, B.P.; DiSanti, M.A.; Mandell, A.M.; Smith, M.D. Strong release of methane on Mars in northern summer 2003. Science 2009, 323, 1041–1045. [Google Scholar] [CrossRef]
- Freissinet, C.; Glavin, D.P.; Mahaffy, P.R.; Miller, K.E.; Eigenbrode, J.L.; Summons, R.E.; Brunner, A.E.; Buch, A.; Szopa, C.; Archer, P.D.; et al. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. J. Geophys. Res.-Planets 2015, 120, 495–514. [Google Scholar] [CrossRef] [PubMed]
- Eigenbrode, J.L.; Summons, R.E.; Steele, A.; Freissinet, C.; Millan, M.; Navarro-Gonzalez, R.; Sutter, B.; McAdam, A.C.; Franz, H.B.; Glavin, D.P.; et al. Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science 2018, 360, 1096–1100. [Google Scholar] [CrossRef]
- Millan, M.; Teinturier, S.; Malespin, C.A.; Bonnet, J.Y.; Buch, A.; Dworkin, J.P.; Eigenbrode, J.L.; Freissinet, C.; Glavin, D.P.; Navarro-Gonzalez, R.; et al. Organic molecules revealed in Mars’s Bagnold Dunes by Curiosity’s derivatization experiment. Nat. Astron. 2022, 6, 129–140. [Google Scholar] [CrossRef]
- Scheller, E.L.; Hollis, J.R.; Cardarelli, E.L.; Steele, A.; Beegle, L.W.; Bhartia, R.; Conrad, P.; Uckert, K.; Sharma, S.; Ehlmann, B.L.; et al. Aqueous alteration processes in Jezero crater, Mars;implications for organic geochemistry. Science 2022, 378, 1105–1110. [Google Scholar] [CrossRef]
- Sharma, S.; Roppel, R.; Murphy, A.; Beegle, L.W.; Bhartia, R.; Steele, A.; Razzell Hollis, J.; Siljestrom, S.; McCubbin, F.M.; Asher, S.A.; et al. Mapping Organic-Mineral Associations in the Jezero crater floor. In Proceedings of the American Geophysical Union Fall Meeting 2022, Chicago, IL, USA, 2–16 December 2022. [Google Scholar]
- Steele, A.; Benning, L.G.; Wirth, R.; Schreiber, A.; Araki, T.; McCubbin, F.M.; Fries, M.D.; Nittler, L.R.; Wang, J.; Hallis, L.J.; et al. Organic synthesis associated with serpentinization and carbonation on early Mars. Science 2022, 375, 172–177. [Google Scholar] [CrossRef]
- Steele, A.; Benning, L.G.; Wirth, R.; Siljestrom, S.; Fries, M.D.; Hauri, E.; Conrad, P.G.; Rogers, K.; Eigenbrode, J.; Schreiber, A.; et al. Organic synthesis on Mars by electrochemical reduction of CO2. Sci. Adv. 2018, 4, eaat5118. [Google Scholar] [CrossRef]
- Olsen, A.A.; Hausrath, E.M.; Rimstidt, J.D. Forsterite dissolution rates in Mg-sulfate-rich Mars-analog brines and implications of the aqueous history of Mars. J. Geophys. Res.-Planets 2015, 120, 388–400. [Google Scholar] [CrossRef]
- King, P.L.; McLennan, S.M. Sulfur on Mars. Elements 2010, 6, 107–112. [Google Scholar] [CrossRef]
- Carlson, R.W.; Johnson, R.E.; Anderson, M.S. Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 1999, 286, 97–99. [Google Scholar] [CrossRef]
- Bodkin, M.A. Incipient Chemical Weathering of the Pine Hill Serpentinite, Little Deer Isle, ME; Univeristy of Maine: Orono, ME, USA, 2013. [Google Scholar]
- Zareian, M.; Ebrahimpour, A.; Bakar, F.A.; Mohamed, A.K.S.; Forghani, B.; Ab-Kadir, M.S.B.; Saari, N. A glutamic acid-producing lactic acid bacteria isolated from malaysian fermented foods. Int. J. Mol. Sci. 2012, 13, 5482–5497. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Lim, H.C.; Hong, J. Acetic acid formation in escherichia coli formation. Biotechnol. Bioeng. 1992, 39, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Drake, H.L. Acetogenesis, Acetogenic Bacteria, and the Acetyl-CoA “Wood/Ljungdahl” Pathway: Past and Current Perspectives; Springer: Berlin/Heidelberg, Germany, 1994; pp. 3–60. [Google Scholar]
- Lang, S.Q.; Butterfield, D.A.; Schulte, M.; Kelley, D.S.; Lilley, M.D. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta 2010, 74, 941–952. [Google Scholar] [CrossRef]
- R Core Team, T. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Bowles, J.F.W.; Howie, R.A.; Vaughan, D.; Zussman, J. Non-Silicates: Oxides, Hydroxides and Sulphides. (Rock-Forming Minerals.; No. 5A); Geological Society: Bath, UK, 2011. [Google Scholar]
- Casey, W.H.; Westrich, H.R. Control of dissolution rates of orthosilicate minerals by divalent metal oxygen bonds. Nature 1992, 355, 157–159. [Google Scholar] [CrossRef]
- Goyne, K.W.; Brantley, S.L.; Chorover, J. Effects of organic acids and dissolved oxygen on apatite and chalcopyrite dissolution: Implications for using elements as organomarkers and oxymarkers. Chem. Geol. 2006, 234, 28–45. [Google Scholar] [CrossRef]
- Burgess, D.R. NIST SRD 46. Critically Selected Stability Constants of Metal Complexes: Version 8.0 for Windows, National Institute of Standards and Technology. 2004. Available online: https://data.commerce.gov/nist-srd-46-critically-selected-stability-constants-metal-complexes-version-80-windows (accessed on 25 February 2024).
Acid Treatment | Chemical Formula | Reason for Selection |
---|---|---|
Abiotic | ||
Nitric | HNO3 | inorganic control |
Sulfuric | H2SO4 | important in planetary systems |
Abiotic–Organic | ||
Acetic * | C2H4O2 | found in carbonaceous chondrites |
Glutamic * | C5H9NO4 | found in carbonaceous chondrites |
Methanesulfonic | CH4O3S | found in carbonaceous chondrites |
Nonanoic | CH3(CH2)7COOH | found in carbonaceous chondrites |
Valeric | C5H10O2 | found in carbonaceous chondrites |
α-aminoisobutyric | C4H9NO2 | found in carbonaceous chondrites |
Biotic | ||
Acetic * | C2H4O2 | produced by bacteria on Earth |
Citric | C6H8O7 | produced by bacteria on Earth |
Glutamic * | C5H9NO4 | produced by bacteria on Earth |
Formic | CH2O2 | produced by bacteria on Earth |
Fumaric | C4H4O4 | produced by bacteria on Earth |
Gluconic | C6H12O7 | produced by bacteria on Earth |
Glycolic | C2H4O3 | produced by bacteria on Earth |
Lactic | C3H6O3 | produced by bacteria on Earth |
Malic | C4H6O5 | produced by bacteria on Earth |
Oxalic | C2H2O4 | produced by bacteria on Earth |
Acid Category | Parameter Estimate | Standard Error | p-Value |
---|---|---|---|
Magnesium | |||
Control–Nitric | −5.17 | 0.066 | - |
Sulfuric | 0.23 | 0.055 | <0.001 |
Abiotic–Organic | 0.04 | 0.043 | 0.30 |
Biotic | 0.25 | 0.041 | <0.001 |
Silicon | |||
Control–Nitric | −5.08 | 0.079 | - |
Sulfuric | 0.35 | 0.066 | <0.001 |
Abiotic–Organic | 0.14 | 0.051 | 0.00615 |
Biotic | 0.25 | 0.049 | <0.001 |
Acid | Enhanced Elements |
---|---|
Inorganic | |
Sulfuric | Al, Ca, Cd, Co, Cr, K, Mg, Mo, P, Pb, Rb, S, Sc, Si, Th, Ti, U, V, W, Y, Zr |
Abiotic–organic | |
2-Aminoisobutyric | Al, Ce, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Pr, Sc, Ti, U, V, Y |
Methanesulfonic | Al, Pb, S, Si, Th, Ti, U, V, Zr |
Nonanoic | Ca, Cd, Ce, Cr, K, Mo, Na, P, Pb, Pr, S, Th, U, W, Y, Zr |
Valeric | Cd, Co, Cr, Cu, Fe, Mn, Na, Pb, Sc, U, Zn, Zr |
Biotic | |
Acetic | Cd, Ce, Co, Cr, Cu, Fe, Mn, Mg, Mo, Na, Pb, Sc, Si, Th, U, V |
Citric | Al, Ca, Cd, Ce, Co, Cr, Cu, Fe, La, Mg, Mn, Mo, Ni, P, Pb, Pr, S, Sc, Si, Th, Ti, U, V, W, Y, Zr |
Formic | Al, Cd, Ce, Co, Cr, Cu, Fe, La, Mg, Mn, Mo, Ni, Pb, Pr, Sc, Si, Th, Ti, U, V, Y, Zn |
Fumaric | Al, Cd, Ce, Co, Cr, Cu, Fe, La, Mg, Mn, Mo, Ni, Pb, Pr, S, Sc, Si, Th, Ti, U, V, W, Y, Zr |
Gluconic | Al, Ce, Cr, Cu, Mo, P, Pb, Pr, Sc, Th, Ti, U, V, Y, Zr |
Glutamic | Al, Ce, Co, Cr, Cu, La, Mo, Pb, Pr, S, Sc, Si, Th, Ti, U, V, W, Zr |
Glycolic | Al, Cd, Ce, Co, Cr, Cu, Fe, La, Mg, Mn, Mo, Ni, Pb, Pr, S, Sc, Si, Th, Ti, U, V, W, Y, Zn, Zr |
Lactic | Al, Ce, Co, Cr, Cu, Fe, La, Mg, Mn, Mo, Na, Pb, Pr, Sc, Si, Th, Ti, U, V, W, Y, Zr |
Malic | Al, Ca, Cd, Ce, Co, Cr, Cu, Fe, La, Mg, Mn, Mo, Ni, P, Pb, Pr, Sc, Si, Th, Ti, U, V, W, Y, Zr |
Oxalic | Al, Ca, Ce, Co, Cr, Cs, Fe, La, Mg, Mo, Ni, P, Pb, Pr, S, Sc, Si, Th, Ti, U, V, W, Y, Zr |
Acid | Enhanced Elements |
---|---|
Inorganic | |
Nitric | Ba, Sr |
Abiotic–organic | |
2-Aminoisobutyric | Ba, Cs, Cu, Sr, U |
Methanesulfonic | Al, Ba |
Nonanoic | Ba, W, Zn |
Valeric | Ba, Cu, Sr |
Biotic | |
Acetic | Mn |
Citric | Al, Ba, Ca, Ce, Co, Cr, Cu, Fe, La, Mg, Mn, Mo, Ni, P, Pb, Pr, Sc, Th, Ti, V, W, Y, Zr |
Formic | Al, Ba, Ce, Co, Cr, Cu, La, Pb, U, V, Zn |
Fumaric | Al, Ba, Co, Cr, Cu, Fe, Mn, Pb, Sc, Ti, U, V, W, Zr |
Gluconic | Al, Ba, Cr, Cu, Mo, Pb, Sc, Th, Ti, V, W, Zr |
Glutamic | Al, Ba, Ce, Cr, Cu, La, Pb, Pr, Ti, U, V |
Glycolic | Ba, Cr, Cu, Mo, Pb, Sc, Th, Ti, V, W, Zr |
Lactic | Al, Ba, Ce, Cr, Cu, Mo, Pb, Pr, Sc, Ti, V, W, Zr |
Malic | Al, Ba, Ce, Co, Cr, Cu, Fe, La, Mg, Mo, Pb, Pr, Sc, Th, Ti, V, W, Y, Zr |
Oxalic | Al, Ba, Ce, Co, Cr, Cs, La, Mg, P, Pb, Pr, Sc, Sr, Th, Ti, V, W, Y, Zr |
Acid Treatment | Temperature (°C) | Detected Elements |
---|---|---|
Inorganic | ||
Nitric | 62 | Ca, Cl, Cr, Fe |
Sulfuric | 0 | Ca, Cl, Cr, Fe |
Abiotic–Organic | ||
Methanesulfonic | 22 | Co, Cr, Fe |
Nonanoic | 0 | Co, Cr, Fe |
Valeric | 62 | Ca, Cl, Cr, Fe |
α-aminoisobutyric | 0 | Cl, Cr, Fe |
α-aminoisobutyric | 62 | Cr, Fe |
Biotic | ||
Acetic | 0 | Ca, Cl, Cr, Fe |
Citric | 0 | Ca, Cl, Cr, Fe |
Formic | 0 | Cl, Cr, Fe |
Fumaric | 0 | Ca, Cl, Cr, Fe, W |
Fumaric | 22 | Ca, Cl, Cr, Fe, Mn |
Gluconic | 0 | Cl, Cr, Fe |
Glutamic | 0 | Ca, Cl, Cr, Fe, W |
Glutamic | 22 | Fe |
Glycolic | 0 | Cl, Cr, Fe |
Lactic | 0 | Ca, Cl, Cr, Fe |
Malic | 0 | Ca, Cl, Cr, Fe, Ti |
Oxalic | 62 | Ca, Cl, Cr, Fe, Mn, Ti |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, A.R.; Olsen, A.A.; Hausrath, E.M.; Olsen, B.J.; Cardace, D. The Role of Sulfuric Acid, Abiotic–Organic Acids, and Biotic Acids on Serpentinite Dissolution and Trace Metal Release. Minerals 2024, 14, 256. https://doi.org/10.3390/min14030256
Taylor AR, Olsen AA, Hausrath EM, Olsen BJ, Cardace D. The Role of Sulfuric Acid, Abiotic–Organic Acids, and Biotic Acids on Serpentinite Dissolution and Trace Metal Release. Minerals. 2024; 14(3):256. https://doi.org/10.3390/min14030256
Chicago/Turabian StyleTaylor, Agnes R., Amanda Albright Olsen, Elisabeth M. Hausrath, Brian J. Olsen, and Dawn Cardace. 2024. "The Role of Sulfuric Acid, Abiotic–Organic Acids, and Biotic Acids on Serpentinite Dissolution and Trace Metal Release" Minerals 14, no. 3: 256. https://doi.org/10.3390/min14030256
APA StyleTaylor, A. R., Olsen, A. A., Hausrath, E. M., Olsen, B. J., & Cardace, D. (2024). The Role of Sulfuric Acid, Abiotic–Organic Acids, and Biotic Acids on Serpentinite Dissolution and Trace Metal Release. Minerals, 14(3), 256. https://doi.org/10.3390/min14030256